Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392687

RESUMO

A variety of polycyclic benzazepines were rapidly constructed by NHC-catalyzed regioselective redox-neutral intramolecular tandem cyclization. Initial mechanistic studies revealed that a SET radical process was possibly involved.

2.
Org Lett ; 26(36): 7744-7750, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39235307

RESUMO

A chemoselective and regioselective copper-promoted defunctionalization procedure has been developed, enabling the rapid construction of various N-polyheterocycles. Initial mechanistic studies reveal that a single-electron transfer radical process is potentially involved.

3.
Chemistry ; 30(44): e202401371, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38825569

RESUMO

Herein, we describe a visible light-induced C(sp2)-H arylation method for quinoxalin-2(1H)-ones and coumarins using iodonium ylides without the need for external photocatalysts. The protocol demonstrates a broad substrate scope, enabling the arylation of diverse heterocycles through a simple and mild procedure. Furthermore, the photochemical reaction showcases its applicability in the efficient synthesis of biologically active molecules. Computational investigations at the CASPT2//CASSCF/PCM level of theory revealed that the excited state of quinoxalin-2(1H)-one facilitates electron transfer from its π bond to the antibonding orbital of the C-I bond in the iodonium ylide, ultimately leading to the formation of an aryl radical, which subsequently participates in the C-H arylation process. In addition, our calculations reveal that during the single-electron transfer (SET) process, the C-I bond cleavage in iodonium ylide and new C-C bond formation between resultant aryl radical and cationic quinoxaline species take place in a concerned manner. This enables the arylation reaction to efficiently proceed along an energy-efficient route.

4.
J Org Chem ; 89(11): 7591-7597, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723145

RESUMO

In this study, we present an efficient approach for the synthesis of 3-sulfenyl indoles through an electron donor-acceptor (EDA) complex-promoted photoreaction. This sulfenylation reaction leverages sulfonyl chlorides as the sulfur source and employs PPh3 as the reductant without the need for any transition-metal catalyst or photocatalyst. At the same time, the relaxation process of the excited EDA complex was theoretically investigated at the method and multiconfiguration second-order perturbation//complete active space self-consistent field/PCM level of theory, which involves the π bond of indoles injecting an electron to the antibonding orbital of the S-Cl bond in arylsulfonyl chlorides.

5.
J Org Chem ; 89(6): 4031-4036, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447165

RESUMO

Construction of medium-sized ring compounds remains challenging in synthetic chemistry. Herein, we describe the synthesis of medium-sized lactams via a photoinduced ring expansion of benzo-fused cyclic ketones using graphitic carbon nitride (g-C3N4) as a photocatalyst. The ring expansion protocol provided an efficient access to 8-10-membered lactams in good yields and displayed good tolerance to a range of functional groups. The mechanism studies revealed that the photochemical reaction proceeds via an intermediary of a nitrogen radical, which is generated through an oxidative hydrogen atom transfer (HAT) process.

6.
Org Lett ; 26(1): 292-297, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38157220

RESUMO

The diaryl ether represents a prevalent structural motif found in numerous biologically active molecules. Herein, we describe a dirhodium-catalyzed C(sp2)-O cross coupling reaction between diazo quinones and phenols for the construction of diaryl ethers in moderate to high yields. The reaction proceeds under mild and neutral conditions and is tolerant of various functional groups. The synthetic method has been successfully applied to the concise synthesis of a Navl.7 inhibitor.

7.
J Org Chem ; 88(13): 8703-8708, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37246907

RESUMO

Herein, we reported the heterogeneous photocatalytic C-H alkylation of indoles with diazo compounds using graphitic carbon nitride (g-C3N4) as the photocatalyst. The reaction was carried out under a simple operation and mild conditions. In addition, the catalyst was found to be stable and reusable after five reaction cycles. The photochemical reaction proceeds via an intermediary of a carbon radical, which is generated from diazo compounds through a visible-light-promoted proton-coupled electron transfer (PCET) process.


Assuntos
Indóis , Prótons , Carbono , Nitrilas/química , Compostos Azo , Corantes
8.
Org Lett ; 24(50): 9243-9247, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36516358

RESUMO

A number of γ-cyanoalkyl radicals were generated by sustainable N-heterocyclic carbene catalysis in tin-, transition-meal-, and light-free conditions, followed by insertion into biaryl isonitriles, thus leading to the rapid assembly of a variety of diversely functionalized 6-cyanoalkyl phenanthridines. A preliminary mechanism study revealed that a single-electron transfer radical process was possibly involved.

9.
Chem Sci ; 13(44): 13015-13019, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36425492

RESUMO

Catalytic asymmetric dearomatization (CADA) reactions is an important synthetic method for constructing enantioenriched complex cyclic systems from simple aromatic feedstocks. However, the CADA reactions of nonactivated arenes, such as naphthalenes and benzenes, have been far less explored than those of electronically activated arenes, such as phenols, naphthols and indoles. Herein, we disclose an asymmetric dearomative cyclopropanation of naphthalenes for the rapid construction of polycyclic compounds. With chiral dirhodium carboxylate as a catalyst, the dearomative cyclopropanation proceeded smoothly under mild conditions and afforded benzonorcaradiene-containing tetracycles in good yield and high enantioselectivity (up to 99% ee). Three stereogenic centers, including two all-carbon quaternary centers, were created in the dearomatization reaction. Moreover, a variety of functional groups are well-tolerated in the reaction. The products could be readily converted into other complex polycycles while maintaining the high ee value.

10.
Org Lett ; 24(41): 7654-7658, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36218283

RESUMO

A variety of phenanthridines are rapidly constructed by an N-heterocyclic carbene (NHC)-catalyzed SOMOphilic isocyanide insertion-initiated homolytic aromatic substitution-type radical cyclization in the absence of any light, transition metals, and external oxidants. The aldehyde-free, scalable, and operationally simple protocol tolerates diverse functionalized biaryl isonitriles and activated α-halides. Moreover, it can be further applied to the divergent construction of other N-heterocycles. Preliminary mechanistic studies disclose that an NHC-derived radical cation intermediate is possibly involved.

11.
Org Lett ; 24(25): 4615-4619, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35731003

RESUMO

N-Polyheterocycles are rapidly accessed by N-heterocyclic carbene (NHC) catalysis through regioselective sequential radical addition/cyclization in the absence of any metals or oxidants. The transformation occurs under mild conditions and enjoys a wide substrate scope with excellent functional group compatibility. Furthermore, a gram-scale synthesis is also conducted. Preliminary mechanistic studies reveal the potential involvement of an NHC radical cation intermediate.

12.
J Org Chem ; 87(12): 8198-8202, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35612828

RESUMO

Herein, we report a halogen-bonding-based electron donor-acceptor (EDA) complex-promoted photoreaction for the synthesis of C2-malonylated indoles. The protocol provides access to a broad range of functionalized indoles in good yields through the coupling reaction of indoles with diethyl bromomalonate under visible-light irradiation without the need for any transition-metal catalyst or photocatalyst.

13.
Org Lett ; 23(12): 4843-4848, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34076439

RESUMO

A metal-free heterogeneous photocatalysis has been developed for the synthesis of benzothiazoles via intramolecular C-H functionalization/C-S bond formation of thiobenzanilides by inexpensive graphitic carbon nitride (g-C3N4) under visible-light irradiation. This reaction provides access to a broad range of 2-substituted benzothiazoles in high yields under an air atmosphere at room temperature without addition of a strong base or organic oxidizing reagents. In addition, the catalyst was found to be stable and reusable after five reaction cycles.

14.
Org Lett ; 22(22): 9091-9096, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33147039

RESUMO

Here, we describe three types of rearrangement reactions of sulfur ylide derived from diazoquinones and allyl/propargyl sulfides. With Rh2(esp)2 as the catalyst, diazoquinones react with allyl/propargyl sulfides to form a sulfur ylide, which undergoes a chemoselective tautomerization/[2,3]-sigmatropic rearrangement reaction, a Doyle-Kirmse rearrangement/Cope rearrangement cascade reaction, or a Doyle-Kirmse rearrangement/elimination reaction, depending on the substituent of the sulfides. The protocol provides alkenyl and allenyl sulfides and multisubstituted phenols with moderate and high yields.

15.
Angew Chem Int Ed Engl ; 59(38): 16561-16571, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32500643

RESUMO

Reliable methods for enantioselective cis-dihydroxylation of trisubstituted alkenes are scarce. The iron(II) complex cis-α-[FeII (2-Me2 -BQPN)(OTf)2 ], which bears a tetradentate N4 ligand (Me2 -BQPN=(R,R)-N,N'-dimethyl-N,N'-bis(2-methylquinolin-8-yl)-1,2-diphenylethane-1,2-diamine), was prepared and characterized. With this complex as the catalyst, a broad range of trisubstituted electron-deficient alkenes were efficiently oxidized to chiral cis-diols in yields of up to 98 % and up to 99.9 % ee when using hydrogen peroxide (H2 O2 ) as oxidant under mild conditions. Experimental studies (including 18 O-labeling, ESI-MS, NMR, EPR, and UV/Vis analyses) and DFT calculations were performed to gain mechanistic insight, which suggested possible involvement of a chiral cis-FeV (O)2 reaction intermediate as an active oxidant. This cis-[FeII (chiral N4 ligand)]2+ /H2 O2 method could be a viable green alternative/complement to the existing OsO4 -based methods for asymmetric alkene dihydroxylation reactions.

16.
Chem Soc Rev ; 49(15): 5310-5358, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32568340

RESUMO

Direct C-H bond functionalization catalyzed by non-precious transition metals is an attractive strategy in synthetic chemistry. Compared with the precious metals rhodium, palladium, ruthenium, and iridium commonly used in this field, catalysis based on non-precious metals, especially the earth-abundant ones, is appealing due to the increasing demand for environmentally benign and sustainable chemical processes. Herein, developments in iron- and cobalt-catalyzed C(sp3)-H bond functionalization reactions are described, with an emphasis on their applications in organic synthesis, i.e., the synthesis of natural products and pharmaceuticals and/or their modification.


Assuntos
Produtos Biológicos/síntese química , Cobalto/química , Complexos de Coordenação/química , Ferro/química , Aminação , Catálise , Técnicas de Química Sintética , Técnicas Eletroquímicas , Ligação de Hidrogênio , Hidroxilação , Ligantes , Estrutura Molecular , Oxirredução , Processos Fotoquímicos
17.
Angew Chem Int Ed Engl ; 59(37): 16202-16208, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32558142

RESUMO

A transition-metal-free C(sp2 )-C(sp2 ) bond formation reaction by the cross-coupling of diazo quinones with catechol boronic esters was developed. With this protocol, a variety of biaryls and alkenyl phenols were obtained in good to high yields under mild conditions. The reaction tolerates various functionalities and is applicable to the derivatization of pharmaceuticals and natural products. The synthetic utility of the method was demonstrated by the short synthesis of multi-substituted triphenylenes and three bioactive natural products, honokiol, moracin M, and stemofuran A. Mechanistic studies and density functional theory (DFT) calculations revealed that the reaction involves attack of the boronic ester by a singlet quinone carbene followed by a 1,2-rearrangement through a stepwise mechanism.

18.
Chem Sci ; 11(8): 2243-2259, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32180931

RESUMO

Alkyl-substituted carbene (CHR or CR2, R = alkyl) complexes have been extensively studied for alkylcarbene (CHR) ligands coordinated with high-valent early transition metal ions (a.k.a. Schrock carbenes or alkylidenes), yet dialkylcarbene (CR2) complexes remain less developed with bis(dialkylcarbene) species being little (if at all) explored. Herein, several group 8 metal porphyrin dialkylcarbene complexes, including Fe- and Ru-mono(dialkylcarbene) complexes [M(Por)(Ad)] (1a,b, M = Fe, Por = porphyrinato dianion, Ad = 2-adamantylidene; 2a,b, M = Ru) and Os-bis(dialkylcarbene) complexes [Os(Por)(Ad)2] (3a-c), are synthesized and crystallographically characterized. Detailed investigations into their electronic structures reveal that these complexes are formally low-valent M(ii)-carbene in nature. These complexes display remarkable thermal stability and chemical inertness, which are rationalized by a synergistic effect of strong metal-carbene covalency, hyperconjugation, and a rigid diamondoid carbene skeleton. Various spectroscopic techniques and DFT calculations suggest that the dialkylcarbene Ad ligand is unique compared to other common carbene ligands as it acts as both a potent σ-donor and π-acceptor; its unique electronic and structural features, together with the steric effect of the porphyrin macrocycle, make its Fe porphyrin complex 1a an active and robust catalyst for intermolecular diarylcarbene transfer reactions including cyclopropanation (up to 90% yield) and X-H (X = S, N, O, C) insertion (up to 99% yield) reactions.

19.
Chem Sci ; 11(18): 4680-4686, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-34122922

RESUMO

Visible light driven nitrene transfer and insertion reactions of organic azides are an attractive strategy for the design of C-N bond formation reactions under mild reaction conditions, the challenge being lack of selectivity as a free nitrene reactive intermediate is usually involved. Herein is described an iron(iii) porphyrin catalysed sp3 C-H amination and alkene aziridination with selectivity by using organic azides as the nitrogen source under blue LED light (469 nm) irradiation. The photochemical reactions display chemo- and regio-selectivity and are effective for the late-stage functionalization of natural and bioactive compounds with complexity. Mechanistic studies revealed that iron porphyrin plays a dual role as a photosensitizer and as a catalyst giving rise to a reactive iron-nitrene intermediate for subsequent C-N bond formation.

20.
Angew Chem Int Ed Engl ; 59(5): 1845-1850, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31755156

RESUMO

Described herein is an IrIII /porphyrin-catalyzed intermolecular C(sp3 )-H insertion reaction of a quinoid carbene (QC). The reaction was designed by harnessing the hydrogen-atom transfer (HAT) reactivity of a metal-QC species with aliphatic substrates followed by a radical rebound process to afford C-H arylation products. This methodology is efficient for the arylation of activated hydrocarbons such as 1,4-cyclohexadienes (down to 40 min reaction time, up to 99 % yield, up to 1.0 g scale). It features unique regioselectivity, which is mainly governed by steric effects, as the insertion into primary C-H bonds is favored over secondary and/or tertiary C-H bonds in the substituted cyclohexene substrates. Mechanistic studies revealed a radical mechanism for the reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA