RESUMO
Aminoglycosides are essential antibiotics used to treat severe infections caused mainly by Gram-negative bacteria. Gentamicin is an aminoglycoside and, despite its toxicity, is clinically used to treat several pulmonary and urinary infections. The commercial form of gentamicin is a mixture of five compounds with minor differences in the methylation of one of their aminosugars. In the case of two compounds, gentamicin C2 and C2a, the only difference is the stereochemistry of the methyl group attached to C-6'. GenB2 is the enzyme responsible for this epimerization and is one of the four PLP-dependent enzymes encoded by the gentamicin biosynthetic gene cluster. Herein, we have determined the structure of GenB2 in its holo form in complex with PMP and also in the ternary complex with gentamicin X2 and G418, two substrate analogues. Based on the structural analysis, we were able to identify the structural basis for the catalytic mechanism of this enzyme, which was also studied by site-directed mutagenesis. Unprecedently, GenB2 is a PLP-dependent enzyme from fold I, which is able to catalyze an epimerization but with a mechanism distinct from that of fold III PLP-dependent epimerases using a cysteine residue near the N-terminus. The substitution of this cysteine residue for serine or alanine completely abolished the epimerase function of the enzyme, confirming its involvement. This study not only contributes to the understanding of the enzymology of gentamicin biosynthesis but also provides valuable details for exploring the enzymatic production of new aminoglycoside derivatives.
Assuntos
Gentamicinas , Gentamicinas/metabolismo , Gentamicinas/biossíntese , Gentamicinas/química , Antibacterianos/química , Antibacterianos/biossíntese , Antibacterianos/metabolismo , Racemases e Epimerases/metabolismo , Racemases e Epimerases/genética , Racemases e Epimerases/química , Modelos Moleculares , Cristalografia por Raios X , Mutagênese Sítio-Dirigida , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genéticaRESUMO
The oxidative pentose phosphate (OPP) pathway provides metabolic intermediates for the shikimate pathway and directs carbon flow to the biosynthesis of aromatic amino acids (AAAs), which serve as basic protein building blocks and precursors of numerous metabolites essential for plant growth. However, genetic evidence linking the two pathways is largely unclear. In this study, we identified 6-phosphogluconate dehydrogenase 2 (PGD2), the rate-limiting enzyme of the cytosolic OPP pathway, through suppressor screening of arogenate dehydrogenase 2 (adh2) in Arabidopsis. Our data indicated that a single amino acid substitution at position 63 (glutamic acid to lysine) of PGD2 enhanced its enzyme activity by facilitating the dissociation of products from the active site of PGD2, thus increasing the accumulation of AAAs and partially restoring the defective phenotype of adh2. Phylogenetic analysis indicated that the point mutation occurred in a well-conserved amino acid residue. Plants with different amino acids at this conserved site of PGDs confer diverse catalytic activities, thus exhibiting distinct AAAs producing capability. These findings uncover the genetic link between the OPP pathway and AAAs biosynthesis through PGD2. The gain-of-function point mutation of PGD2 identified here could be considered as a potential engineering target to alter the metabolic flux for the production of AAAs and downstream compounds.
Assuntos
Aminoácidos Aromáticos , Arabidopsis , Via de Pentose Fosfato , Fosfogluconato Desidrogenase , Ácido Chiquímico , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ácido Chiquímico/metabolismo , Ácido Chiquímico/análogos & derivados , Fosfogluconato Desidrogenase/metabolismo , Fosfogluconato Desidrogenase/genética , Aminoácidos Aromáticos/metabolismo , Aminoácidos Aromáticos/biossíntese , Filogenia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Plantas Geneticamente ModificadasRESUMO
Radical S-adenosyl-L-methionine (SAM) enzymes couple the reductive cleavage of SAM to radical-mediated transformations that have proven to be quite broad in scope. DesII is one such enzyme from the biosynthetic pathway of TDP-desosamine where it catalyzes a radical-mediated deamination. Previous studies have suggested that this reaction proceeds via direct elimination of ammonia from an α-hydroxyalkyl radical or its conjugate base (i.e., a ketyl radical) rather than 1,2-migration of the amino group to form a carbinolamine radical intermediate. However, without a crystal structure, the active site features responsible for this chemistry have remained largely unknown. The crystallographic studies described herein help to fill this gap by providing a structural description of the DesII active site. Computational analyses based on the solved crystal structure are consistent with direct elimination and indicate that an active site glutamate residue likely serves as a general base to promote deprotonation of the α-hydroxyalkyl radical intermediate and elimination of the ammonia group.
Assuntos
Proteínas de Bactérias , Domínio Catalítico , Streptomyces , Cristalografia por Raios X/métodos , Modelos Moleculares , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química , Streptomyces/enzimologiaRESUMO
A number of bacteria are known to produce isonitrile-containing peptides (INPs) that facilitate metal transport and are important for cell survival; however, considerable structural variation is observed among INPs depending on the producing organism. While non-heme iron 2-oxoglutarate dependent isonitrilases catalyze isonitrile formation, how the natural variation in INP structure is controlled and its implications for INP bioactivity remain open questions. Herein, total chemical synthesis is utilized with X-Ray crystallographic analysis of mycobacterial isonitrilases to provide a structural model of substrate specificity that explains the longer alkyl chains observed in mycobacterial versus Streptomyces INPs. Moreover, proton NMR titration experiments demonstrate that INPs regardless of alkyl chain length are specific for binding copper instead of zinc. These results suggest that isonitrilases may act as gatekeepers in modulating the observed biological distribution of INP structures and this distribution may be primarily related to differing metal transport requirements among the producing strains.
RESUMO
Domain engineering, including domain truncation, fusion, or swapping, has become a common strategy to improve properties of enzymes, especially glycosyl hydrolases. However, there are few reports explaining the mechanism of increased activity from a protein structure perspective. Amy703 is an alkaline amylase with a unique N-terminal domain. Prior studies have shown that N-Amy, a mutant without an N-terminal domain, exhibits improved activity, stability, and calcium ion independence. In this study, we have used X-ray crystallography to determine the crystal structure of N-Amy and used AlphaFold2 to model the Amy703 structure, respectively. We further used size exclusion chromatography to show that Amy703 existed as a monomer, whereas N-Amy formed a unique dimer. It was found that the N-terminus of one monomer of N-Amy was inserted into the catalytic domain of its symmetrical subunit, resulting in the expansion of the catalytic pocket. This also significantly increased the pKa of the hydrogen donor Glu350, thereby enhancing substrate binding affinity and contributing to increased N-Amy activity. Meanwhile, two calcium ions were found to bind to N-Amy at different binding sites, which also contributed to the stability of protein. Therefore, this study provided new structural insights into the mechanisms of various glycosyl hydrolases.
Assuntos
Cálcio , Estabilidade Enzimática , Multimerização Proteica , Cálcio/metabolismo , Cálcio/química , Modelos Moleculares , Domínio Catalítico , Domínios Proteicos , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Cristalografia por Raios XRESUMO
Zearalenone (ZEN) and its derivatives are estrogenic mycotoxins known to pose significant health threats to humans and animals. Especially, the derivative α-zearalanol (α-ZAL) is over 10 times more toxic than ZEN. Simultaneous degradation of ZEN and its derivatives, especially α-ZAL, using ZEN lactone hydrolases (ZHDs) is a promising solution to eliminate their potential hazards to food safety. However, most available ZHDs exhibit limited activity toward the more toxic α-ZAL compared to ZEN. Here, we identified a broad-substrate spectrum ZHD, named ZHDAY3, from Exophiala aquamarina CBS 119918, which could not only efficiently degrade ZEN but also exhibited 73% relative activity toward α-ZAL. Through rational design, we obtained the ZHDAY3(N153H) mutant, which exhibited the highest specific activity (253.3 ± 4.3 U/mg) reported so far for degrading α-ZAL. Molecular docking, structural comparative analysis, and kinetic analysis collectively suggested that the shorter distance between the side chain of the catalytic residue His242 and the lactone bond of α-ZAL and the increased binding affinity to the substrate were mainly responsible for the improved catalytic activity of ZHDAY3(N153H) mutant. This mechanism was further validated through additional molecular docking of 18 mutants and experimental verification of six mutants.IMPORTANCEThe mycotoxins zearalenone (ZEN) and its derivatives pose a significant threat to food safety. Here, we present a highly promising ZEN lactone hydrolase (ZHD), ZHDAY3, which is capable of efficiently degrading both ZEN and the more toxic derivative α-ZAL. Next, the ZHDAY3(N153H) mutant obtained by single-point mutation exhibited the highest specific activity for degrading α-ZAL reported thus far. We further elucidated the molecular mechanisms underlying the enhanced hydrolytic activity of ZHDAY3(N153H) toward α-ZAL. These findings represent the first investigation on the molecular mechanism of ZHDs against α-ZAL and are expected to provide a significant reference for further rational engineering of ZHDs, which will ultimately contribute to addressing the health risks and food safety issues posed by ZEN-like mycotoxins.
Assuntos
Micotoxinas , Zearalenona , Zeranol , Humanos , Animais , Zearalenona/química , Zearalenona/metabolismo , Zeranol/química , Zeranol/metabolismo , Lactonas , Mutação Puntual , Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Cinética , Micotoxinas/metabolismoRESUMO
Introduction: The pulmonary effects of e-cigarette use (or vaping) became a healthcare concern in 2019, following the rapid increase of e-cigarette-related or vaping-associated lung injury (EVALI) in young people, which resulted in the critical care admission of thousands of teenagers and young adults. Pulmonary functional imaging is well-positioned to provide information about the acute and chronic effects of vaping. We generated a systematic review to retrieve relevant imaging studies that describe the acute and chronic imaging findings that underly vaping-related lung structure-function abnormalities. Methods: A systematic review was undertaken on June 13th, 2023 using PubMed to search for published manuscripts using the following criteria: [("Vaping" OR "e-cigarette" OR "EVALI") AND ("MRI" OR "CT" OR "Imaging")]. We included only studies involving human participants, vaping/e-cigarette use, and MRI, CT and/or PET. Results: The search identified 445 manuscripts, of which 110 (668 unique participants) specifically mentioned MRI, PET or CT imaging in cases or retrospective case series of patients who vaped. This included 105 manuscripts specific to CT (626 participants), three manuscripts which mainly used MRI (23 participants), and two manuscripts which described PET findings (20 participants). Most studies were conducted in North America (n = 90), with the remaining studies conducted in Europe (n = 15), Asia (n = 4) and South America (n = 1). The vast majority of publications described case studies (n = 93) and a few described larger retrospective or prospective studies (n = 17). In e-cigarette users and patients with EVALI, key CT findings included ground-glass opacities, consolidations and subpleural sparing, MRI revealed abnormal ventilation, perfusion and ventilation/perfusion matching, while PET showed evidence of pulmonary inflammation. Discussion and conclusion: Pulmonary structural and functional imaging abnormalities were common in patients with EVALI and in e-cigarette users with or without respiratory symptoms, which suggests that functional MRI may be helpful in the investigation of the pulmonary health effects associated with e-cigarette use.
RESUMO
Cabotegravir is an integrase strand transfer inhibitor (INSTI) for HIV treatment and prevention. Cabotegravir-based long-acting pre-exposure prophylaxis (PrEP) presents an emerging paradigm for infectious disease control. In this scheme, a combination of a high efficacy and low solubility of anti-infection drugs permits the establishment of a pharmaceutical firewall in HIV-vulnerable groups over a long period. Although the structure-activity-relationship (SAR) of cabotegravir as an INSTI is known, the structural determinants of its low solubility have not been identified. In this work, we have integrated multiple experimental and computational methods, namely X-ray diffraction, solid-state NMR (SSNMR) spectroscopy, solution NMR spectroscopy, automated fragmentation (AF)-QM/MM and density functional theory (DFT) calculations, to address this question. The molecular organization of cabotegravir in crystal lattice has been determined. The combination of very-fast magic-angle-sample-spinning (VF MAS) SSNMR and solution NMR, as supported by AF-QM/MM and DFT calculations, permits the identification of structural factors that contribute to the low aqueous solubility of cabotegravir. Our study reveals the multitasking nature of pharmacophores in cabotegravir, which controls the drug solubility and, meanwhile, the biological activity. By unraveling these function-defining molecular features, our work could inspire further development of long-acting HIV PrEP drugs.
Assuntos
Infecções por HIV , Profilaxia Pré-Exposição , Piridonas , Humanos , Farmacóforo , Dicetopiperazinas , Infecções por HIV/prevenção & controleRESUMO
The aromatic amino acids (AAAs) phenylalanine, tyrosine, and tryptophan are basic protein units and precursors of diverse specialized metabolites that are essential for plant growth. Despite their significance, the mechanisms that regulate AAA homeostasis remain elusive. Here, we identified a cytosolic aromatic aminotransferase, REVERSAL OF SAV3 PHENOTYPE 1 (VAS1), as a suppressor of arogenate dehydrogenase 2 (adh2) in Arabidopsis (Arabidopsis thaliana). Genetic and biochemical analyses determined that VAS1 uses AAAs as amino donors, leading to the formation of 3-carboxyphenylalanine and 3-carboxytyrosine. These pathways represent distinct routes for AAA metabolism that are unique to specific plant species. Furthermore, we show that VAS1 is responsible for cytosolic AAA biosynthesis, and its enzymatic activity can be inhibited by 3-carboxyphenylalanine. These findings provide valuable insights into the crucial role of VAS1 in producing 3-carboxy AAAs, notably via recycling of AAAs in the cytosol, which maintains AAA homeostasis and allows plants to effectively coordinate the complex metabolic and biosynthetic pathways of AAAs.
Assuntos
Arabidopsis , Transaminases , Aminoácidos , Aminoácidos Aromáticos , Arabidopsis/genética , Citosol , Homeostase , Transaminases/genéticaRESUMO
The assembly line biosynthesis of the powerful anticancer-antiviral didemnin cyclic peptides is proposed to follow a prodrug release mechanism in Tristella bacteria. This strategy commences with the formation of N-terminal prodrug scaffolds and culminates in their cleavage during the cellular export of the mature products. In this study, a comprehensive exploration of the genetic and biochemical aspects of the enzymes responsible for both the assembly and cleavage of the acylated peptide prodrug scaffolds is provided. This process involves the assembly of N-acyl-polyglutamine moieties orchestrated by the nonribosomal peptide synthetase DidA and the cleavage of these components at the post-assembly stage by DidK, a transmembrane CAAX hydrolase homolog. The findings not only shed light on the complex prodrug mechanism that underlies the synthesis and secretion of didemnin compounds but also offer novel insights into the expanded role of CAAX hydrolases in microbes. Furthermore, this knowledge can be leveraged for the strategic design of genome mining approaches aimed at discovering new bioactive natural products that employ similar prodrug biochemical strategies.
Assuntos
Depsipeptídeos , Pró-Fármacos , Peptídeo Hidrolases , Endopeptidases , Pró-Fármacos/farmacologiaRESUMO
Bacteria can be programmed to create engineered living materials (ELMs) with self-healing and evolvable functionalities. However, further development of ELMs is greatly hampered by the lack of engineerable nonpathogenic chassis and corresponding programmable endogenous biopolymers. Here, we describe a technological workflow for facilitating ELMs design by rationally integrating bioinformatics, structural biology and synthetic biology technologies. We first develop bioinformatics software, termed Bacteria Biopolymer Sniffer (BBSniffer), that allows fast mining of biopolymers and biopolymer-producing bacteria of interest. As a proof-of-principle study, using existing pathogenic pilus as input, we identify the covalently linked pili (CLP) biosynthetic gene cluster in the industrial workhorse Corynebacterium glutamicum. Genetic manipulation and structural characterization reveal the molecular mechanism of the CLP assembly, ultimately enabling a type of programmable pili for ELM design. Finally, engineering of the CLP-enabled living materials transforms cellulosic biomass into lycopene by coupling the extracellular and intracellular bioconversion ability.
Assuntos
Bactérias , Engenharia Metabólica , Fluxo de Trabalho , Licopeno , BiopolímerosRESUMO
Photoenzymatic decarboxylation of bulky secondary and tertiary carboxylic acids catalyzed by engineered Chlorella variabilis fatty acid photodecarboxylase (CvFAP) is reported. Rational design and directed evolution of wild-type CvFAP are used to improve the reactivity and expand potential applications. Moreover, engineered CvFAP can catalyze light-driven kinetic resolution of α-substituted carboxylic acid. Our work sheds light on the production of chiral building blocks and bioactive molecules from bulky carboxylic acids via the photoenzymatic way.
Assuntos
Ácidos Carboxílicos , Chlorella , Ácidos Graxos , Catálise , CinéticaRESUMO
Azoxy compounds exhibit a wide array of biological activities and possess distinctive chemical properties. Although there has been considerable interest in the biosynthetic mechanisms of azoxy metabolites, the enzymatic basis responsible for azoxy bond formation has remained largely enigmatic. In this study, we unveil the enzyme cascade that constructs the azoxy bond in valanimycin biosynthesis. Our research demonstrates that a pair of metalloenzymes, comprising a membrane-bound hydrazine synthase and a nonheme diiron azoxy synthase, collaborate to convert an unstable pathway intermediate to an azoxy product through a hydrazine-azo-azoxy pathway. Additionally, by characterizing homologues of this enzyme pair from other azoxy metabolite pathways, we propose that this two-enzyme cascade could represent a conserved enzymatic strategy for azoxy bond formation in bacteria. These findings provide significant mechanistic insights into biological N-N bond formation and should facilitate the targeted isolation of bioactive azoxy compounds through genome mining.
Assuntos
Bactérias , HidrazinasRESUMO
The high-resolution X-ray crystal structure of the ternary complex FtmOx1 â 2OG â fumitremorgin B and the catalytic mechanism were recently reported by us (DOI 10.1002/anie.202112063). In their Correspondence, Zhang, Costello, Liu etâ al. criticize our work in several aspects. Herein, we address these questions one by one. These structural clarifications and new computational results further support the CarC-like mechanistic model.
Assuntos
Dioxigenases , Proteínas Fúngicas , Proteínas Fúngicas/química , Dioxigenases/química , CatáliseRESUMO
The present study examines whether there is a mechanism beyond the current concept of post-translational modifications to regulate the function of a protein. A small gas molecule, hydrogen sulfide (H2S), was found to bind at active-site copper of Cu/Zn-SOD using a series of methods including radiolabeled binding assay, X-ray absorption near-edge structure (XANES), and crystallography. Such an H2S binding enhanced the electrostatic forces to guide the negatively charged substrate superoxide radicals to the catalytic copper ion, changed the geometry and energy of the frontier molecular orbitals of the active site, and subsequently facilitated the transfer of an electron from the superoxide radical to the catalytic copper ion and the breakage of the copper-His61 bridge. The physiological relevance of such an H2S effect was also examined in both in vitro and in vivo models where the cardioprotective effects of H2S were dependent on Cu/Zn-SOD.
Assuntos
Cobre , Sulfeto de Hidrogênio , Cobre/metabolismo , Superóxido Dismutase/metabolismo , Domínio Catalítico , Superóxidos , Zinco/metabolismoRESUMO
Modifying crystallization plates can significantly impact the success rate and quality of protein crystal growth, making it a helpful strategy in protein crystallography. However, appropriate methods for preparing nano-sized particles with a high specific surface area and strategies for applying these nanoparticles to form suitable coatings on crystallization plate surfaces still need to be clarified. Here, we utilized both an ultrasonic crusher and a high-pressure homogenizer to create a nano metal-organic framework (MOF), specifically HKUST-1, and introduced a solvent evaporation method for producing MOF coatings on 96-well crystallization plates to induce protein crystal growth. The morphology of MOF coatings on the resin surface of the plate well was characterized using optical and scanning electron microscopy. Compared to the control group, crystallization screening experiments on nine proteins confirmed the effectiveness of plates with MOF coatings. Applying MOF coatings to crystallization plates is an easy-to-use, time-efficient, and potent tool for initiating crystallization experiments.
RESUMO
Tandem Diels-Alder reactions are frequently used in the construction of polycyclic ring systems in complex organic compounds. Unlike the many Diels-Alderases (DAases) that catalyse a single cycloaddition, enzymes for multiple Diels-Alder reactions are rare. Here we demonstrate that two calcium-ion-dependent glycosylated enzymes, EupfF and PycR1, independently catalyse sequential, intermolecular Diels-Alder reactions in the biosynthesis of bistropolone-sesquiterpenes. We elucidate the origins of catalysis and stereoselectivity within these DAases through analysis of enzyme co-crystal structures, together with computational and mutational studies. These enzymes are secreted as glycoproteins with diverse N-glycans. The N-glycan at N211 in PycR1 significantly increases the affinity to the calcium ion, which in turn regulates the active cavity, making it specifically interact with substrates to accelerate the tandem [4 + 2] cycloaddition. The synergistic effect of the calcium ion and N-glycan on the catalytic centre of enzymes involved in secondary metabolism, especially for complex tandem reactions, can extend our understanding of protein evolution and improve the artificial design of biocatalysts.
Assuntos
Produtos Biológicos , Sesquiterpenos , Reação de Cicloadição , Produtos Biológicos/química , Cálcio , CatáliseRESUMO
Stereoselective synthesis of cis-decalin structures using [4 + 2] cycloaddition is challenging. We explored the biosynthetic pathway of the fungal natural product fischerin (1) to identify a new pericyclase FinI that can catalyze such a reaction. The cocrystal structure of FinI, a predicted O-methyltransferase, with the product and SAM provides insight into cis-decalin formation in nature.
Assuntos
Produtos Biológicos , Biocatálise , Metiltransferases , CatáliseRESUMO
In this work, poly (vinylidene fluoride) (PVDF) hierarchically porous membranes (HPMs) with isolated large pores and continuous narrow nano-pores have been fabricated from its blend with poly (methyl methacrylate) (PMMA) based on the combination of crystallization template with chemical or supercritical CO2 foaming. On the one hand, the decomposition of azodicarbonamide (ADC, chemical foaming agent) or the release of CO2 can produce isolated large pores. On the other hand, PMMA is expelled during the isothermal crystallization of PVDF in their miscible blend, yielding narrow nano-pores upon etching with a selective solvent. In the case of supercritical CO2, the attained PVDF HPMs fail to improve separation performance because of the compact wall of isolated-large-pore and consequent poor connectivity of hierarchical pores. In the case of ADC, the optimal HPM exhibits much higher flux (up to 20 times) without any loss of selectivity compared with the reference only with nano-pores. The enhanced permeability can be attributed to the shorter diffusion length and lower diffusion barrier from isolated large pores, while the comparable selectivity is determined by narrow nano-pores in THE matrix.
RESUMO
Advanced organic vapor sensors that simultaneously have high sensitivity, fast response, and good reproducibility are required. Herein, flexible, robust, and conductive vapor-grown carbon fibers (VGCFs)-filled polydimethylsiloxane (PDMS) porous composites (VGCFs/PDMS sponge (CPS)) with multilevel pores and thin, rough, and hollows wall were prepared based on the sacrificial template method and a simple dip-spin-coating process. The optimized material showed outstanding mechanical elasticity and durability, good electrical conductivity and hydrophobicity, as well as excellent acid and alkali tolerance. Additionally, CPS exhibited good reproducible sensing behavior, with a high sensitivity of ~1.5 × 105 s-1 for both static and flowing organic vapor, which was not affected in cases such as 20% squeezing deformation or environment humidity distraction (20~60% RH). Interestingly, both the reproducibility and sensitivity of CPS were better than those of film-shaped VGCFs/PDMS (CP), which has a thickness of two hundred microns. Therefore, the contradiction between the reproducibility and high sensitivity was well-solved here. The above excellent performance could be ascribed to the unique porous structures and the rough, thin, hollow wall of CPS, providing various gas channels and large contact areas for organic vapor penetration and diffusion. This work paves a new way for developing advanced vapor sensors by optimizing and tailoring the pore structure.