Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301512, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175841

RESUMO

Combinations of phosphorus with main group III, IV, and V elements are theoretically predicted to generate 2D binary phosphides with extraordinary properties and promising applications. However, experimental synthesis is significantly lacking. Here, a general approach for preparing 2D binary phosphides is reported using single crystalline surfaces containing the constituent element of target 2D materials as the substrate. To validate this, SnP3 and BiP, representing typical 2D binary phosphides, are successfully synthesized on Cu2 Sn and bismuthene, respectively. Scanning tunneling microscopy imaging reveals a hexagonal pattern of SnP3 on Cu2 Sn, while α-BiP can be epitaxially grown on the α-bismuthene domain on Cu2 Sb. First-principles calculations reveal that the formation of SnP3 on Cu2 Sn is associated with strong interface bonding and significant charge transfer, while α-BiP interacts weakly with α-bismuthene so that its semiconducting property is preserved. The study demonstrates an attractive avenue for the atomic-scale growth of binary 2D materials via substrate phase engineering.

2.
BMC Psychiatry ; 22(1): 248, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395781

RESUMO

BACKGROUND: Inflammation and immune status are correlated with the severity of major depressive disorder (MDD).The purpose of this study was to establish an optimization model of peripheral blood parameters to predict the severity of MDD. METHODS: MDD severity in the training and validation cohorts (n = 99 and 97) was classified using the Hamilton Depression Scale, Thirty-eight healthy individuals as controls. Significant severity-associated factors were identified using a multivariate logistic model and combined to develop a joint index through binary logistic regression analysis. The area under the receiver operating characteristic curve (AUC) was used to identify the optimal model and evaluate the discriminative performance of the index. RESULTS: In the training cohort, lower CD4+/CD8+ T cell ratio, albumin level, and a higher monocyte percentage (M%) were significant as operating sociated with severe disease (P < 0.05 for all). The index was developed using these factors and calculated as CD4+/CD8+ T cell ratio, albumin level, and M%, with a sensitivity and specificity of 90 and 70%, respectively. The AUC values for the index in the training and validation cohorts were 0.85 and 0.75, respectively, indicating good discriminative performance. CONCLUSION: We identified disease severity-associated joint index that could be easily evaluated: CD4+/CD8+ T cell ratio, albumin level, and M%.


Assuntos
Transtorno Depressivo Maior , Albuminas , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Transtorno Depressivo Maior/diagnóstico , Humanos , Monócitos
3.
J Phys Chem Lett ; 12(1): 211-217, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33325714

RESUMO

Stanene is a notable two-dimensional topological insulator with a large spin-orbit-coupling-induced band gap. However, the formation of surface alloy intermediates during the epitaxial growth on noble metal substrates prevents the as-grown stanene from preserving its intrinsic electronic states. Here, we show that an intentionally prepared 3×3Au2Sn(111) alloy surface is a suitable inert substrate for growing stanene without the further formation of a complicated surface alloy by scanning tunneling microscopy. The Sn tetramer and clover-shaped Sn pentamer are intermediates for the black-phosphorene-like Sn film at a substrate temperature of <420 K, which transforms to a blue-phosphorene-like stanene with a lattice constant of 0.50 nm above 500 K. First-principles calculations reveal that the epitaxial Sn layer exhibits a lattice registry growth mode and holds a direct energy gap of ∼0.4 eV. Furthermore, interfacial charge-transfer-induced significant Rashba splitting in its electronic structure gives it great potential in spintronic applications.

4.
J Chem Phys ; 152(7): 074710, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087652

RESUMO

Monolayer iron oxides grown on metal substrates have widely been used as model systems in heterogeneous catalysis. By means of ambient-pressure scanning tunneling microscopy (AP-STM), we studied the in situ oxidation and reduction of FeO(111) grown on Au(111) by oxygen (O2) and carbon monoxide (CO), respectively. Oxygen dislocation lines present on FeO islands are highly active for O2 dissociation. X-ray photoelectron spectroscopy measurements distinctly reveal the reversible oxidation and reduction of FeO islands after sequential exposure to O2 and CO. Our AP-STM results show that excess O atoms can be further incorporated on dislocation lines and react with CO, whereas the CO is not strong enough to reduce the FeO supported on Au(111) that is essential to retain the activity of oxygen dislocation lines.

5.
ACS Nano ; 14(2): 2385-2394, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32031783

RESUMO

In recent years, two-dimensional (2D) group VA elemental materials have attracted considerable interest from physics/chemistry and materials science communities, with particular attention paid to honeycomb blue phosphorene. To date, phosphorene is limited to its α-phase and small sizes because it can only be produced by exfoliating black phosphorus crystals. Here, we report the direct synthesis of high-quality phosphorene on a nonmetallic copper oxide substrate by molecular beam epitaxy. By combining scanning tunneling microscopy/spectroscopy, X-ray photoelectron spectroscopy, and first-principles calculations, we demonstrate the growth intermediates and electronic structures of phosphorene on Cu3O2/Cu(111). Surprisingly, the grown phosphorene has a flat honeycomb lattice, similar to graphene, which exhibits a metallic nature. We reveal that the growth mechanism and morphology of phosphorene are strongly correlated with the surface structures of prepared copper oxide, and the resulting phosphorene can be stabilized after high-temperature annealing above 600 K even in oxygen gas. The high stability is closely related to the irregular Moiré pattern and structural corrugations of phosphorene on Cu3O2/Cu(111) that efficiently relieve the surface strain. These results shed light on future fabrication of large-scale, versatile 2D structures for interconnect and device integration.

6.
J Phys Chem Lett ; 11(4): 1317-1329, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31945298

RESUMO

An atomic layer of tin in a buckled honeycomb lattice, termed stanene, is a promising large-gap two-dimensional topological insulator for realizing room-temperature quantum-spin-Hall effect and therefore has drawn tremendous interest in recent years. Because the electronic structures of Sn allotropes are sensitive to lattice strain, e.g. the semimetallic α-phase of Sn can transform into a three-dimensional topological Dirac semimetal under compressive strain, recent experimental advances have demonstrated that stanene layers on different substrates can also host various electronic properties relating to in-plane strain, interfacial charge transfer, layer thickness, and so on. Thus, comprehensive understanding of the growth mechanism at the atomic scale is highly desirable for precise control of such tunable properties. Herein, the fundamental properties of stanene and α-Sn films, recent achievements in epitaxial growth, challenges in high-quality synthesis, and possible applications of stanene are discussed.

7.
Adv Mater ; 32(4): e1906873, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31825535

RESUMO

Controlled synthesis of 2D structures on nonmetallic substrate is challenging, yet an attractive approach for the integration of 2D systems into current semiconductor technologies. Herein, the direct synthesis of high-quality 2D antimony, or antimonene, on dielectric copper oxide substrate by molecular beam epitaxy is reported. Delicate scanning tunneling microscopy imaging on the evolution intermediates reveals a segregation growth process on Cu3 O2 /Cu(111), from ordered dimer chains to packed dot arrays, and finally to monolayer antimonene. First-principles calculations demonstrate the strain-modulated band structures in antimonene, which interacts weakly with the oxide surface so that its semiconducting nature is preserved, in perfect agreement with spectroscopic measurements. This work paves the way for large-scale growth and processing of antimonene for practical implementation.

8.
ACS Nano ; 13(9): 10622-10630, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31487147

RESUMO

Epitaxial two-dimensional (2D) nanostructures with regular patterns show great promise as templates for adsorbate confinement. Prospectively, employing 2D semiconductors with reduced density of states leads to a long excited-state lifetime that allows us to directly image the dynamics of the adsorbate. We show that epitaxial blue phosphorene (blueP) on Au(111) provides such a platform to trap water molecules in the periodic nanopores without formation of strong bonds. The trapped water aggregate is tentatively assigned to a hexamer based on our scanning tunneling microscopy studies and first-principles calculations. Real-space observation of conformational switching of the hexamer induced by inelastic electrons is achieved by using low-temperature scanning tunneling microscopy with molecular resolution. We found a localized interfacial charge rearrangement between the water hexamer and P atoms underneath that is responsible for the reversible desorption and adsorption of water molecules by changing the sample bias polarity from positive to negative, offering a promising strategy for engineering the electronic properties of blueP.

9.
Adv Mater ; 31(29): e1902606, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31157463

RESUMO

Antimonene, a new semiconductor with fundamental bandgap and desirable stability, has been experimentally realized recently. However, epitaxial growth of wafer-scale single-crystalline monolayer antimonene preserving its buckled configuration remains a daunting challenge. Here, Cu(111) and Cu(110) are chosen as the substrates to fabricate high-quality, single-crystalline antimonene via molecular beam epitaxy (MBE). Surface alloys form spontaneously after the deposition and postannealing of Sb on two substrates that show threefold and twofold symmetry with different lattice constants. Increasing the coverage leads to the epitaxial growth of two atomic types of antimonene, both exhibiting a hexagonal lattice but with significant difference in lattice constants, which are observed by scanning tunneling microscopy. Scanning tunneling spectroscopy measurements reveal the strain-induced tunable bandgap, in agreement with the first-principles calculations. The results show that epitaxial growth of antimonene on different substrates allow the electronic properties of these films to be tuned by substrate-induced strain and stress.

10.
Sci Rep ; 7: 44747, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28303946

RESUMO

Ho3+/Tm3+ co-doped 50TeO2-25GeO2-3WO3-5La2O3-3Nb2O5-5Li2O-9BaF2 glass fiber is prepared with the rod-tube drawing method of 15 µm core diameter and 125 µm inner cladding diameter applied in the 2.0 µm-infrared laser. The 2.0 µm luminescence properties of the core glass are researched and the fluorescence intensity variation for different Tm3+ doping concentration is systematically analyzed. The results show that the 2.0 µm luminescence of Ho3+ is greatly influenced by the doping concentration ratio of Ho3+ to Tm3+ and that the maximum fluorescence intensity of the core glass can be obtained and its emission cross section can reach 0.933 × 10-21 cm2 when the sensitized proportion of holmium to thulium is 0.3 to 0.7 (mol%). Simultaneously, the maximum phonon energy of the core glass sample is 753 cm-1, which is significantly lower than that of silicate, gallate and germanate glass and the smaller matrix phonon energy can be conductive to the increase 2.0 µm-band emission intensity. The continuous laser with the maximum laser output power of 0.993 W and 2051 nm -wavelength of 31.9%-slope efficiency is output within the 0.5 m glass fiber and the experiment adopts 1560 nm erbium-doped fiber laser(EDFL) as the pump source and the self-built all-fiber laser. Therefore, the glass fiber has excellent laser characteristics and it is suitable for the 2.0 µm-band laser.

11.
Sci Rep ; 6: 31207, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27506152

RESUMO

In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd-Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm(3+) ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH(-) absorption coefficient, meanwhile, a larger ~1.8 µm emission cross section σem (7.56 × 10(-21) cm(2)) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm(3+): (4)F3 → (3)H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation ((3)H6 + (3)H4 → (3)F4 + (3)F4) rate. Our results suggest that the Tm(3+) doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 µm lasers system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA