Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(12): 7617-7628, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38785267

RESUMO

BACKGROUND: Qingzhuan dark tea polysaccharides (QDTP) have been complexed with Zinc (Zn) to form the Qingzhuan dark tea polysaccharides-Zinc (QDTP-Zn) complex. The present study investigated the protective effects of QDTP-Zn on ulcerative colitis (UC) in mice. The UC mouse model was induced using dextran sodium sulfate (DSS), followed by oral administration of QDTP-Zn (0.2 and 0.4 g kg-1 day-1). RESULTS: QDTP-Zn demonstrated alleviation of UC symptoms in mice, as evidenced by a decrease in disease activity index scores. QDTP-Zn also regulated colon tissue injury by upregulating ZO-1 and occludin protein expression, at the same time as downregulating tumor necrosis factor-α and interleukin-6ß levels. Furthermore, QDTP-Zn induced significant alterations in the abundance of bacteroidetes and firmicutes and notably increased levels of short-chain fatty acids (SCFAs), particularly acetic acid, propionic acid, and butyric acid. CONCLUSION: In summary, QDTP-Zn exhibits therapeutic potential in alleviating enteritis by fortifying the colonic mucosal barrier, mitigating inflammation and modulating intestinal microbiota and SCFAs levels. Thus, QDTP-Zn holds promise as a functional food for both the prevention and treatment of UC. © 2024 Society of Chemical Industry.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Polissacarídeos , Zinco , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Animais , Sulfato de Dextrana/efeitos adversos , Camundongos , Zinco/administração & dosagem , Zinco/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/administração & dosagem , Masculino , Humanos , Chá/química , Colo/metabolismo , Colo/efeitos dos fármacos , Colo/patologia , Modelos Animais de Doenças , Camellia sinensis/química , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ácidos Graxos Voláteis/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Sulfatos
2.
Int J Biol Macromol ; 268(Pt 1): 131659, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641275

RESUMO

As the most abundant natural homo-polymer, cellulose has the potential to enhance polymer properties reducing the cost of raw materials. In this work, the carboxylate cellulose nanofiber (CNF-C) was selected to modify polylactic acid (PLA) foams, and the density functional theory was constructed to help analyze the foaming mechanism quantitatively. The theoretical results showed that the ordered structure, the carboxyl and the hydroxyl of CNF-C were more conducive to providing much stronger CO2 adsorption for bubble nucleation, where the predicted critical bubble size decreased and the cell density increased with the addition of CNF-C. The experimental results revealed that the CNF-C promoted the rheological properties and crystallization behaviors of PLA samples, the PLA/CNF-C foams were characterized with uniform structures, the average cell size decreased from 21.39 µm to 0.19 µm, and the cell number density increased from 2.65×1010cell/cm3 to 2.30×1014cell/cm3. Those improvements resulted in an increase of 394.0 % for the compressive strength of the prepared foams. Generally, the high-performance PLA/CNF-C foams were fabricated successfully without compromising the properties of bio-based and biodegradable, the foaming mechanism was analyzed combining theoretical results with experimental data, and it was believed to provide a guide for cellulose reinforcing biodegradable polymer materials.


Assuntos
Celulose , Nanofibras , Poliésteres , Celulose/química , Poliésteres/química , Nanofibras/química , Reologia , Dióxido de Carbono/química , Propriedades de Superfície , Cristalização , Adsorção
3.
Biomed Pharmacother ; 174: 116582, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642504

RESUMO

The aim of this study was to investigate whether the therapeutic effect of theabrownin extracted from Qingzhuan tea (QTB) on metabolic dysfunction-associated steatosis liver disease (MASLD) is related to the regulation of intestinal microbiota and its metabolite short-chain fatty acids (SCFAs). Mice were divided into four groups and received normal diet (ND), high-fat diet (HFD) and HFD+QTB (180, 360 mg/kg) for 8 weeks. The results showed that QTB significantly reduced the body weight of HFD mice, ameliorated liver lipid and dyslipidemia, and increased the level of intestinal SCFAs in HFD mice. The results of 16 S rRNA showed that the relative abundance of Bacteroides, Blautia and Lachnoclostridium and their main metabolites acetate and propionate were significantly increased after QTB intervention. The relative abundance of Colidextribacter, Faecalibaculum and Lactobacillus was significantly reduced. QTB can also significantly up-regulate the expression of ATGL, PPARα, FFAR2 and FFAR3, and inhibit the expression of LXRα, SREBP-1c, FAS and HMGCR genes. This makes it possible to act as a prebiotic to prevent MASLD.


Assuntos
Catequina/análogos & derivados , Dieta Hiperlipídica , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Chá , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Masculino , Chá/química , Camundongos , Ácidos Graxos Voláteis/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Dislipidemias/tratamento farmacológico , Dislipidemias/prevenção & controle , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/tratamento farmacológico
4.
Tissue Eng Part A ; 30(15-16): 437-446, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38183628

RESUMO

Fractures occur commonly with multiple injuries, and their incidence has increased in recent years. Trace amounts of cobalt are necessary for many living organisms as it stimulates hematopoiesis and improves bone health. However, cobalt is also toxic, as it might cause allergic reactions and tissue destruction. These factors limit the application of cobalt in some medical fields. We studied the tea polysaccode-cobalt complex (TPS-Co) prepared from Qingzhuan Dark Tea polysaccharides. We used 6-week-old Sprague-Dawley rats to establish a femoral fracture model and evaluated the effects of CoCl2 and TPS-Co on the healing of femoral fractures. In this study, treatment with TPS-Co for the same content of cobalt intake decreased the side effects associated with CoCl2 treatment and accelerated the healing of femoral fractures in rats. This treatment method promoted angiogenesis by upregulating the expression of vascular endothelial growth factor and hypoxia-inducible factor. Bone formation was promoted via the upregulation of the expression of bone morphogenetic protein 2 and serum bone alkaline phosphatase. TPS-Co was found to actively regulate bone and vascular systems, resulting in significant bone regeneration effects. Therefore, the Qingzhuan Dark Tea polysaccharide cobalt complex might be used as an additive or drug to promote fracture healing, and thus, it might have a huge market value.


Assuntos
Cobalto , Consolidação da Fratura , Polissacarídeos , Ratos Sprague-Dawley , Chá , Animais , Cobalto/farmacologia , Polissacarídeos/farmacologia , Polissacarídeos/química , Consolidação da Fratura/efeitos dos fármacos , Chá/química , Ratos , Masculino , Fraturas do Fêmur/patologia , Fraturas do Fêmur/tratamento farmacológico , Osteogênese/efeitos dos fármacos
5.
Int J Biol Macromol ; 257(Pt 2): 128750, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101682

RESUMO

The open-cell bio-based biodegradable polymer foams show good application prospect in dealing with the serious environmental issue caused by oil spill and organic solvents spills, while the cell structures and hydrophobic properties of the foams limit their performance. In this work, the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was selected to help prepare bio-based biodegradable poly(lactic acid) (PLA) foams. Based on a two-step foaming method, the crystallization ability of different samples was regulated by the "original crystals" together with PHBV in the foaming process, where skeleton structures were provided to facilitate the open-cell structures and promote their mechanical property. As illustrated, PHBV facilitated the formation of open-cell PLA foams, where the foams displayed superior oil-water separation capacity. The maximum volume expansion ratio of the foams was 80.08, the contact angle of deionized water reached to 134.5°, the adsorption capacity for oil or organic solvents was 10.8 g/g-51.8 g/g, and the adsorption capacity for CCl4 can still maintained 83.5 % of the initial value after 10 adsorption-desorption cycles. This work not only clarified the foaming mechanism of open-cell foams, but also provided a green and simple method for preparing bio-based biodegradable foams possessing excellent oil-water separation performance.


Assuntos
Poliésteres , Poli-Hidroxibutiratos , Polímeros , Poliésteres/química , Polímeros/química , Solventes
6.
Heliyon ; 9(4): e15503, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37151649

RESUMO

The paradoxical effects of cobalt in biological processes have caused controversy regarding the application of cobalt-based biomaterials. Cobalt has recently been shown to be a trace element that promotes bone growth. Qingzhuan Dark Tea polysaccharides (TPS) has been shown to be a biomaterial with antioxidant and immunomodulatory effects. In order to develop a novel immunomodulatory biomaterial, we synthesized polysaccharide cobalt complex (TPS-Co) to prevent the paradoxical effects of cobalt while maintaining its beneficial effects, and evaluated its morphology, structure, and antioxidant activity. Fourier-transform infrared spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy demonstrated that cobalt complexed successfully with TPS. Scanning electron microscopy and atomic mechanical microscopy demonstrated that TPS-Co has a more homogeneous and concentrated morphological distribution compared to TPS. Thermal performance analysis demonstrated that TPS-Co has higher thermal stability. Atomic absorption spectroscopy showed a cobalt content of 3.8%. Ultraviolet spectroscopy indicated that TPS-Co does not contain nucleic acids and proteins. Antioxidant activity assays showed that TPS-Co has better antioxidant activity than TPS in the concentration range of 0.4-2 mg/mL. Proliferation assay of MC3T3-E1 cells demonstrated that TPS-Co has the best cell proliferation effect at a cobalt concentration of 2 ppm. Therefore, TPS-Co may have potential applications in bone regeneration.

7.
Des Monomers Polym ; 26(1): 31-44, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36684709

RESUMO

Several vascular embolization materials are commonly used in clinical practice, however, having application defects of varying degrees, such as poor intraoperative imaging and easy recanalization of embolized blood vessels, they are challenging for application during Transcatheter arterial embolization (TAE). Thus, an intraoperative visible vascular embolization material with good embolization effect and biocompatibility can improve transcatheter arterial embolization clinical efficacy to some extent. Our study aimed to synthesize a novel vascular embolization material that can achieve complete embolization of arterial trunks and peripheral vessels, namely poly (N-isopropyl acrylamide)-co-acrylic acid nanogel (NIPAM-co-AA). Iohexol 200 mg/mL was co-assembled with 7 wt% NIPAM-co-AA nanogel to create an intelligent thermosensitive radiopaque nanogel (INCA), which achieves a good intraoperative imaging effect and is convenient for transcatheter arterial bolus injection due to its good fluidity and temperature-sensitive sol-gel phase transition. The normal rabbit kidney embolism model further confirmed that INCA could effectively use Digital subtraction angiography (DSA) to achieve intraoperative imaging, and real-time monitoring of the embolization process could avoid mis-embolization and leakage. Meanwhile, in a 42-day study, INCA demonstrated an excellent embolization effect on the right renal artery of New Zealand white rabbits, with no vascular recanalization and ischemic necrosis and calcification remaining. As a result, this radiopaque thermosensitive nanogel has the potential to be an intelligent thermosensitive medical vascular embolization material, providing dual benefits in TAE intraoperative imaging and long-term postoperative embolization while effectively addressing the shortcomings and challenges of commonly used clinical vascular embolization agents.

8.
Nanoscale ; 15(4): 1835-1848, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36602166

RESUMO

Iodized oil has an excellent X-ray imaging effect, but it shows poor embolization performance. When used as an embolic agent, it is easily washed off by the blood flow and eliminated from the body. Therefore, it is essential to use iodized oil in combination with solid embolic agents such as gelatin sponge or to perform multiple embolization procedures to achieve the therapeutic effect. In the present study, a poly(N-isopropyl acrylamide)-co-acrylic acid (PNCAA) temperature-sensitive nanogel was synthesized by emulsion polymerization; the nanogel was then emulsified with iodized oil to prepare a thermosensitive iodized oil Pickering gel emulsion (TIPE). The oil-water (O/W) ratio of an O/W emulsion system can reach 4 : 6. When injected into the body, TIPE transforms into a nonflowing coagulated state at physiological temperature; the iodized oil is locked in the emulsion structure, thereby achieving local embolization and continuous imaging effects, which not only retain the X-ray imaging effect of the iodized oil but also improve its embolization effect. Subsequently, we further evaluated renal artery embolization in a normal rabbit renal artery model, and the results showed that TIPE shows a long-term conformal embolization performance and excellent long-term X-ray imaging ability.


Assuntos
Artérias , Óleo Iodado , Animais , Coelhos , Emulsões , Nanogéis , Raios X , Água
9.
Int J Biol Macromol ; 227: 273-284, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549028

RESUMO

Confronted with severe water contamination induced by the spillage of oils, seeking oil-selective adsorbent to recover oil from oily wastewater is extremely urgent. In particular, the functionalized polymer foams with open-cell structures are highly promising oil-selective adsorbent. Herein, a simple, effective and green method was presented to prepare open-cell poly(lactic acid) (PLA)/polytetrafluoroethylene (PTFE) foams with selective oil-adsorption behaviors via melt blending and supercritical CO2 batch foaming technique. The introduction of PTFE had a distinct positive influence on the melt viscoelasticity and crystallization performances of various PLA specimens. The resulted PLA/PTFE4 foam with a volume expansion ratio of 10.17 ± 0.93 and a cell density of 1.58 × 108 cells/cm3 possessed the highest open-cell content of 90.81 ± 0.78 %. Meanwhile, PLA/PTFE4 foam revealed oil/water selective adsorption capacity of 1.2-6.1 g/g for various organic solvents and oils. The adsorption capacity of PLA/PTFE4 foam for CCl4 exhibited no significant decrement during ten adsorption-desorption cycles. This research offered a guideline for the manufacture of green environmental open-cell polymer foams for oil-selective adsorption.


Assuntos
Poliésteres , Politetrafluoretileno , Adsorção , Temperatura , Poliésteres/química , Polímeros/química , Óleos
10.
Int J Biol Macromol ; 209(Pt B): 2050-2060, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35490769

RESUMO

As an effective alternative for petrochemical-based polymers, bio-based poly (lactic acid) (PLA) foam has been anticipated to alleviate enormous environmental pollution caused by microplastics. However, some difficulties involved in PLA foaming process due to the inherently poor melt strength and crystallization properties. In this context, a small amount of polytetrafluoroethylene (PTFE) was incorporated into PLA matrix to solve the aforementioned issues. Scanning electron microscopy measurement exhibited that PTFE fibrils and their physical networks were formed in molten PLA after blending. Due to these PTFE networks, approximately 2 orders of magnitudes increment in the storage modulus and more than 20% improvement in crystallinity of PLA were obtained. Diverse PLA samples were successfully foamed by a cost-effective, green and supercritical CO2-assisted foaming method. The PLA/PTFE foam with the PTFE content of 5 wt% (PLA/PTFE5) possessed the smallest pore size (9.51 µm) and the highest pore density (2.60 × 108 pores/cm3). In addition, the average specific compressive strength of PLA/PTFE5 foam was enhanced 30% in comparison with that of pure PLA foam. Overall, this study could provide a prospective strategy for developing bioderived and biodegradable polymer foams with controllable pore structures and high compression property.


Assuntos
Plásticos , Politetrafluoretileno , Ácido Láctico/química , Poliésteres/química , Polímeros/química , Estudos Prospectivos , Temperatura
11.
Phytochem Anal ; 33(4): 577-589, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35128737

RESUMO

AIM: To establish a fast, sensitive and accurate high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for determining the monosaccharide content of Qingzhuan Dark Tea polysaccharides in different years (2 years, 5 years and 11 years). METHODS: The optimised chromatographic conditions were achieved on a C18 column (5.0 µm, 250 mm × 4.6 mm inner diameter). The mobile phase flow rate was 0.9 mL/min and the column temperature was set to 27°C. The aqueous phase A (5 mM aqueous ammonium acetate) and organic phase B (acetonitrile) were used to elute the target analyses isocratically (0-60 min: 18% B). The mass spectrometer detector was equipped with an electron spray ionisation (ESI)source, and multiple reaction monitoring (MRM) mode was used for the determination of 1-phenyl-3-methyl-5-pyrazolone (PMP) derived monosaccharides. RESULTS: We carried out a comprehensive methodological validation of PMP derived monosaccharides, including linearity, precision, stability and repeatability. Nine monosaccharides (rhamnose, mannose, ribose, glucose, galacturonic acid, xylose, galactose, fucose and arabinose) of Qingzhuan Dark Tea polysaccharides were identified, in which ribose and fucose were reported for the first time. The results showed the contents of these nine monosaccharides differed significantly among different years. CONCLUSIONS: The validated method is reliable, accurate, repeatable and can be applied to quality assessment of these monosaccharides.


Assuntos
Monossacarídeos , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Fucose , Monossacarídeos/análise , Monossacarídeos/química , Polissacarídeos/análise , Polissacarídeos/química , Ribose , Chá
13.
Polymers (Basel) ; 14(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35054714

RESUMO

The addition of intumescent flame retardant to PLA can greatly improve the flame retardancy of the material and inhibit the dripping, but the major drawback is the adverse impact of the mechanical properties of the material. In this study, we found that the flame retardant and mechanical properties of the materials can be improved simultaneously by constructing a cross-linked structure. Firstly, a cross-linking flame-retardant PLA structure was designed by adding 0.9 wt% DCP and 0.3 wt% TAIC. After that, different characterization methods including torque, melt flow rate, molecular weight and gel content were used to clarify the formation of crosslinking structures. Results showed that the torque of 0.9DCP/0.3TAIC/FRPLA increased by 307% and the melt flow rate decreased by 77.8%. The gel content of 0.9DCP/0.3TAIC/FRPLA was 30.8%, indicating the formation of cross-linked structures. Then, the mechanical properties and flame retardant performance were studied. Results showed that, compared with FRPLA, the tensile strength, elongation at break and impact strength of 0.9DCP/0.3TAIC/FRPLA increased by 34.8%, 82.6% and 42.9%, respectively. The flame retardancy test results showed that 0.9DCP/0.3TAIC/FRPLA had a very high LOI (the limiting oxygen index) value of 39.2% and passed the UL94 V-0 level without dripping. Finally, the crosslinking reaction mechanism, flame retardant mechanism and the reasons for the improvement of mechanical properties were studied and described.

14.
Chemphyschem ; 23(4): e202100778, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34973043

RESUMO

In order to reduce the pollutants of environment and electromagnetic waves, environment friendly polymer foams with outstanding electromagnetic interference shielding are imminently required. In this paper, a kind of electromagnetic shielding, biodegradable nanocomposite foam was fabricated by blending poly (butylene succinate) (PBS) with carbon nanotubes (CNTs) followed by foaming with supercritical CO2 . The crystallization temperature and melting temperature of PBS/CNTs nanocomposites with 4 wt % of CNTs increased remarkably by 6 °C and 3.1 °C compared with that of pure PBS and a double crystal melting peak of various PBS samples appeared in DSC curves. Increasing the CNT content from 0 to 4 wt % leads to an increase of approximately 3 orders of magnitude in storage modulus and nearly 9 orders of magnitude in enhancement of electrical properties. Furthermore, CNTs endowed PBS nanocomposite foam with adjustable electromagnetic interference (EMI) shielding property, giving a specific EMI shielding effectiveness of 28.5 dB cm3 /g. This study provides a promising methodology for preparing biodegradable, lightweight PBS/CNTs foam with outstanding electromagnetic shielding properties.


Assuntos
Nanocompostos , Nanotubos de Carbono , Cristalização/métodos , Teste de Materiais , Nanotubos de Carbono/química , Temperatura
15.
ACS Omega ; 6(35): 22672-22680, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34514238

RESUMO

In this study, microcellular polycaprolactone (PCL)/sodium bicarbonate (NaHCO3)/cellulose nanofiber (CNF) composite foams with highly interconnected porous structures were successfully fabricated by microcellular foaming and particle leaching processes. Supercritical CO2 (scCO2) served as a physical foaming agent, NaHCO3 was chosen as a chemical foaming agent and porogen, and CNF acted as a heterogeneous nucleating agent. The effect of scCO2, NaHCO3, and CNF on pore structures and the cofoaming mechanism were investigated. The results indicated that the addition of NaHCO3 and CNF increased the melt strength of the PCL matrix significantly. During the foaming process, the presence of CNF can form a rigid network due to the hydrogen bonding or mechanical entanglement between individual nanofibers, improving the nucleating efficiency but slowing down the cell growth rate. Additionally, due to the interaction of "soft" PCL matrix and "hard" domains in a PCL-based composite during the foaming process, together with the NaHCO3 leaching process, highly interconnected cell structures appeared. The obtained PCL/NaHCO3/CNF composite foams had a cell size of 15.8 µm and cell density of 6.3 × 107 cells/cm3, as well as an open-cell content of 82%. The reported strategy in this paper may provide the guidelines and data supports for the fabrication of a PCL-based porous scaffold.

16.
Anal Chem ; 93(25): 8698-8703, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34138541

RESUMO

Immunofluorescence (IF) is a powerful investigative tool in biological research and medical diagnosis, whereas conventional imaging methods are always conflict between speed, contrast/resolution, and specimen volume. Chemical sectioning (CS) is an effective method to overcome the conflict, which works by chemically manipulating the off/on state of fluorescent materials and turning on only the extremely superficial surface fluorescence of tissues to realize the sectioning capacity of wide-field imaging. However, the current mechanism of CS is only applicable to samples labeled with pH-sensitive fluorescent proteins and still cannot fulfill samples immunolabeled with frequently used commercial fluorescent dyes. Here, immunofluorescence chemical sectioning (IF-CS) is described to present an off/on mechanism for Alexa dyes by complexation reactions, allowing CS imaging of IF labeled tissues. IF-CS enables IF freeing from out-of-focus interference in wide-field imaging and satisfying with multicolor imaging. IF-CS demonstrates the utility of the 3D submicron-resolution imaging of large immunolabeled tissues on the wide-field block-face system. IF-CS may remarkably facilitate systematic studies of refined subcellular architectures of endogenous proteins in intact biological systems.


Assuntos
Corantes Fluorescentes , Técnicas Histológicas , Imunofluorescência , Imageamento Tridimensional
17.
Carbohydr Polym ; 247: 116708, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829836

RESUMO

Branching poly (butylene succinate) (BPBS) nanocomposite foams incorporated with cellulose nanocrystals (CNCs) were prepared by supercritical CO2. Surface modification of CNCs by acetylation was achieved through replacing hydrophilic hydroxyl groups with hydrophobic acetyl groups, which improved the dispersibility of CNCs significantly. The crystallite sizes of CNCs and acetylated CNCs were calculated by Scherrer's formula as 25 and 19 nm, respectively. The initial crystallization temperature of diverse poly (butylene succinate) (PBS) specimens, a crucial factor for regulating cell nucleation type, increased remarkably by 11.8 °C as well as their storage modulus increased by 2 orders of magnitudes, due to branching reaction and bio-filler addition. BPBS/CNCs foam possessed a high volume expansion ratio as 37.1 times and displayed an exceptional thermal conductivity as 0.021 W(m K)-1. This study provided a promising potential strategy to develop exceptional thermal-insulation polymer foams for composite structures, energy conservation and environment protection.

18.
Int J Biol Macromol ; 163: 1175-1186, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679324

RESUMO

Recently, biodegradable macromolecules have been highly desired as a promising alternative for traditional oil-based plastics to work out the eco crisis and biological health problems triggered by microplastics. Herein, we presented a simple, effective, environmentally friendly and CO2-based foaming methodology for fabricating ultra-low-density poly (lactic acid)/carbon nanotube (PLA/CNTs) nanocomposite foam. By the gradual incorporation of CNTs, three kinds of networks generated in PLA/CNTs nanocomposites and had a distinct reinforcement influence on their melt viscoelasticity, which testified by transmission electron microscope, electrical conductivity and rheological property measurements, severally. Specifically, the storage modulus of PLA/CNTs nanocomposites were 3 orders of magnitude higher in contrast to pure PLA. Interestingly, relative to that under regular differential scanning calorimetry (DSC), a double melting peak phenomenon appeared in the high-pressure DSC curves of diverse PLA specimens. Biodegradable PLA/CNTs nanocomposite foam was successfully fabricated with a super-high volume expansion ratio (VER) of 49.6 times, which could offer a promising strategy for developing other thermoplastic polyester foams with ultra-high VER to obtain some unique functional attributes.


Assuntos
Plásticos Biodegradáveis/química , Nanocompostos/química , Nanotubos de Carbono/química , Poliésteres/química , Polímeros/química , Varredura Diferencial de Calorimetria/métodos , Condutividade Elétrica , Reologia/métodos , Temperatura , Viscosidade/efeitos dos fármacos
19.
ACS Appl Mater Interfaces ; 12(2): 2407-2416, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31851485

RESUMO

Hard carbons have shown promising application potential as anode materials for sodium-ion batteries (SIBs), but adjusting the texture of hard carbons to manipulate their electrochemical behaviors remains a great challenge. In this work, a Cu-activation strategy is developed to control the defects of hard carbon nanofibers to achieve slope-reigned Na-ion storage behaviors. This method can effectively create defect-rich carbon texture by employing a small amount of Cu(NO3)2 as an activator but cannot induce an increase in the surface area. With the addition of the Cu activator, carbon nanofibers with increasing defects are synthesized by electrospinning and subsequent annealing. When carbon nanofibers are used as anodes for SIBs, their reversible capacity is increased with the increase of defects. Simultaneously, slope capacity gradually increases, while low-voltage plateau capacity reduces. Especially, the reversible capacity of Cu-activated nanofibers with more defects can be increased to 315 mA h g-1 with almost no plateau capacity compared with 203 mA h g-1 of inactivated nanofibers with a plateau capacity of 26%. Noticeably, the initial Coulombic efficiency (70%) of the activated nanofibers is just slightly lower than that (72%) of inactivated ones. The Cu-activated nanofibers also demonstrate superb rate performance and long cycle lifetime. Therefore, this work shows a new pathway for the design of defect-rich hard carbons with superior Na-ion storage performance.

20.
Polymers (Basel) ; 11(12)2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31817825

RESUMO

High breakdown strength and low dielectric loss are necessary for the outdoor insulator using silicone rubber (SR) composites. In this work, polydopamine coated mica (mica-PDA) was synthesized via bioinspired dopamine self-polymerization, and mica-PDA-filled SR composite (SR/mica-PDA-VTMS) was prepared using vinyl tri-methoxysilane (VTMS) as a silane coupling agent which serves as the molecular bridges between the organic rubber and the inorganic filler. The SR/mica-PDA-VTMS composite demonstrated dense and uniform morphology where the filler was well dispersed. Due to the strong interfacial interactions between filler and rubber, the SR/mica-PDA-VTMS composite exhibits much lower dielectric loss compared to the other mica-filled SR composites, which was comparable to the prepared alumina-tri-hydrate-filled SR composites. Moreover, the breakdown strength of ~31.7 kV/mm and tensile strength of 5.4 MPa were achieved for the SR/mica-PDA-VTMS composite, much higher than those of the other as-prepared SR composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA