Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Acta Biomater ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025389

RESUMO

Recombinant adeno-associated viruses (rAAVs) have been extensively studied for decades as carriers for delivering therapeutic genes. However, designing rAAV vectors with selective tropism for specific cell types and tissues has remained challenging. Here, we introduce a strategy for redirecting rAAV by attaching nanobodies with desired tropism at specific sites, effectively replacing the original tropism. To demonstrate this concept, we initially modified the genetic code of rAAV2 to introduce an azido-containing unnatural amino acid at a precise site within the capsid protein. Following a screening process, we identified a critical site (N587+1) where the introduction of unnatural amino acid eliminated the natural tropism of rAAV2. Subsequently, we successfully redirected rAAV2 by conjugating various nanobodies at the N587+1 site, using click and SpyTag-Spycatcher chemistries to form nanobody-AAV conjugates (NACs). By investigating the relationship between NACs quantity and effect and optimizing the linker between rAAV2 and the nanobody using a cathepsin B-susceptible valine-citrulline (VC) dipeptide, we significantly improved gene delivery efficiency both in vitro and in vivo. This enhancement can be attributed to the facilitated endosomal escape of rAAV2. Our method offers an exciting avenue for the rational modification of rAAV2 as a retargeting vehicle, providing a convenient platform for precisely engineering various rAAV2 vectors for both basic research and therapeutic applications. STATEMENT OF SIGNIFICANCE: AAVs hold great promise in the treatment of genetic diseases, but their clinical use has been limited by off-target transduction and efficiency. Here, we report a strategy to construct NACs by conjugating a nanobody or scFv to an rAAV capsid site, specifically via biorthogonal click chemistry and a spy-spycatcher reaction. We explored the structure-effect and quantity-effect relationships of NACs and then optimized the transduction efficiency by introducing a valine-citrulline peptide linker. This approach provides a biocompatible method for rational modification of rAAV as a retargeting platform without structural disruption of the virus or alteration of the binding capacity of the nanobody, with potential utility across a broad spectrum of applications in targeted imaging and gene delivery.

2.
J Antibiot (Tokyo) ; 77(1): 39-49, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38001284

RESUMO

A set of triterpene A-ring hydroxymethylene-amino-derivatives was synthesized and their antiviral activity was studied. The synthesized compounds were tested for their potential inhibition of SARS-CoV-2 pseudovirus in BHK-21-hACE2 cells and influenza A/PuertoRico/8/34 (H1N1) virus in MDCK cell culture. Compounds 6, 8 and 19 showed significant anti-SARS-CoV-2 pseudovirus activity with EC50 value of 3.20-11.13 µM, which is comparable to the positive control amodiaquine (EC50 3.17 µM). Among them, 28-O-imidazolyl-azepano-betulin 6 and C3-hydroxymethylene-amino-glycyrrhetol-11,13-diene 19 were identified as the lead compounds with SI values of 7 and 10. The binding mode of compound 6 into the RBD domain of SARS-CoV-2 spike glycoprotein (PDB code: 7DK3) by docking and molecular dynamics simulation was investigated.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Triterpenos , Humanos , SARS-CoV-2 , Triterpenos/farmacologia , Simulação de Acoplamento Molecular , Ligação Proteica , Antivirais/farmacologia
3.
Nat Biotechnol ; 42(3): 518-528, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37231262

RESUMO

The development of cancer neoantigen vaccines that prime the anti-tumor immune responses has been hindered in part by challenges in delivery of neoantigens to the tumor. Here, using the model antigen ovalbumin (OVA) in a melanoma model, we demonstrate a chimeric antigenic peptide influenza virus (CAP-Flu) system for delivery of antigenic peptides bound to influenza A virus (IAV) to the lung. We conjugated attenuated IAVs with the innate immunostimulatory agent CpG and, after intranasal administration to the mouse lung, observed increased immune cell infiltration to the tumor. OVA was then covalently displayed on IAV-CPG using click chemistry. Vaccination with this construct yielded robust antigen uptake by dendritic cells, a specific immune cell response and a significant increase in tumor-infiltrating lymphocytes compared to peptides alone. Lastly, we engineered the IAV to express anti-PD1-L1 nanobodies that further enhanced regression of lung metastases and prolonged mouse survival after rechallenge. Engineered IAVs can be equipped with any tumor neoantigen of interest to generate lung cancer vaccines.


Assuntos
Vacinas Anticâncer , Vírus da Influenza A , Neoplasias Pulmonares , Animais , Camundongos , Neoplasias Pulmonares/prevenção & controle , Vacinas Anticâncer/genética , Antígenos , Pulmão , Peptídeos , Vacinação , Antígenos de Neoplasias/genética
5.
Eur J Med Chem ; 260: 115723, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595545

RESUMO

N-acetylneuraminic acid (Neu5Ac) is a glycan receptor of viruses spread in many eukaryotic cells. The present work aimed to design, synthesis and biological evaluation of a panel of Neu5Ac derivatives based on a cyclodextrin (CD) scaffold for targeting influenza and coronavirus membrane proteins. The multivalent Neu5Ac glycoclusters efficiently inhibited chicken erythrocyte agglutination induced by intact influenza virus in a Neu5Ac density-dependent fashion. Compared with inhibition by Neu5Ac, the multivalent inhibitor with 21 Neu5Ac residues on the primary face of the ß-CD scaffold afforded 1788-fold higher binding affinity inhibition for influenza virus hemagglutinin with a dissociation constant (KD) of 3.87 × 10-7 M. It showed moderate binding affinity to influenza virus neuraminidase, but with only about one-thirtieth the potency of that with the HA protein. It also exhibited strong binding affinity to the spike protein of three human coronaviruses (severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and severe acute respiratory syndrome coronavirus 2), with KD values in the low micromolar range, which is about 10-time weaker than that of HA. Therefore, these multivalent sialylated CD derivatives have possible therapeutic application as broad-spectrum antiviral entry inhibitors for many viruses by targeting the Neu5Ac of host cells.


Assuntos
COVID-19 , Ciclodextrinas , Inibidores da Fusão de HIV , Influenza Humana , Humanos , Animais , Ácido N-Acetilneuramínico , Antivirais/farmacologia , Galinhas
6.
J Immunother ; 46(5): 161-169, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37103472

RESUMO

Siglec-15, an inhibitory immune checkpoint, is an emerging target in cancer immunotherapy. Blocking the function of Siglec-15 is an excellent strategy for cancer treatment and antibody blockade has been used to target Siglec-15. However, whether Fc-mediated effector functions contribute to the therapeutic effect of antibodies remains unclear. Herein, we generated a monoclonal antibody, 1-15D1, which had a high binding affinity with Siglec-15 and strongly activated T-cell immune response in vitro. Subsequently, the Fc-mediated effector functions of 1-15D1 were explored in a Siglec-15 humanized mouse model, and further improvement in antitumor efficacy was observed in the mouse IgG2a isotype group. Thus, we demonstrate that the antitumor effects of 1-15D1 were mediated via multiple factors. In addition to the T-cell immune response, 2 novel mechanisms were explored, including the internalization of the cell surface Siglec-15 and Fc-mediated effector functions. In conclusion, our studies not only provide a potential agent for the improvement of cancer immunotherapy but also suggest that a specific role of Fc-mediated immune regulation may improve the therapeutic potency of Siglec-15 monoclonal antibody.


Assuntos
Neoplasias , Animais , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Imunoglobulina G , Imunoglobulinas , Proteínas de Membrana , Neoplasias/terapia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Humanos
7.
Signal Transduct Target Ther ; 8(1): 28, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690610

RESUMO

Interleukin-2 (IL-2) is a pleiotropic cytokine that orchestrates bidirectional immune responses via regulatory T cells (Tregs) and effector cells, leading to paradoxical consequences. Here, we report a strategy that exploited genetic code expansion-guided incorporation of the latent bioreactive artificial amino acid fluorosulfate-L-tyrosine (FSY) into IL-2 for proximity-enabled covalent binding to IL-2Rα to selectively promote Treg activation. We found that FSY-bearing IL-2 variants, such as L72-FSY, covalently bound to IL-2Rα via sulfur-fluoride exchange when in proximity, resulting in persistent recycling of IL-2 and selectively promoting the expansion of Tregs but not effector cells. Further assessment of L72-FSY-expanded Tregs demonstrated that L72-FSY maintained Tregs in a central memory phenotype without driving terminal differentiation, as demonstrated by simultaneously attenuated expression of lymphocyte activation gene-3 (LAG-3) and enhanced expression of programmed cell death protein-1 (PD-1). Subcutaneous administration of L72-FSY in murine models of pristane-induced lupus and graft-versus-host disease (GvHD) resulted in enhanced and sustained therapeutic efficacy compared with wild-type IL-2 treatment. The efficacy of L72-FSY was further improved by N-terminal PEGylation, which increased its circulatory retention for preferential and sustained effects. This proximity-enabled covalent binding strategy may accelerate the development of pleiotropic cytokines as a new class of immunomodulatory therapies.


Assuntos
Interleucina-2 , Linfócitos T Reguladores , Camundongos , Animais , Subunidade alfa de Receptor de Interleucina-2 , Autoimunidade
8.
Mol Pharm ; 20(1): 701-710, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36458832

RESUMO

Betulinic acid (BA) and oleanolic acid (OA) are plant-derived conjugates found in various medicinal plants that have emerged as potential antitumor agents. Herein, a series of novel BA and OA derivatives were synthesized by conjugation with per-O-methylated-ß-cyclodextrin (PM-ß-CD), and their anticancer properties against a panel of three human cancer cell lines were evaluated. Two OA-PM-ß-CD conjugates (48 and 50) were observed to be the most potent conjugates against the three cell lines (MCF-7, BGC-823, and HL-60), with a 15- to 20-fold decrease in the IC50 values (IC50: 6.06-8.47 µM) compared with their parental conjugate (OA). Annexin V-FITC/propidium iodide staining and Western blot analysis revealed that both conjugates induced apoptosis in HL-60 cells. Additionally, in the representative conjugate 48-treated HL-60 cells, a decrease in mitochondrial membrane potential and subsequent release of cytochrome c into the cytosol were observed, indicating the activation of the intrinsic apoptosis pathway. Furthermore, 48 dramatically induced the generation of reactive oxygen species (ROS) in HL-60 cells, and the corresponding effect could be reversed using the ROS scavenger N-acetylcysteine. Collectively, these results suggest that the novel pentacyclic triterpenoid derivatives trigger the intrinsic apoptotic pathways via the ROS-mediated activation of caspase-3 signaling, inducing cell death in human cancer cells.


Assuntos
Antineoplásicos , Neoplasias , Triterpenos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Triterpenos/farmacologia , Apoptose , Antineoplásicos/farmacologia , Células HL-60 , Triterpenos Pentacíclicos/farmacologia
10.
Front Chem ; 10: 836955, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494649

RESUMO

In our continuing efforts toward the design of novel pentacyclic triterpene derivatives as potential anti-influenza virus entry inhibitors, a series of homogeneous heptavalent glycyrrhetinic acid derivatives based on ß-cyclodextrin scaffold were designed and synthesized by click chemistry. The structure was unambiguously characterized by NMR, IR, and MALDI-TOF-MS measurements. Seven conjugates showed sufficient inhibitory activity against influenza virus infection based on the cytopathic effect reduction assay with IC50 values in the micromolar range. The interactions of conjugate 37, the most potent compound (IC50 = 2.86 µM, CC50 > 100 µM), with the influenza virus were investigated using the hemagglutination inhibition assay. Moreover, the surface plasmon resonance assay further confirmed that compound 37 bound to the influenza HA protein specifically with a dissociation constant of 5.15 × 10-7 M. Our results suggest the promising role of ß-cyclodextrin as a scaffold for preparing a variety of multivalent compounds as influenza entry inhibitors.

11.
J Med Chem ; 65(10): 7154-7169, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35579113

RESUMO

Influenza hemagglutinin that drives viral entry into cells via the membrane fusion process is an up-and-coming antiviral drug target. Herein, we described for the first time the design, synthesis, and biological characteristics of a new class of pentacyclic triterpenoid-based proteolysis targeting chimeras (PROTACs) to enhance the degradation of hemagglutinin target. Among these PROTACs, V3 showed the best degradation effect on the hemagglutinin with a median degradation concentration of 1.44 µM in a ubiquitin and proteasome-dependent manner and broad-spectrum anti-influenza A virus activity but not affected the entry of influenza virus. Moreover, intravenous injection of V3 protected mice against influenza A virus-induced toxic effects. Further diazirine-containing photo-crosslinking mass spectrometric analysis of hemagglutinin complexes indicated crosslinking to Asn15, Thr31, and Asn27, a novel target of hemagglutinin. Taken together, our data revealed that oleanolic acid-based PROTACs could degrade hemagglutinin protein, providing a new direction toward the discovery of potential anti-influenza drugs.


Assuntos
Influenza Humana , Triterpenos , Animais , Quimera/metabolismo , Hemaglutininas , Humanos , Influenza Humana/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Proteínas/metabolismo , Proteólise , Triterpenos/química
12.
Sci Data ; 9(1): 83, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277521

RESUMO

Increases in atmospheric carbon dioxide (CO2) concentrations is the main driver of global warming due to fossil fuel combustion. Satellite observations provide continuous global CO2 retrieval products, that reveal the nonuniform distributions of atmospheric CO2 concentrations. However, climate simulation studies are almost based on a globally uniform mean or latitudinally resolved CO2 concentrations assumption. In this study, we reconstructed the historical global monthly distributions of atmospheric CO2 concentrations with 1° resolution from 1850 to 2013 which are based on the historical monthly and latitudinally resolved CO2 concentrations accounting longitudinal features retrieved from fossil-fuel CO2 emissions from Carbon Dioxide Information Analysis Center. And the spatial distributions of nonuniform CO2 under Shared Socio-economic Pathways and Representative Concentration Pathways scenarios were generated based on the spatial, seasonal and interannual scales of the current CO2 concentrations from 2015 to 2150. Including the heterogenous CO2 distributions could enhance the realism of global climate modeling, to better anticipate the potential socio-economic implications, adaptation practices, and mitigation of climate change.

13.
Sci Rep ; 12(1): 3278, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228603

RESUMO

Cancers are immunologically heterogeneous. A range of immunotherapies target abnormal tumor immunity via different mechanisms of actions (MOAs), particularly various tumor-infiltrate leukocytes (TILs). We modeled loss of function (LOF) in four common anti-PD-1 antibody-responsive syngeneic tumors, MC38, Hepa1-6, CT-26 and EMT-6, by systematical depleting a series of TIL lineages to explore the mechanisms of tumor immunity and treatment. CD8+-T-cells, CD4+-T-cells, Treg, NK cells and macrophages were individually depleted through either direct administration of anti-marker antibodies/reagents or using DTR (diphtheria toxin receptor) knock-in mice, for some syngeneic tumors, where specific subsets were depleted following diphtheria toxin (DT) administration. These LOF experiments revealed distinctive intrinsic tumor immunity and thus different MOAs in their responses to anti-PD-1 antibody among different syngeneic tumors. Specifically, the intrinsic tumor immunity and the associated anti-PD-1 MOA were predominately driven by CD8+ cytotoxic TILs (CTL) in all syngeneic tumors, excluding Hepa1-6 where CD4+ Teff TILs played a key role. TIL-Treg also played a critical role in supporting tumor growth in all four syngeneic models as well as M2-macrophages. Pathway analysis using pharmacodynamic readouts of immuno-genomics and proteomics on MC38 and Hepa1-6 also revealed defined, but distinctive, immune pathways of activation and suppression between the two, closely associated with the efficacy and consistent with TIL-pharmacodynamic readouts. Understanding tumor immune-pathogenesis and treatment MOAs in the different syngeneic animal models, not only assists the selection of the right model for evaluating new immunotherapy of a given MOA, but also can potentially help to understand the potential disease mechanisms and strategize optimal immune-therapies in patients.


Assuntos
Antineoplásicos , Imunoterapia , Animais , Antineoplásicos/metabolismo , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Humanos , Linfócitos do Interstício Tumoral , Camundongos , Linfócitos T Reguladores , Microambiente Tumoral
14.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208962

RESUMO

Betulinic acid (BA) and its derivatives exhibit a variety of biological activities, especially their anti-HIV-1 activity, but generally have only modest inhibitory potency against influenza virus. The entry of influenza virus into host cells can be competitively inhibited by multivalent derivatives targeting hemagglutinin. In this study, a series of hexa-, hepta- and octavalent BA derivatives based on α-, ß- and γ-cyclodextrin scaffolds, respectively, with varying lengths of flexible oligo(ethylene glycol) linkers was designed and synthesized using a microwave-assisted copper-catalyzed 1,3-dipolar cycloaddition reaction. The generated BA-cyclodextrin conjugates were tested for their in vitro activity against influenza A/WSN/33 (H1N1) virus and cytotoxicity. Among the tested compounds, 58, 80 and 82 showed slight cytotoxicity to Madin-Darby canine kidney cells with viabilities ranging from 64 to 68% at a high concentration of 100 µM. Four conjugates 51 and 69-71 showed significant inhibitory effects on influenza infection with half maximal inhibitory concentration values of 5.20, 9.82, 7.48 and 7.59 µM, respectively. The structure-activity relationships of multivalent BA-cyclodextrin conjugates were discussed, highlighting that multivalent BA derivatives may be potential antiviral agents against influenza infection.


Assuntos
Antivirais , Ciclodextrinas/química , Vírus da Influenza A Subtipo H1N1/metabolismo , Infecções por Orthomyxoviridae/tratamento farmacológico , Triterpenos Pentacíclicos/química , Animais , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Cães , Avaliação Pré-Clínica de Medicamentos , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/metabolismo , Relação Estrutura-Atividade , Ácido Betulínico
15.
Rev Sci Instrum ; 92(11): 113101, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852565

RESUMO

The mid-infrared range is an important spectrum range where materials exhibit a characteristic response corresponding to their molecular structure. A free-electron laser (FEL) is a promising candidate for a high-power light source with wavelength tunability to investigate the nonlinear response of materials. Although the self-amplification spontaneous emission (SASE) scheme is not usually adopted in the mid-infrared wavelength range, it may have advantages such as layout simplicity, the possibility of producing a single pulse, and scalability to a short-wavelength facility. To demonstrate the operation of a mid-infrared SASE FEL system in an energy recovery linac (ERL) layout, we constructed an SASE FEL setup in cERL, a test facility of the superconducting linac with the ERL configuration. Despite the adverse circumstance of space charge effects due to the given boundary condition of the facility, we successfully established the beam condition at the undulators and observed FEL emission at a wavelength of 20 µm. The results show that the layout of cERL has the potential for serving as a mid-infrared light source.

16.
Front Biosci (Landmark Ed) ; 26(10): 789-798, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34719206

RESUMO

Background: The coronavirus disease 2019 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 210 million individuals globally and resulted in over 4 million deaths since the first report in December 2019. The early use of traditional Chinese medicine (TCM) for light and ordinary patients, can rapidly improve symptoms, shorten hospitalization days and reduce severe cases transformed from light and normal. Many TCM formulas and products have a wide application in treating infectious and non-infectious diseases. Polygonum cuspidatum Sieb. et Zucc. (P. cuspidatum), is an important Traditional Chinese Medicine with actions of clearing away heat and eliminating dampness, draining the gallbladder to relieve jaundice, removing blood stasis to alleviate pain, resolving phlegm and arrest cough. In the search for anti-SARS-CoV-2, P. cuspidatum was recommended as as a therapeutic drug of COVID-19 pneumonia.In this study, we aimed to identifies P. cuspidatum is the potential broad-spectrum inhibitor for the treatment of coronaviruses infections. Methods: In the present study , we infected human malignant embryonal rhabdomyoma (RD) cells with the OC43 strain of the coronavirus, which represent an alternative model for SARS-CoV-2 and then employed the cell viability assay kit for the antiviral activity. We combined computer aided virtual screening to predicte the binding site and employed Surface plasmon resonance analysis (SPR) to comfirm the interaction between drugs and coronavirus. We employed fluorescence resonance energy transfer technology to identify drug's inhibition in the proteolytic activity of 3CLpro and Plpro. Results: Based on our results, polydatin and resveratrol derived from P. cuspidatum significantly suppressed HCoV-OC43 replication. 50% inhibitory concentration (IC50) values of polydatin inhibited SARS-CoV-2 Mpro and Plpro, MERS Mpro and Plpro were 18.66, 125, 14.6 and 25.42 µm, respectively. IC50 values of resveratrol inhibited SARS-CoV-2 Mpro and Plpro, MERS Mpro and Plpro were 29.81 ,60.86, 16.35 and19.04 µM, respectively. Finally, SPR assay confirmed that polydatin and resveratrol had high affinity to SARS-CoV-2, SARS-CoV 3Clpro, MERS-CoV 3Clpro and PLpro protein. Conclusions: we identified the antiviral activity of flavonoids polydatin and resveratrol on RD cells. Polydatin and resveratrol were found to be specific and selective inhibitors for SARS-CoV-2, 3CLpro and PLpro, viral cysteine proteases. In summary, this study identifies P. cuspidatum as the potential broad-spectrum inhibitor for the treatment of coronaviruses infections.


Assuntos
Medicamentos de Ervas Chinesas/química , Fallopia japonica/química , Glucosídeos/farmacologia , Resveratrol/farmacologia , SARS-CoV-2/efeitos dos fármacos , Estilbenos/farmacologia , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glucosídeos/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Medicina Tradicional Chinesa/métodos , Pandemias , Ligação Proteica , Resveratrol/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Estilbenos/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Proteínas Virais/metabolismo
17.
Nat Biomed Eng ; 5(11): 1288-1305, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34580438

RESUMO

The preferential activation of regulatory T (Treg) cells by interleukin-2 (IL-2), which selectively binds to the trimeric IL-2 receptor (IL-2R) on Treg cells, makes this cytokine a promising therapeutic for the treatment of autoimmune diseases. However, IL-2 has a narrow therapeutic window and a short half-life. Here, we show that the pharmacokinetics and half-life of IL-2 can be substantially improved by orthogonally conjugating the cytokine to poly(ethylene glycol) (PEG) moieties via a copper-free click reaction through the incorporation of azide-bearing amino acids at defined sites. Subcutaneous injection of a PEGylated IL-2 that optimally induced sustained Treg-cell activation and expansion over a wide range of doses through highly selective binding to trimeric IL-2R led to enhanced therapeutic efficacy in mouse models of lupus, collagen-induced arthritis and graft-versus-host disease without compromising the immune defences of the host against viral infection. Site-specific PEGylation could be used more generally to engineer cytokines with improved therapeutic performance for the treatment of autoimmune diseases.


Assuntos
Interleucina-2 , Linfócitos T Reguladores , Animais , Citocinas , Tolerância Imunológica , Terapia de Imunossupressão , Camundongos
18.
ACS Appl Mater Interfaces ; 13(39): 46260-46269, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34547894

RESUMO

Rapid diagnosis and vaccine development are critical to prevent the threat posed by viruses. However, rapid tests, such as colloidal gold assays, yield false-negative results due to the low quantities of viruses; moreover, conventional virus purification, including ultracentrifugation and nanofiltration, is multistep and time-consuming, which limits laboratory research and commercial development of viral vaccines. A rapid virus enrichment and purification technique will improve clinical diagnosis sensitivity and simplify vaccine production. Hence, we developed the surface-glycosylated microbeads (glycobeads) featuring chemically synthetic glycoclusters and reversible linkers to selectively capture the influenza virus. The surface plasmon resonance (SPR) evaluation indicated broad spectrum affinity of S-linked glycosides to various influenza viruses. The magnetic glycobeads were integrated into clinical rapid diagnosis, leading to a 30-fold lower limit of detection. Additionally, the captured viruses can be released under physiological conditions, delivering purified viruses with >50% recovery and without decreasing their native infectivity. Notably, this glycobead platform will facilitate the sensitive detection and continuous one-step purification of the target virus that contributes to future vaccine production.


Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/diagnóstico , Microesferas , Polissacarídeos/química , Carga Viral/métodos , Animais , Sequência de Carboidratos , Cromatografia de Afinidade , Cães , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/química , Limite de Detecção , Células Madin Darby de Rim Canino , Ressonância de Plasmônio de Superfície
19.
Angew Chem Int Ed Engl ; 60(40): 21662-21667, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34278671

RESUMO

There is an urgent need to develop antiviral drugs and alleviate the current COVID-19 pandemic. Herein we report the design and construction of chimeric oligonucleotides comprising a 2'-OMe-modified antisense oligonucleotide and a 5'-phosphorylated 2'-5' poly(A)4 (4A2-5 ) to degrade envelope and spike RNAs of SARS-CoV-2. The oligonucleotide was used for searching and recognizing target viral RNA sequence, and the conjugated 4A2-5 was used for guided RNase L activation to sequence-specifically degrade viral RNAs. Since RNase L can potently cleave single-stranded RNA during innate antiviral response, degradation efficiencies with these chimeras were twice as much as those with only antisense oligonucleotides for both SARS-CoV-2 RNA targets. In pseudovirus infection models, chimera-S4 achieved potent and broad-spectrum inhibition of SARS-CoV-2 and its N501Y and/or ΔH69/ΔV70 mutants, indicating a promising antiviral agent based on the nucleic acid-hydrolysis targeting chimera (NATAC) strategy.


Assuntos
Antivirais/farmacologia , Endorribonucleases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Chlorocebus aethiops , Proteínas do Envelope de Coronavírus/genética , Desenho de Fármacos , Células HEK293 , Humanos , Hidrólise/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mutação , RNA Viral/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA