Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(18): 12324-12328, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38661382

RESUMO

This study reports a comparison of the kinetics of electrochemical (EC) versus photoelectrochemical (PEC) water oxidation on bismuth vanadate (BiVO4) photoanodes. Plots of current density versus surface hole density, determined from operando optical absorption analyses under EC and PEC conditions, are found to be indistinguishable. We thus conclude that EC water oxidation is driven by the Zener effect tunneling electrons from the valence to conduction band under strong bias, with the kinetics of both EC and PEC water oxidation being determined by the density of accumulated surface valence band holes. We further demonstrate that our combined optical absorption/current density analyses enable an operando quantification of the BiVO4 photovoltage as a function of light intensity.

2.
ChemSusChem ; 17(10): e202301452, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38224562

RESUMO

Control over product selectivity of the electrocatalytic CO2 reduction reaction (CO2RR) is a crucial challenge for the sustainable production of carbon-based chemical feedstocks. In this regard, single-atom catalysts (SACs) are promising materials due to their tunable coordination environments, which could enable tailored catalytic activities and selectivities, as well as new insights into structure-activity relationships. However, direct evidence for selectivity control via systematic tuning of the SAC coordination environment is scarce. In this work, we have synthesized two differently coordinated Bi SACs anchored to the same host material (carbon black) and characterized their CO2RR activities and selectivities. We find that oxophilic, oxygen-coordinated Bi atoms produce HCOOH, while nitrogen-coordinated Bi atoms generate CO. Importantly, use of the same support material assured that alternation of the coordination environment is the dominant factor for controlling the CO2RR product selectivity. Overall, this work demonstrates the structure-activity relationship of Bi SACs, which can be utilized to establish control over CO2RR product distributions, and highlights the promise for engineering atomic coordination environments of SACs to tune reaction pathways.

3.
Chemosphere ; 263: 128344, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297269

RESUMO

The strategical integration of membrane water filtration with semiconductor photocatalysis presents a frontier in deep purification with a self-cleaning capability. However, the membrane fouling caused by the cake layer of the reclaimed TiO2 nanoparticles is a key obstacle. Herein, mesoporous WO3/TiO2 spheres (∼450 nm in diameter) consisting of numerous self-assembled WO3-decoated anatase TiO2 nanocrystallites are successfully prepared via a facile wet-chemistry route. The decoration of monolayered WO3 significantly affects the surface, photocatalytic, and optical properties of original mesoporous TiO2 spheres. XRD and Raman analyses show the presence of monolayered WO3 suppresses the crystal growth of TiO2 during the calcination process, significantly improves the surface acidity, and causes an obvious red shift in absorption edge. These favorable textural properties, coupling the enhanced interfacial charge carrier separation, render mesoporous WO3/TiO2 spheres with a superior photocatalytic activity in degradation of methylene blue under UV, visible, and solar light irradiations. The optimal molar ratio of W/Ti is examined to 6%. The synthesized mesoporous WO3/TiO2 spheres also show much higher flux during membrane filtration in both dead-end and cross-flow modes, suggesting a promising photocatalyst for concurrent membrane filtration and solar photocatalysis.


Assuntos
Luz Solar , Titânio , Azul de Metileno , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA