Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 16(4): 556-563, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374455

RESUMO

The distribution, metabolism and ultimate fate of molecules within the body is central to the activity of pharmaceuticals. However, the introduction of radioisotopes into the metabolically stable carbon sites on drugs to probe these features typically requires toxic, radioactive gases such as [14C]CO and [14C]CO2. Here we describe an approach to directly carbon-label carboxylic-acid-containing pharmaceuticals via a metal-catalysed functional group exchange reaction, forming 14C-labelled carboxylic-acid-containing drugs without radioactive gases, in one pot, using an easily available and handled carboxylic acid 14C source. To enable this process, a functional group metathesis of carbon-carbon covalent bonds in acid chloride functionalities is developed, exploiting the ability of nickel catalysts to both reversibly activate carbon-chloride bonds and exchange functionalities between organic molecules. The drug development applicability is illustrated by the direct incorporation of the 14C label or 13C label into an array of complex aryl, alkyl, vinyl and heterocyclic carboxylic acid drugs or drug candidates without gases or a special apparatus, at ambient conditions and without loss of the radiolabel.

2.
J Am Chem Soc ; 144(21): 9413-9420, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35587132

RESUMO

We describe the development of a general palladium-catalyzed carbonylative method to synthesize acyl fluorides from aryl, heteroaryl, alkyl, and functionalized organic halides. Mechanistic analysis suggests that the reaction proceeds via the synergistic combination of visible light photoexcitation of Pd(0) to induce oxidative addition with a ligand-favored reductive elimination. These together create a unidirectional catalytic cycle that is uninhibited by the classical effect of carbon monoxide coordination. Coupling the catalytic formation of acyl fluorides with their subsequent nucleophilic reactions has opened a method to perform carbonylation reactions with unprecedented breadth, including the assembly of highly functionalized carbonyl-containing products.


Assuntos
Fluoretos , Paládio , Catálise , Ligantes , Luz
3.
Chem Sci ; 12(45): 15077-15083, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34909148

RESUMO

A new class of phosphorus-containing 1,3-dipoles can be generated by the multicomponent reaction of aldehydes, acid chlorides and the phosphonite PhP(catechyl). These 1,3-dipoles are formally cyclic tautomers of simple Wittig-type ylides, where the angle strain and moderate nucleophilicity in the catechyl-phosphonite favor their cyclization and also direct 1,3-dipolar cycloaddition to afford single regioisomers of substituted products. Coupling the generation of the dipoles with 1,3-dipolar cycloaddition offers a unique, modular route to furans from combinations of available aldehydes, acid chlorides and alkynes with independent control of all four substituents.

4.
Chem Sci ; 12(6): 2251-2256, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34163991

RESUMO

We report herein the development of a palladium-catalyzed, multicomponent synthesis of indolizines. The reaction proceeds via the carbonylative formation of a high energy, mesoionic pyridine-based 1,3-dipole, which can undergo spontaneous cycloaddition with alkynes. Overall, this provides a route to prepare indolizines in a modular fashion from combinations of commercially available or easily generated reagents: 2-bromopyridines, imines and alkynes.

5.
Org Lett ; 21(21): 8805-8809, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626553

RESUMO

Metal homoenolates are valuable synthetic intermediates which provide access to ß-functionalized ketones. In this report, we disclose a Ni-catalyzed ß-alkylation reaction of cyclopropanol-derived homoenolates using redox-active N-hydroxyphthalimide (NHPI) esters as the alkylating reagents. The reaction is compatible with 1°, 2°, and 3° NHPI esters. Mechanistic studies imply radical activation of the NHPI ester and 2e ß-carbon elimination occurring on the cyclopropanol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA