Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031093

RESUMO

The fixation and transfer of biological nitrogen from peanuts to maize in maize-peanut intercropping systems play a pivotal role in maintaining the soil nutrient balance. However, the mechanisms through which root interactions regulate biological nitrogen fixation and transfer remain unclear. This study employed a 15N isotope labelling method to quantify nitrogen fixation and transfer from peanuts to maize, concurrently elucidating key microorganisms and genera in the nitrogen cycle through metagenomic sequencing. The results revealed that biological nitrogen fixation in peanut was 50 mg and transfer to maize was 230 mg when the roots interacted. Moreover, root interactions significantly increased nitrogen content and the activities of protease, dehydrogenase (DHO) and nitrate reductase in the rhizosphere soil. Metagenomic analyses and structural equation modelling indicated that nrfC and nirA genes played important roles in regulating nitrogen fixation and transfer. Bradyrhizobium was affected by soil nitrogen content and DHO, indirectly influencing the efficiency of nitrogen fixation and transfer. Overall, our study identified key bacterial genera and genes associated with nitrogen fixation and transfer, thus advancing our understanding of interspecific interactions and highlighting the pivotal role of soil microorganisms and functional genes in maintaining soil ecosystem stability from a molecular ecological perspective.

2.
Front Plant Sci ; 15: 1414844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988631

RESUMO

Background: Border row effects impact the ecosystem functions of intercropping systems, with high direct interactions between neighboring row crops in light, water, and nutrients. However, previous studies have mostly focused on aboveground, whereas the effects of intercropping on the spatial distribution of the root system are poorly understood. Field experiments and planting box experiments were combined to explore the yield, dry matter accumulation, and spatial distribution of root morphological indexes, such as root length density (RLD), root surface area density (RSAD), specific root length (SRL), and root diameter (RD), of maize and peanut and interspecific interactions at different soil depths in an intercropping system. Results: In the field experiments, the yield of intercropped maize significantly increased by 33.45%; however, the yield of intercropped peanut significantly decreased by 13.40%. The land equivalent ratio (LER) of the maize-peanut intercropping system was greater than 1, and the advantage of intercropping was significant. Maize was highly competitive (A = 0.94, CR=1.54), and the yield advantage is mainly attributed to maize. Intercropped maize had higher RLD, RSAD, and SRL than sole maize, and intercropped peanut had lower RLD, RSAD, and SRL than sole peanut. In the interspecific interaction zone, the increase in RLD, RSAD, SRL, and RD of intercropped maize was greater than that of intercropped peanut, and maize showed greater root morphological plasticity than peanut. A random forest model determined that RSAD significantly impacted yield at 15-60 cm, while SRL had a significant impact at 30-60 cm. Structural equation modeling revealed that root morphology indicators had a greater effect on yield at 30-45 cm, with interactions between indicators being more pronounced at this depth. Conclusion: These results show that border-row effects mediate the plasticity of root morphology, which could enhance resource use and increase productivity. Therefore, selecting optimal intercropping species and developing sustainable intercropping production systems is of great significance.

3.
Angew Chem Int Ed Engl ; : e202408712, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962896

RESUMO

Noncovalent spatial interaction has become an intriguing and important tool for constructing optoelectronic molecules. In this study, we linearly attached three conjugated units in a multi π-stacked manner by using just one trident bridge based on indeno[2,1-b]fluorene. To achieve this structure, we improved the synthetic approach through double C-H activation, significantly simplifying the preparation process. Due to the proximity of the C10, C11, and C12 sites in indeno[2,1-b]fluorene, we derived two novel donor|acceptor|donor (D|A|D) type molecules, 2DMB and 2DMFB, which exhibited closely packed intramolecular stacking, enabling efficient through-space charge transfer. This molecular construction is particularly suitable for developing high-performance thermally activated delayed fluorescence materials. With donor(s) and acceptor(s) constrained and separated within this spatially rigid structure, elevated radiative transition rates, and high photoluminescence quantum yields were achieved. Organic light-emitting diodes incorporating 2DMB and 2DMFB demonstrated superior efficiency, achieving maximum external quantum efficiencies of 28.6 % and 16.2 %, respectively.

4.
Angew Chem Int Ed Engl ; : e202407833, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984901

RESUMO

Near-infrared light-emitting diodes (NIR LEDs) based on perovskite quantum dots (QDs) have produced external quantum efficiency (EQE) of ~15 %. However, these high-performance NIR-QLEDs suffer from immediate carrier quenching because of the accumulation of migratable ions at the surface of the QDs. These uncoordinated ions and carriers-if not bound to the nanocrystal surface-serve as centers for exciton quenching and device degradation. In this work, we overcome this issue and fabricate high-performance NIR QLEDs by devising a ligand anchoring strategy, which entails dissolving the strong-binding ligand (Guanidine Hydroiodide, GAI) in the mediate-polar solvent. By employing the dye-sensitized device structure (phosphorescent indicator), we demonstrate the elimination of the interface defects. The treated QDs films exhibit an exciton binding energy of 117 meV: this represents a 1.5-fold increase compared to that of the control (74 meV). We report, as a result, the NIR QLEDs with an EQE of 21 % which is a record among NIR perovskite QLEDs. These QLEDs also exhibit a 7-fold higher operational stability than that of the best previously reported NIR QLEDs. Furthermore, we demonstrate that the QDs are compatible with large-area QLEDs: we showcase 900 mm2 QLEDs with EQE approaching 20 %.

5.
Molecules ; 29(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930893

RESUMO

The growing demand for wearable and attachable displays has sparked significant interest in flexible quantum-dot light-emitting diodes (QLEDs). However, the challenges of fabricating and operating QLEDs on flexible substrates persist due to the lack of stable and low-temperature processable charge-injection/-transporting layers with aligned energy levels. In this study, we utilized NiOx nanoparticles that are compatible with flexible substrates as a hole-injection layer (HIL). To enhance the work function of the NiOx HIL, we introduced a self-assembled dipole modifier called 4-(trifluoromethyl)benzoic acid (4-CF3-BA) onto the surface of the NiOx nanoparticles. The incorporation of the dipole molecules through adsorption treatment has significantly changed the wettability and electronic characteristics of NiOx nanoparticles, resulting in the formation of NiO(OH) at the interface and a shift in vacuum level. The alteration of surface electronic states of the NiOx nanoparticles not only improves the carrier balance by reducing the hole injection barrier but also prevents exciton quenching by passivating defects in the film. Consequently, the NiOx-based red QLEDs with interfacial modification demonstrate a maximum current efficiency of 16.1 cd/A and a peak external quantum efficiency of 10.3%. This represents a nearly twofold efficiency enhancement compared to control devices. The mild fabrication requirements and low annealing temperatures suggest potential applications of dipole molecule-modified NiOx nanoparticles in flexible optoelectronic devices.

6.
Angew Chem Int Ed Engl ; 63(31): e202403066, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752880

RESUMO

Pure aromatic hydrocarbon materials (PHCs) represent a new generation of host materials for phosphorescent OLEDs (PhOLEDs), free of heteroatoms. They reduce the molecular complexity, can be easily synthesized and are an important direction towards robust devices. As heteroatoms can be involved in bonds dissociations in operating OLEDs through exciton induced degradation processes, developing novel PHCs appear particularly relevant for the future of this technology. In the present work, we report a series of extended PHCs constructed by the assembly of three spirobifluorene fragments. The resulting positional isomers present a high triplet energy level, a wide HOMO/LUMO difference and improved thermal and morphological properties compared to previously reported PHCs. These characteristics are beneficial for the next generation of host materials for PhOLEDs and provide relevant design guidelines. When used as a host in blue-emitting PhOLEDs, which are still the weakest link of the field, a very high EQE of 24 % and low threshold voltage of 3.56 V were obtained with a low-efficiency roll-off. This high performance strengthens the position of PHC strategy as an efficient alternative for OLED technology and opens the way to a more simple electronic.

7.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542340

RESUMO

Auxin plays a crucial role in regulating root growth and development, and its distribution pattern under environmental stimuli significantly influences root plasticity. Under K deficiency, the interaction between K+ transporters and auxin can modulate root development. This study compared the differences in root morphology and physiological mechanisms of the low-K-tolerant maize inbred line 90-21-3 and K-sensitive maize inbred line D937 under K-deficiency (K+ = 0.2 mM) with exogenous NAA (1-naphthaleneacetic acid, NAA = 0.01 mM) treatment. Root systems of 90-21-3 exhibited higher K+ absorption efficiency. Conversely, D937 seedling roots demonstrated greater plasticity and higher K+ content. In-depth analysis through transcriptomics and metabolomics revealed that 90-21-3 and D937 seedling roots showed differential responses to exogenous NAA under K-deficiency. In 90-21-3, upregulation of the expression of K+ absorption and transport-related proteins (proton-exporting ATPase and potassium transporter) and the enrichment of antioxidant-related functional genes were observed. In D937, exogenous NAA promoted the responses of genes related to intercellular ethylene and cation transport to K-deficiency. Differential metabolite enrichment analysis primarily revealed significant enrichment in flavonoid biosynthesis, tryptophan metabolism, and hormone signaling pathways. Integrated transcriptomic and metabolomic analyses revealed that phenylpropanoid biosynthesis is a crucial pathway, with core genes (related to peroxidase enzyme) and core metabolites upregulated in 90-21-3. The findings suggest that under K-deficiency, exogenous NAA induces substantial changes in maize roots, with the phenylpropanoid biosynthesis pathway playing a crucial role in the maize root's response to exogenous NAA regulation under K-deficiency.


Assuntos
Deficiência de Potássio , Plântula , Plântula/genética , Plântula/metabolismo , Zea mays/metabolismo , Deficiência de Potássio/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
8.
ACS Appl Mater Interfaces ; 16(3): 3809-3818, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38211320

RESUMO

Narrowband blue emitters are indispensable in achieving ultrahigh-definition OLED displays that satisfy the stringent BT 2020 standard. Hereby, a series of bis-tridentate Ir(III) complexes bearing electron-deficient imidazo[4,5-b]pyridin-2-ylidene carbene coordination fragments and 2,6-diaryloxy pyridine ancillary groups were designed and synthesized. They exhibited deep blue emission with quantum yields of up to 89% and a radiative lifetime of 0.71 µs in the DPEPO host matrix, indicating both the high efficiency and excellent energy transfer process from the host to dopant. The OLED based on Irtb1 showed an emission at 468 nm with a maximum external quantum efficiency (EQE) of 22.7%. Moreover, the hyper-OLED with Irtb1 as a sensitizer for transferring energy to terminal emitter v-DABNA exhibited a narrowband blue emission at 472 nm and full width at half-maximum (FWHM) of 24 nm, a maximum EQE of 23.5%, and EQEs of 19.7, 16.1, and 12.9% at a practical brightness of 100, 1000, and 5000 cd/m2, respectively.

9.
Angew Chem Int Ed Engl ; 63(10): e202317571, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38230818

RESUMO

Insight into effect of deuterium isotopes on organic near-IR (NIR) emitters was explored by the use of self-assembled Pt(II) complexes H-3-f and HPh-3-f, and their deuterated analogues D-3-f and DPh-3-f, respectively (Scheme 2). In vacuum deposited thin film, albeit having nearly identical emission spectral feature maximized at ~810 nm, H-3-f and D-3-f exhibit remarkable difference in photoluminescence quantum yield (PLQY) of 29 % and 50 %, respectively. Distinction in PLQY is also observed for HPh-3-f (800 nm, 50 %) and DPh-3-f (798 nm, 67 %). We then elucidated the theoretical differences in the impact on near-infrared (NIR) luminescence between Pt(II) complexes and organic small molecules upon deuteration. The results establish a general guideline for the deuteration on NIR emission efficiency. From a perspective of practical application, NIR OLEDs based on D-3-f and DPh-3-f emitters attain EQEmax of 15.5 % (radiance 31,287 mW Sr-1 m-2 ) and 16.6 % (radiance of 32,279 mW Sr-1 m-2 ) at 764 nm and 796 nm, respectively, both of which set new records for NIR OLEDs of >750 nm.

10.
Sci Bull (Beijing) ; 68(23): 2954-2961, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37919156

RESUMO

In terms of tunable luminescence and high quantum efficiency, colloidal quantum dots (CQDs) are promising semiconductors for constructing near-infrared light-emitting diodes (NIR-LEDs). However, currently available NIR-LEDs are susceptible to variations in the emission layer thickness (EMLT), the highest external quantum efficiency (EQE) decreases to below 50% (relative to peak EQE) when the EMLT varies out of a narrow range of (±30 nm). This is due to the thickness-dependent carrier recombination rate and current density variation, resulting in batch-to-batch EQE fluctuations that limit LED reproducibility. Here we report efficient NIR-LEDs that exhibit EQE variations of less than 15% (relative to the champion EQE) over an EMLT range of 40-220 nm; the highest achievable EQE of ∼11.5% was obtained by encapsulating a 212 nm-thick CQD within a type-I inorganic shell to enhance the radiative recombination in the dots, resulting in a high photoluminescence quantum yield of 80%, and by post-treating the films with a bifunctional linking agent to improve and balance the hole and electron mobilities in the entire film (electron mobility: 8.23 × 10-3 cm2 V-1 s-1; hole mobility: 7.0 × 10-3 cm2 V-1 s-1). This work presents the first NIR-LEDs that exhibit EMLT-invariant EQE over an EMLT range of 40-220 nm, which represents the highest EQE among reported CQD NIR-LEDs with a QD thickness exceeding 100 nm.

11.
Nat Commun ; 14(1): 6419, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828017

RESUMO

Efficient Förster energy transfer from a phosphorescent sensitizer to a thermally activated delayed fluorescent terminal emitter constitutes a potential solution for achieving superb blue emissive organic light-emitting diodes, which are urgently needed for high-performance displays. Herein, we report the design of four Ir(III) metal complexes, f-ct1a ‒ d, that exhibit efficient true-blue emissions and fast radiative decay lifetimes. More importantly, they also undergo facile isomerization in the presence of catalysts (sodium acetate and p-toluenesulfonic acid) at elevated temperature and, hence, allow for the mass production of either emitter without decomposition. In this work, the resulting hyper-OLED exhibits a true-blue color (Commission Internationale de I'Eclairage coordinate CIEy = 0.11), a full width at half maximum of 18 nm, a maximum external quantum efficiency of 35.5% and a high external quantum efficiency 20.3% at 5000 cd m‒2, paving the way for innovative blue OLED technology.

12.
Angew Chem Int Ed Engl ; 62(40): e202310047, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37593817

RESUMO

The current availability of multi-resonance thermally activated delayed fluorescence (MR-TADF) materials with excellent color purity and high device efficiency in the deep-blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR-TADF system, we propose a spiro-lock strategy. By incorporating spiro functionalization into a concise molecular skeleton, a series of emitters (SFQ, SOQ, SSQ, and SSeQ) can enhance molecular rigidity, blue-shift the emission peak, narrow the emission band, increase the photoluminescence quantum yield by over 92 %, and suppress intermolecular interactions in the film state. The referent CZQ without spiro structure has a more planar skeleton, and its bluer emission in the solution state redshifts over 40 nm with serious spectrum broadening and a low PLQY in the film state. As a result, SSQ achieves an external quantum efficiency of 25.5 % with a peak at 456 nm and a small full width at half maximum of 31 nm in a simple unsensitized device, significantly outperforming CZQ. This work discloses the importance of spiro-junction in modulating deep-blue MR-TADF emitters.

13.
Org Lett ; 25(32): 6024-6028, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37552571

RESUMO

Red through-space charge transfer thermally activated delayed fluorescence (TSCT TADF) materials named SAF36DCPP and SAF27DCPP with sandwiched structures were synthesized. Single crystals indicated that the intramolecular C-H···π interactions play a vital role in rigidifying the sandwiched structure, which results in a fluorescence yield of 63% for SAF36DCPP compared to 40% for SAF27DCPP. Organic light-emitting diodes with SAF36DCPP as the emitter realized a maximum external quantum efficiency of 16.12%.

14.
Adv Mater ; : e2305273, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461316

RESUMO

Efficient blue phosphors remain a formidable challenge for organic light-emitting diodes (OLEDs). To circumvent this obstacle, a series of Ir(III)-based carbene complexes bearing asymmetric di-N-aryl 6-(trifluoromethyl)-2H-imidazo[4,5-b]pyridin-2-ylidene chelates, namely, f-ct6a-c, are synthesized, and their structures and photophysical properties are comprehensively investigated. Moreover, these emitters can undergo interconversion in refluxing 1,2,4-trichlorobenzene, catalyzed by a mixture of sodium acetate (NaOAc) and p-toluenesulfonic acid monohydrate (TsOH·H2 O) without decomposition. All Ir(III) complexes present good photoluminescence quantum yield (ΦPL = 83-88%) with peak maximum (max.) at 443-452 nm and narrowed full width at half maximum (FWHM = 66-73 nm). Among all the fabricated OLED devices, f-ct6b delivers a max. external quantum efficiency (EQE) of 23.4% and Commission Internationale de L'Eclairage CIEx , y coordinates of (0.14, 0.12), whereas the hyper-OLED device based on f-ct6a and 5H,9H,11H,15H-[1,4] benzazaborino [2,3,4-kl][1,4]benzazaborino[4',3',2':4,5][1,4]benzazaborino[3,2-b]phenazaborine-7,13-diamine, N7,N7,N13,N13,5,9,11,15-octaphenyl (ν-DABNA) exhibits max. EQE of 26.2% and CIEx , y of (0.12, 0.13). Finally, the corresponding tandem OLED with f-ct6b as dopant gives a max. luminance of over 10 000 cd m-2 and max. EQE of 42.1%, confirming their candidacies for making true-blue OLEDs.

15.
BMC Plant Biol ; 23(1): 371, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37491223

RESUMO

BACKGROUND: Pod size is an important yield target trait for peanut breeding. However, the molecular mechanism underlying the determination of peanut pod size still remains unclear. RESULTS: In this study, two peanut varieties with contrasting pod sizes were used for comparison of differences on the transcriptomic and endogenous hormonal levels. Developing peanut pods were sampled at 10, 15, 20, 25 and 30 days after pegging (DAP). Our results showed that the process of peanut pod-expansion could be divided into three stages: the gradual-growth stage, the rapid-growth stage and the slow-growth stage. Cytological analysis confirmed that the faster increase of cell-number during the rapid-growth stage was the main reason for the formation of larger pod size in Lps. Transcriptomic analyses showed that the expression of key genes related to the auxin, the cytokinin (CK) and the gibberellin (GA) were mostly up-regulated during the rapid-growth stage. Meanwhile, the cell division-related differentially expressed genes (DEGs) were mostly up-regulated at 10DAP which was consistent with the cytological-observation. Additionally, the absolute quantification of phytohormones were carried out by liquid-chromatography coupled with the tandem-mass-spectrometry (LC-MS/MS), and results supported the findings from comparative transcriptomic studies. CONCLUSIONS: It was speculated that the differential expression levels of TAA1 and ARF (auxin-related), IPT and B-ARR (CK-related), KAO, GA20ox and GA3ox (GA-related), and certain cell division-related genes (gene-LOC112747313 and gene-LOC112754661) were important participating factors of the determination-mechanism of peanut pod sizes. These results were informative for the elucidation of the underlying regulatory network in peanut pod-growth and would facilitate further identification of valuable target genes.


Assuntos
Arachis , Reguladores de Crescimento de Plantas , Arachis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Melhoramento Vegetal , Ácidos Indolacéticos/metabolismo
16.
Front Plant Sci ; 14: 1135580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521911

RESUMO

Changes in the canopy microclimate in intercropping systems, particularly in the light environment, have important effects on the physiological characteristics of photosynthesis and yield of crops. Although different row ratio configurations and strip widths of dwarf crops in intercropping systems have important effects on canopy microclimate, little information is available on the effects of intercropping on chlorophyll synthesis and photosynthetic physiological properties of dwarf crops. A 2-year field experiment was conducted in 2019 and 2020, with five treatments: sole maize (SM), sole peanut (SP), four rows of maize intercropping with eight rows of peanut (M4P8), four rows of maize intercropping with four rows of peanut (M4P4), and four rows of maize intercropping with two rows of peanut (M4P2). The results showed that the light transmittance [photosynthetically active radiation (PAR)], photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs) of intercropped peanut canopy were reduced, while the intercellular carbon dioxide concentration (Ci) was increased, compared with SP. In particular, the M4P8 pattern Pn (2-year mean) was reduced by 5.68%, 5.33%, and 5.30%; Tr was reduced by 7.41%, 5.45%, and 5.95%; and Gs was reduced by 8.20%, 6.88%, and 6.46%; and Ci increased by 11.95%, 8.06%, and 9.61% compared to SP, at the flowering needle stage, pod stage, and maturity, respectively. M4P8 improves the content of chlorophyll synthesis precursor and conversion efficiency, which promotes the utilization efficiency of light energy. However, it was significantly reduced in M4P2 and M4P4 treatment. The dry matter accumulation and pod yield of peanut in M4P8 treatment decreased, but the proportion of dry matter distribution in the late growth period was more transferred to pods. The full pod number decreases as the peanut row ratio decreases and increases with year, but there is no significant difference between years. M4P8 has the highest yield and land use efficiency and can be used as a reference row ratio configuration for maize-peanut intercropping to obtain relatively high yield benefits.

17.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362327

RESUMO

Pod size is one of the important factors affecting peanut yield. However, the metabolites relating to pod size and their biosynthesis regulatory mechanisms are still unclear. In the present study, two peanut varieties (Tif and Lps) with contrasting pod sizes were used for a comparative metabolome and transcriptome analysis. Developing peanut pods were sampled at 10, 20 and 30 days after pegging (DAP). A total of 720 metabolites were detected, most of which were lipids (20.3%), followed by phenolic acids (17.8%). There were 43, 64 and 99 metabolites identified as differentially accumulated metabolites (DAMs) at 10, 20 and 30 DAP, respectively, and flavonoids were the major DAMs between Tif and Lps at all three growth stages. Multi-omics analysis revealed that DAMs and DEGs (differentially expressed genes) were significantly enriched in the phenylpropanoid biosynthesis (ko00940) pathway, the main pathway of lignin biosynthesis, in each comparison group. The comparisons of the metabolites in the phenylpropanoid biosynthesis pathway accumulating in Tif and Lps at different growth stages revealed that the accumulation of p-coumaryl alcohol (H-monolignol) in Tif was significantly greater than that in Lps at 30 DAP. The differential expression of gene-LOC112771695, which is highly correlated with p-coumaryl alcohol and involved in the biosynthesis of monolignols, between Tif and Lps might explain the differential accumulation of p-coumaryl alcohol. The content of H-lignin in genetically diverse peanut varieties demonstrated that H-lignin content affected peanut pod size. Our findings would provide insights into the metabolic factors influencing peanut pod size and guidance for the genetic improvement of the peanut.


Assuntos
Arachis , Lignina , Arachis/metabolismo , Lignina/metabolismo , Regulação da Expressão Gênica de Plantas , Lipopolissacarídeos/metabolismo , Transcriptoma
18.
Molecules ; 27(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080489

RESUMO

The effective reflective anode remains a highly desirable component for the fabrication of reliable top-emitting organic light-emitting diodes (TE-OLEDs) which have the potential to be integrated with complementary metal-oxide-semiconductor (CMOS) circuits for microdisplays. This work demonstrates a novel laminated anode consisting of a Cr/Al/Cr multilayer stack. Furthermore, we implement an ultra-thin titanium nitride (TiN) layer as a protective layer on the top of the Cr/Al/Cr composite anode, which creates a considerably reflective surface in the visible range, and meanwhile improves the chemical stability of the electrode against the atmosphere or alkali environment. Based on [2-(2-pyridinyl-N)phenyl-C](acetylacetonate)iridium(III) as green emitter and Mg/Ag as transparent cathode, our TE-OLED using the TiN-coated anode achieves the maximum current efficiency of 71.2 cd/A and the maximum power efficiency of 66.7 lm/W, which are 81% and 90% higher than those of the reference device without TiN, respectively. The good device performance shows that the Cr/Al/Cr/TiN could function as a promising reflective anode for the high-resolution microdisplays on CMOS circuits.

19.
Front Plant Sci ; 13: 957336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991432

RESUMO

Belowground interactions mediated by root exudates are critical for the productivity and efficiency of intercropping systems. Herein, we investigated the process of microbial community assembly in maize, peanuts, and shared rhizosphere soil as well as their regulatory mechanisms on root exudates under different planting patterns by combining metabolomic and metagenomic analyses. The results showed that the yield of intercropped maize increased significantly by 21.05% (2020) and 52.81% (2021), while the yield of intercropped peanut significantly decreased by 39.51% (2020) and 32.58% (2021). The nitrogen accumulation was significantly higher in the roots of the intercropped maize than in those of sole maize at 120 days after sowing, it increased by 129.16% (2020) and 151.93% (2021), respectively. The stems and leaves of intercropped peanut significantly decreased by 5.13 and 22.23% (2020) and 14.45 and 24.54% (2021), respectively. The root interaction had a significant effect on the content of ammonium nitrogen (NH4 +-N) as well as the activities of urease (UE), nitrate reductase (NR), protease (Pro), and dehydrogenase (DHO) in the rhizosphere soil. A combined network analysis showed that the content of NH4 +-N as well as the enzyme activities of UE, NR and Pro increased in the rhizosphere soil, resulting in cyanidin 3-sambubioside 5-glucoside and cyanidin 3-O-(6-Op-coumaroyl) glucoside-5-O-glucoside; shisonin were significantly up-regulated in the shared soil of intercropped maize and peanut, reshaped the bacterial community composition, and increased the relative abundance of Bradyrhizobium. These results indicate that interspecific root interactions improved the soil microenvironment, regulated the absorption and utilization of nitrogen nutrients, and provided a theoretical basis for high yield and sustainable development in the intercropping of maize and peanut.

20.
Angew Chem Int Ed Engl ; 61(22): e202201886, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35293091

RESUMO

A multiple resonance thermally activated delayed fluorescence (MR-TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mono-substituted design strategy by introducing spiro-9,9'-bifluorene (SBF) units with different substituted sites into the MR-TADF system for the first time. As a classic steric group, SBF can hinder interchromophore interactions, leading to high device efficiency (32.2-35.9 %) and narrow-band emission (≈27 nm). Particularly, the shield-like molecule, SF1BN, seldom exhibits a broadened FWHM as the doping ratio rises, which differs from the C3-substituted isomer and unhindered parent emitter. These results manifest an effective method for constructing highly efficient MR-TADF emitters through a spiro strategy and elucidate the feasibility for steric modulation of the spiro structure in π-framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA