Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Phytomedicine ; 132: 155825, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968790

RESUMO

BACKGROUND: Chemotherapeutic agents including cisplatin, gemcitabine, and pemetrexed, significantly enhance the efficacy of immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC) by increasing PD-L1 expression and potentiating T cell cytotoxicity. However, the low response rate and adverse effects limit the application of chemotherapy/ICI combinations in patients. METHODS: We screened for medicinal herbs that could perturb PD-L1 expression and enhance T cell cytotoxicity in the presence of anti-PD-L1 antibody, and investigated the underlying mechanisms. RESULTS: We found that the aqueous extracts of Centipeda minima (CM) significantly enhanced the cancer cell-killing activity and granzyme B expression level of CD8+ T cells, in the presence of anti-PD-L1 antibody. Both CM and its active component 6-O-angeloylplenolin (6-OAP) upregulated PD-L1 expression by suppressing GSK-3ß-ß-TRCP-mediated ubiquitination and degradation. CM and 6-OAP significantly enhanced ICI-induced reduction of tumor burden and prolongation of overall survival of mice bearing NSCLC cells, accompanied by upregulation of PD-L1 and increase of CD8+ T cell infiltration. CM also exhibited anti-NSCLC activity in cells and in a patient-derived xenograft mouse model. CONCLUSIONS: These data demonstrated that the induced expression of PD-L1 and enhancement of CD8+ T cell cytotoxicity underlay the beneficial effects of 6-OAP-rich CM in NSCLCs, providing a clinically available and safe medicinal herb for combined use with ICIs to treat this deadly disease.


Assuntos
Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Animais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Checkpoint Imunológico/farmacologia , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/efeitos dos fármacos , Camundongos , Extratos Vegetais/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino
2.
Cell Biol Toxicol ; 40(1): 56, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042313

RESUMO

Programmed cell death ligand 2 (PD-L2), a ligand for the receptor programmed cell death 1 (PD-1), has an identity of 34% with its twin ligand PD-L1 and exhibits higher binding affinity with PD-1 than PD-L1. However, the role of PD-L2 in non-small cell lung cancer (NSCLC) progression, especially tobacco-induced cancer progression, has not been fully understood. Here, we found that PD-L2 promoted tumor growth in murine models with recruitment of regulatory T cells (Tregs). In patients with NSCLC, PD-L2 expression level in tumor samples was higher than in counterpart normal controls and was positively associated with patients' response to anti-PD-1 treatment. Mechanismly, PD-L2 bound its receptor Repulsive guidance molecule B (RGMB) on cancer cells and activated extracellular signal-regulated kinase (Erk) and nuclear factor κB (NFκB), leading to increased production of chemokine CCL20, which recruited Tregs and contributed to NSCLC progression. Consistently, knockdown of RGMB or NFκB p65 inhibited PD-L2-induced CCL20 production, and silencing of PD-L2 repressed Treg recruitment by NSCLC cells. Furthermore, cigarette smoke and carcinogen benzo(a)pyrene (BaP) upregulated PD-L2 in lung epithelial cells via aryl hydrocarbon receptor (AhR)-mediated transcription activation, whose deficiency markedly suppressed BaP-induced PD-L2 upregulation. These results suggest that PD-L2 mediates tobacco-induced recruitment of Tregs via the RGMB/NFκB/CCL20 cascade, and targeting this pathway might have therapeutic potentials in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Quimiocina CCL20 , Neoplasias Pulmonares , NF-kappa B , Proteína 2 Ligante de Morte Celular Programada 1 , Linfócitos T Reguladores , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Humanos , NF-kappa B/metabolismo , Animais , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/genética , Quimiocina CCL20/metabolismo , Quimiocina CCL20/genética , Camundongos , Fumar Tabaco/efeitos adversos , Transdução de Sinais , Linhagem Celular Tumoral , Masculino , Feminino
3.
Cancer Lett ; 592: 216929, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38697461

RESUMO

Small cell lung cancer (SCLC) is a recalcitrant cancer characterized by high frequency loss-of-function mutations in tumor suppressors with a lack of targeted therapy due to absence of high frequency gain-of-function abnormalities in oncogenes. SMARCAL1 is a member of the ATP-dependent chromatin remodeling protein SNF2 family that plays critical roles in DNA damage repair and genome stability maintenance. Here, we showed that SMARCAL1 was overexpressed in SCLC patient samples and was inversely associated with overall survival of the patients. SMARCAL1 was required for SCLC cell proliferation and genome integrity. Mass spectrometry revealed that PAR6B was a downstream SMARCAL1 signal molecule which rescued inhibitory effects caused by silencing of SMARCAL1. By screening of 36 FDA-approved clinically available agents related to DNA damage repair, we found that an aza-anthracenedione, pixantrone, was a potent SMARCAL1 inhibitor which suppressed the expression of SMARCAL1 and PAR6B at protein level. Pixantrone caused DNA damage and exhibited inhibitory effects on SCLC cells in vitro and in a patient-derived xenograft mouse model. These results indicated that SMARCAL1 functions as an oncogene in SCLC, and pixantrone as a SMARCAL1 inhibitor bears therapeutic potentials in this deadly disease.


Assuntos
Proliferação de Células , DNA Helicases , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , DNA Helicases/genética , DNA Helicases/metabolismo , Proliferação de Células/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Dano ao DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos
4.
Cell Discov ; 10(1): 13, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321019

RESUMO

Tumor cells are usually considered defective in mitochondrial respiration, but human non-small cell lung cancer (NSCLC) tumor tissues are shown to have enhanced glucose oxidation relative to adjacent benign lung. Here, we reported that oncoprotein cancerous inhibitor of protein phosphatase 2A (CIP2A) inhibited glycolysis and promoted oxidative metabolism in NSCLC cells. CIP2A bound to pyruvate kinase M2 (PKM2) and induced the formation of PKM2 tetramer, with serine 287 as a novel phosphorylation site essential for PKM2 dimer-tetramer switching. CIP2A redirected PKM2 to mitochondrion, leading to upregulation of Bcl2 via phosphorylating Bcl2 at threonine 69. Clinically, CIP2A level in tumor tissues was positively correlated with the level of phosphorylated PKM2 S287. CIP2A-targeting compounds synergized with glycolysis inhibitor in suppressing cell proliferation in vitro and in vivo. These results indicated that CIP2A facilitates oxidative phosphorylation by promoting tetrameric PKM2 formation, and targeting CIP2A and glycolysis exhibits therapeutic potentials in NSCLC.

6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 455-461, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37248568

RESUMO

CD47 is an immunoglobulin that is overexpressed on the surface of a variety of cancer cells. CD47 forms a signaling complex with signal regulatory protein alpha (SIRPα), prompting the escape of cancer cells from macrophage-mediated phagocytosis. In recent years, CD47 has been shown to be highly expressed in many types of solid tumors and is associated with poor prognosis in patients. More and more studies have shown that inhibition of the CD47-SIRPα signaling pathway can promote adaptive immune responses and enhance the phagocytosis of tumor cells by macrophages. Humanized anti-CD47 IgG4 monoclonal antibody has been studied in clinical trials for the treatment of a variety of advanced solid tumors and lymphomas, demonstrating a sound safety profile and achieving partial remission in some patients. In this review we discuss the structure and function of CD47 and the mechanism of CD47 regulation in tumors, summarize the research progress in therapeutic antibody drugs targeting CD47 and a bottleneck in research that targeted drugs are more prone to result in serious adverse effects, and evaluated the potential of the applying CD47-SIRPα signaling pathway in anti-cancer therapy.


Assuntos
Antineoplásicos , Antígeno CD47 , Neoplasias , Humanos , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Antígeno CD47/metabolismo , Imunoterapia , Macrófagos/metabolismo , Neoplasias/tratamento farmacológico , Fagocitose , Evasão Tumoral
8.
Cell Rep Med ; 4(5): 101046, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37196632

RESUMO

Swanton et al.1 find that PM2.5 exposure is associated with EGFR/KRAS-driven lung cancer incidence. PM2.5 increases EGFR pre-mutated alveolar type II cell progenitor function and tumorigenic activity through interstitial macrophage-secreted IL-1ß, providing potential prevention approaches to inhibit cancer initiation.


Assuntos
Poluição do Ar , Neoplasias Pulmonares , Humanos , Material Particulado/efeitos adversos , Poluição do Ar/efeitos adversos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Mutação
10.
Phytomedicine ; 106: 154397, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36084403

RESUMO

BACKGROUND: Centipeda minima (L.) A. Braun & Asch (C. minima) has been used as a traditional Chinese herbal medicine to treat multiple diseases, including sinusitis, rhinitis, headache, and allergy. To date, the anticancer properties of C. minima have drawn considerable attention owing to the anticancer potential of C. minima extracts, the identification of active components, and the elucidation of underlying molecular mechanisms. However, the anticancer properties and significance of active components in C. minima have rarely been summarized. PURPOSE: This review presents a comprehensive summary of the anticancer properties exhibited by active components of C. minima. METHODS: An extensive search for published articles on the anticancer activities and active components of C. minima was performed using Web of Science, PubMed, Science Direct, and Google Scholar. RESULTS: C. minima extracts exhibited both anticancer and chemosensitizing effects. Phytochemical studies have identified the active anticancer components of C. minima extracts. Sesquiterpene lactones, such as 6-O-angeloylplenolin (6-OAP, or brevilin A) and arnicolide D, have similar structures and anticancer mechanisms. As the most abundant sesquiterpene lactone in C. minima, 6-OAP exhibits anticancer activities mainly by targeting Skp1-Cullin1-F-box protein (SCF) E3 ubiquitin ligase and signal transducers and activators of transcription 3 (STAT3). Clinical trials have assessed the potential of 6-OAP in patients with vertex balding and alopecia areata, given its effect on JAK-STATs signaling. Chlorogenic acid, a representative organic acid in C. minima, reportedly possesses anticancer potential and inhibits tumor growth by affecting tumor microenvironment and has been approved for phase II clinical trials in patients with glioma in China. CONCLUSION: In the present review, we highlight intriguing anticancer properties mediated by active compounds isolated from C. minima extracts, particularly sesquiterpene lactones, which might provide clues for developing novel anticancer drugs. Relevant clinical trials on chlorogenic acid and 6-OAP can promote anticancer clinical applications. Therefore, it is worth comprehensively elucidating underlying anticancer mechanisms and conducting clinical trials on C. minima and its active components.


Assuntos
Asteraceae , Medicamentos de Ervas Chinesas , Proteínas F-Box , Plantas Medicinais , Sesquiterpenos , Asteraceae/química , Ácido Clorogênico , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Lactonas/farmacologia , Sesquiterpenos/farmacologia , Ubiquitina-Proteína Ligases
11.
Signal Transduct Target Ther ; 7(1): 311, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36068203

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1), the enzyme that catabolizes tryptophan (Trp) metabolism to promote regulatory T cells (Tregs) and suppress CD8+ T cells, is regulated by several intrinsic signaling pathways. Here, we found that tobacco smoke, a major public health concern that kills 8 million people each year worldwide, induced IDO1 in normal and malignant lung epithelial cells in vitro and in vivo. The carcinogen nicotine-derived nitrosaminoketone (NNK) was the tobacco compound that upregulated IDO1 via activation of the transcription factor c-Jun, which has a binding site for the IDO1 promoter. The NNK receptor α7 nicotinic acetylcholine receptor (α7nAChR) was required for NNK-induced c-Jun activation and IDO1 upregulation. In A/J mice, NNK reduced CD8+ T cells and increased Tregs. Clinically, smoker patients with non-small-cell lung cancer (NSCLC) exhibited high IDO1 levels and low Trp/kynurenine (Kyn) ratios. In NSCLC patients, smokers with lower IDO1 responded better to anti-PD1 antibody treatment than those with higher IDO1. These data indicate that tobacco smoke induces IDO1 to catabolize Trp metabolism and immune suppression to promote carcinogenesis, and lower IDO1 might be a potential biomarker for anti-PD1 antibodies in smoker patients, whereas IDO1-high smoker patients might benefit from IDO1 inhibitors in combination with anti-PD1 antibodies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Poluição por Fumaça de Tabaco , Animais , Linfócitos T CD8-Positivos/metabolismo , Carcinógenos/toxicidade , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Nicotiana/metabolismo , Triptofano
13.
Front Oncol ; 12: 833866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769715

RESUMO

Background: Effective biomarkers for early diagnosis of lung cancer are needed. Previous studies have indicated positive associations between abnormal circulating cytokines and the etiology of lung cancer. Methods: Blood samples were obtained from 286 patients with pretreatment lung cancer and 80 healthy volunteers. Circulating cytokine levels were detected with a Luminex assay and enzyme-linked immunosorbent assay (ELISA). Urine samples were obtained from 284 patients and 122 healthy volunteers. CXC chemokine ligand 14 (CXCL14) expression in tumors and nontumor regions of lung tissues from 133 lung cancer cases was detected by immunohistochemical (IHC) staining and immunofluorescence (IF) staining of formalin fixed paraffin-embedded (FFPE) tissues. Results: Compared with healthy volunteers, a 65.7-fold increase was observed in the level of CXCL14 in the plasma of lung cancer patients, and a 1.7-fold increase was observed in the level of CXCL14 in the urine of lung cancer patients, achieving a 0.9464 AUC (area under the curve) value and a 0.6476 AUC value for differentiating between lung cancer patients and healthy volunteers, respectively. Stromal CXCL14 expression was significantly associated with advanced pathologic stage (P<0.001), pathologic N stage (P<0.001), and recurrence and metastasis (P=0.014). Moreover, multivariate analysis suggested stromal CXCL14 expression as an independent predictor of DFS and OS. Conclusions: Our study demonstrates that CXCL14 might serve as a potential diagnostic and prognostic biomarker in patients with lung cancer. Impact: CXCL14 might serve as a potential diagnostic and prognostic biomarker in patients with lung cancer.

14.
Acta Pharmacol Sin ; 43(11): 2895-2904, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35468992

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is the receptor of COVID-19 pathogen SARS-CoV-2, but the transcription factors (TFs) that regulate the expression of the gene encoding ACE2 (ACE2) have not been systematically dissected. In this study we evaluated TFs that control ACE2 expression, and screened for small molecule compounds that could modulate ACE2 expression to block SARS-CoV-2 from entry into lung epithelial cells. By searching the online datasets we found that 24 TFs might be ACE2 regulators with signal transducer and activator of transcription 3 (Stat3) as the most significant one. In human normal lung tissues, the expression of ACE2 was positively correlated with phosphorylated Stat3 (p-Stat3). We demonstrated that Stat3 bound ACE2 promoter, and controlled its expression in 16HBE cells stimulated with interleukin 6 (IL-6). To screen for medicinal compounds that could modulate ACE2 expression, we conducted luciferase assay using HLF cells transfected with ACE2 promoter-luciferase constructs. Among the 64 compounds tested, 6-O-angeloylplenolin (6-OAP), a sesquiterpene lactone in Chinese medicinal herb Centipeda minima (CM), represented the most potent ACE2 repressor. 6-OAP (2.5 µM) inhibited the interaction between Stat3 protein and ACE2 promoter, thus suppressed ACE2 transcription. 6-OAP (1.25-5 µM) and its parental medicinal herb CM (0.125%-0.5%) dose-dependently downregulated ACE2 in 16HBE and Beas-2B cells; similar results were observed in the lung tissues of mice following administration of 6-OAP or CM for one month. In addition, 6-OAP/CM dose-dependently reduced IL-6 production and downregulated chemokines including CXCL13 and CX3CL1 in 16HBE cells. Moreover, we found that 6-OAP/CM inhibited the entry of SARS-CoV-2 S protein pseudovirus into target cells. These results suggest that 6-OAP/CM are ACE2 inhibitors that may potentially protect lung epithelial cells from SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Camundongos , Humanos , Animais , SARS-CoV-2 , Interleucina-6/metabolismo , Pulmão/metabolismo , Células Epiteliais
15.
Cell Calcium ; 102: 102527, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35026540

RESUMO

CACNA1E is a gene encoding the ion-conducting α1 subunit of R-type voltage-dependent calcium channels, whose roles in tumorigenesis remain to be determined. We previously showed that CACNA1E was significantly mutated in patients with non-small cell lung cancer (NSCLC) who were long-term exposed to household air pollution, with a mutation rate of 19% (15 of 79 cases). Here we showed that CACNA1E was also mutated in 207 (12.8%) of the 1616 patients with NSCLC in The Cancer Genome Atlas (TCGA) datasets. At mRNA and protein levels, CACNA1E was elevated in tumor tissues compared to counterpart non-tumoral lung tissues in NSCLCs of the public datasets and our settings, and its expression level was inversely associated with clinical outcome of the patients. Overexpression of wild type (WT) or A275S or R249G mutant CACNA1E transcripts promoted NSCLC cell proliferation with activation of epidermal growth factor receptor (EGFR) signaling pathway, whereas knockdown of this gene exerted inhibitory effects on NSCLC cells in vitro and in vivo. CACNA1E increased current density and Ca2+ entrance, whereas calcium channel blockers inhibited NSCLC cell proliferation. These data indicate that CACNA1E is required for NSCLC cell proliferation, and blockade of this oncoprotein may have therapeutic potentials for this deadly disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Cálcio/metabolismo , Canais de Cálcio Tipo R , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Transporte de Cátions , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mutação/genética
16.
Acta Pharmacol Sin ; 43(3): 692-702, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34035487

RESUMO

The tumor suppressor p53 is usually inactivated by somatic mutations in malignant neoplasms, and its reactivation represents an attractive therapeutic strategy for cancers. Here, we reported that a new quinolone compound RYL-687 significantly inhibited non-small cell lung cancer (NSCLC) cells which express wild type (wt) p53, in contract to its much weaker cytotoxicity on cells with mutant p53. RYL-687 upregulated p53 in cells with wt but not mutant p53, and ectopic expression of wt p53 significantly enhanced the anti-NSCLC activity of this compound. RYL-687 induced production of reactive oxygen species (ROS) and upregulation of Nrf2, leading to an elevation of the NAD(P)H:quinoneoxidoreductase-1 (NQO1) that can protect p53 by inhibiting its degradation by 20S proteasome. RYL-687 bound NQO1, facilitating the physical interaction between NQO1 and p53. NQO1 was required for RYL-687-induced p53 accumulation, because silencing of NQO1 by specific siRNA or an NQO1 inhibitor uridine, drastically suppressed RYL-687-induced p53 upregulation. Moreover, a RYL-687-related prodrug significantly inhibited tumor growth in NOD-SCID mice inoculated with NSCLC cells and in a wt p53-NSCLC patient-derived xenograft mouse model. These data indicate that targeting NQO1 is a rational strategy to reactivate p53, and RYL-687 as a p53 stabilizer bears therapeutic potentials in NSCLCs with wt p53.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , NAD(P)H Desidrogenase (Quinona)/efeitos dos fármacos , Quinolonas/farmacologia , Proteína Supressora de Tumor p53/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Regulação para Cima
17.
Life (Basel) ; 11(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34947813

RESUMO

The development of cancer is a multistep and complex process involving interactions between tumor cells and the tumor microenvironment (TME). C-X-C chemokine ligand 13 (CXCL13) and its receptor, CXCR5, make crucial contributions to this process by triggering intracellular signaling cascades in malignant cells and modulating the sophisticated TME in an autocrine or paracrine fashion. The CXCL13/CXCR5 axis has a dominant role in B cell recruitment and tertiary lymphoid structure formation, which activate immune responses against some tumors. In most cancer types, the CXCL13/CXCR5 axis mediates pro-neoplastic immune reactions by recruiting suppressive immune cells into tumor tissues. Tobacco smoke and haze (smohaze) and the carcinogen benzo(a)pyrene induce the secretion of CXCL13 by lung epithelial cells, which contributes to environmental lung carcinogenesis. Interestingly, the knockout of CXCL13 inhibits benzo(a)pyrene-induced lung cancer and azoxymethane/dextran sodium sulfate-induced colorectal cancer in mice. Thus, a better understanding of the context-dependent functions of the CXCL13/CXCR5 axis in tumor tissue and the TME is required to design an efficient immune-based therapy. In this review, we summarize the molecular events and TME alterations caused by CXCL13/CXCR5 and briefly discuss the potentials of agents targeting this axis in different malignant tumors.

18.
Signal Transduct Target Ther ; 6(1): 405, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795208

RESUMO

Thalidomide induces γ-globin expression in erythroid progenitor cells, but its efficacy on patients with transfusion-dependent ß-thalassemia (TDT) remains unclear. In this phase 2, multi-center, randomized, double-blind clinical trial, we aimed to determine the safety and efficacy of thalidomide in TDT patients. A hundred patients of 14 years or older were randomly assigned to receive placebo or thalidomide for 12 weeks, followed by an extension phase of at least 36 weeks. The primary endpoint was the change of hemoglobin (Hb) level in the patients. The secondary endpoints included the red blood cell (RBC) units transfused and adverse effects. In the placebo-controlled period, Hb concentrations in patients treated with thalidomide achieved a median elevation of 14.0 (range, 2.5 to 37.5) g/L, whereas Hb in patients treated with placebo did not significantly change. Within the 12 weeks, the mean RBC transfusion volume for patients treated with thalidomide and placebo was 5.4 ± 5.0 U and 10.3 ± 6.4 U, respectively (P < 0.001). Adverse events of drowsiness, dizziness, fatigue, pyrexia, sore throat, and rash were more common with thalidomide than placebo. In the extension phase, treatment with thalidomide for 24 weeks resulted in a sustainable increase in Hb concentrations which reached 104.9 ± 19.0 g/L, without blood transfusion. Significant increase in Hb concentration and reduction in RBC transfusions were associated with non ß0/ß0 and HBS1L-MYB (rs9399137 C/T, C/C; rs4895441 A/G, G/G) genotypes. These results demonstrated that thalidomide is effective in patients with TDT.


Assuntos
Transfusão de Eritrócitos , Talidomida/administração & dosagem , Talassemia beta/terapia , Adolescente , Adulto , Criança , Método Duplo-Cego , Feminino , Humanos , Masculino , Talidomida/efeitos adversos
19.
Adv Exp Med Biol ; 1302: 71-90, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34286442

RESUMO

Chemokines have emerged as important players in tumorigenic process. An extensive body of literature generated over the last two or three decades strongly implicate abnormally activated or functionally disrupted chemokine signaling in liaising most-if not all-hallmark processes of cancer. It is well-known that chemokine signaling networks within the tumor microenvironment are highly versatile and context-dependent: exert both pro-tumoral and antitumoral activities. The C-X-C motif chemokine ligand 13 (CXCL13), and its cognate receptor CXCR5, represents an emerging example of chemokine signaling axes, which express the ability to modulate tumor growth and progression in either way. Collateral evidence indicate that CXCL13-CXCR5 axis may directly modulate tumor growth by inducing proliferation of cancer cells, as well as promoting invasive phenotypes and preventing their apoptosis. In addition, CXCL13-CXCR5 axis may also indirectly modulate tumor growth by regulating noncancerous cells, particularly the immune cells, within the tumor microenvironment. Here, we review the role of CXCL13, together with CXCR5, in the human tumor microenvironment. We first elaborate their patterns of expression, regulation, and biological functions in normal physiology. We then consider how their aberrant activity, as a result of differential overexpression or co-expression, may directly or indirectly modulate the growth of tumors through effects on both cancerous and noncancerous cells.


Assuntos
Neoplasias , Microambiente Tumoral , Apoptose , Quimiocina CXCL13/genética , Humanos , Neoplasias/genética , Receptores CXCR5 , Transdução de Sinais
20.
FEBS Open Bio ; 11(9): 2586-2599, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34293829

RESUMO

Butyrophilin 3A1 (BTN3A1), a major histocompatibility complex-associated gene that encodes a membrane protein with two extracellular immunoglobulin domains and an intracellular B30.2 domain, is critical in T-cell activation and adaptive immune response. Here, the expression of BTN3A1 in cancers was analyzed in eight databases comprising 86 733 patients of 33 cancers, and the findings were validated in patient samples and cell models. We showed that BTN3A1 was expressed in most cancers, and its expression level was strongly correlated with clinical outcome of 13 cancers. Mutations of BTN3A1 were detected, and the mutations were distributed throughout the entire gene. Gene set enrichment analysis showed that BTN3A1 co-expression genes and interacting proteins were enriched in immune regulation-related pathways. BTN3A1 was associated with tumor-infiltrating immune cells and was co-expressed with multiple immune checkpoints in patients with breast cancer (BRCA) and non-small cell lung cancer (NSCLC). We reported that BTN3A1 was downregulated in 46 of 65 (70.8%) NSCLCs, and its expression level was inversely associated with clinical outcome of the patients. BTN3A1 in tumor samples was lower than in counterpart normal tissues in 31 of 38 (81.6%) BRCAs. Bioinformatics analyses showed that BTN3A1 could be a target gene of transcription factor Spi-1 proto-oncogene (SPI1), and our 'wet' experiments showed that ectopic expression of SPI1 upregulated, whereas silencing of SPI1 downregulated, BTN3A1 expression in cells. These results suggest that BTN3A1 may function as a tumor suppressor and may serve as a potential prognostic biomarker in NSCLCs and BRCAs.


Assuntos
Antígenos CD/genética , Antígenos CD/metabolismo , Butirofilinas/genética , Butirofilinas/metabolismo , Suscetibilidade a Doenças , Modelos Biológicos , Neoplasias/etiologia , Neoplasias/metabolismo , Adulto , Idoso , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Mineração de Dados , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias/mortalidade , Neoplasias/patologia , Prognóstico , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA