RESUMO
Structural Fe in phyllosilicates represents a crucial and potentially renewable reservoir of electron equivalents for contaminants reduction in aquatic and soil systems. However, it remains unclear how in-situ modification of Fe redox states within Fe-bearing phyllosilicates, induced by electron shuttles such as naturally occurring organics, influences the fate of contaminants. Herein, this study investigated the processes and mechanism of Cr(VI) reduction on two typical Fe(II/III)-bearing phyllosilicates, biotite and chlorite, in the presence of cysteine (Cys) at circumneutral pH. The experimental results demonstrated that Cys markedly enhanced the rate and extent of Cr(VI) reduction by biotite/chlorite, likely because of the formation of Cr(V)-organic complexes and consequent electron transfer from Cys to Cr(V). The concomitant production of non-structural Fe(II) (including aqueous Fe(II), surface bound Fe(II), and Cys-Fe(II) complex) cascaded transferring electrons from Cys to surface Fe(III), which further contributed to Cr(VI) reduction. Notably, structural Fe(II) in phyllosilicates also facilitated Cr(VI) reduction by mediating electron transfer from Cys to structural Fe(III) and then to edge-sorbed Cr(VI). 57Fe Mössbauer analysis revealed that cis-coordinated Fe(II) in biotite and chlorite exhibits higher reductivity compared to trans-coordinated Fe(II). The Cr end-products were insoluble Cr(III)-organic complex and sub-nanometer Cr2O3/Cr(OH)3, associated with residual minerals as micro-aggregates. These findings highlight the significance of in-situ produced Fe(II) from Fe(II/III)-bearing phyllosilicates in the cycling of redox-sensitive contaminants in the environment.
RESUMO
Magnetite is a reductive Fe(II)-bearing mineral, and its reduction property is considered important for degradation of contaminants in groundwater and anaerobic subsurface environments. However, the redox condition of subsurface environments frequently changes from anaerobic to aerobic owing to natural and anthropogenic disturbances, generating reactive oxygen species (ROS) from the interaction between Fe(II)-bearing minerals and O2. Despite this, the mechanism of ROS generation induced by magnetite under aerobic conditions is poorly understood, which may play a crucial role in As(III) oxidation. Herein, we found that magnetite could activate O2 and induce the oxidative transformation of As(III) under aerobic conditions. As(III) oxidation was attributed to the ROS generated via structural Fe(II) within the magnetite octahedra oxygenation. The electron paramagnetic resonance and quenching tests confirmed that O2â¢-, H2O2, and â¢OH were produced by magnetite. Moreover, density function theory calculations combined with experiments demonstrated that O2â¢- was initially formed via single electron transfer from the structural Fe(II) to the adsorbed O2; O2â¢- was then converted to â¢OH and H2O2 via a series of free radical reactions. Among them, O2â¢-and H2O2 were the primary ROS responsible for As(III) oxidation, accounting for approximately 52 % and 19 % of As(III) oxidation. Notably, As(III) oxidation mainly occurred on the magnetite surface, and As was immobilized further within the magnetite structure. This study provides solid evidence regarding the role of magnetite in determining the fate and transformation of As in redox-fluctuating subsurface environments.
Assuntos
Óxido Ferroso-Férrico , Oxigênio , Óxido Ferroso-Férrico/química , Espécies Reativas de Oxigênio , Oxigênio/química , Peróxido de Hidrogênio , Oxirredução , Minerais , Compostos Férricos/químicaRESUMO
Scorodite (FeAsO4·H2O) is a common arsenic-bearing (As-bearing) iron mineral in near-surface environments that could immobilize or store As in a bound state. In flooded soils, microbe induced Fe(III) or As(V) reduction can increase the mobility and bioavailability of As. Additionally, humic substances can act as electron shuttles to promote this process. The dynamics of As release and diversity of putative As(V)-reducing bacteria during scorodite reduction have yet to be investigated in detail in flooded soils. Here, the microbial reductive dissolution of scorodite was conducted in an flooded soil in the presence of anthraquinone-2,6-disulfonate (AQDS). Anaeromyxobacter, Dechloromonas, Geothrix, Geobacter, Ideonella, and Zoogloea were found to be the dominant indigenous bacteria during Fe(III) and As(V) reduction. AQDS increased the relative abundance of dominant species, but did not change the diversity and microbial community of the systems with scorodite. Among these bacteria, Geobacter exhibited the greatest increase and was the dominant Fe(III)- and As(V)-reducing bacteria during the incubation with AQDS and scorodite. AQDS promoted both Fe(III) and As(V) reduction, and over 80% of released As(V) was microbially transformed to As(III). The increases in the abundance of arrA gene and putative arrA sequences of Geobacter were higher with AQDS than without AQDS. As a result, the addition of AQDS promoted microbial Fe(III) and As(V) release and reduction from As-bearing iron minerals into the environment. These results contribute to exploration of the transformation of As from As-bearing iron minerals under anaerobic conditions, thus providing insights into the bioremediation of As-contaminated soil.
Assuntos
Arsênio , Geobacter , Solo , Elétrons , Compostos Férricos , FerroRESUMO
Whilst allowing for easy access to synthetically versatile motifs and for modification of bioactive molecules, the chemoselective benzylic oxidation reactions of functionalized alkyl arenes remain challenging. Reported in this study is a new non-heme Mn catalyst stabilized by a bipiperidine-based tetradentate ligand, which enables methylene oxidation of benzylic compounds by H2 O2 , showing high activity and excellent chemoselectivity under mild conditions. The protocol tolerates an unprecedentedly wide range of functional groups, including carboxylic acid and derivatives, ketone, cyano, azide, acetate, sulfonate, alkyne, amino acid, and amine units, thus providing a low-cost, more sustainable and robust pathway for the facile synthesis of ketones, increase of complexity of organic molecules, and late-stage modification of drugs.
Assuntos
Cetonas , Manganês , Alcinos , Catálise , Íons , Cetonas/química , OxirreduçãoRESUMO
Scorodite (FeAsO4·2H2O) is a pivotal secondary ferric arsenate that immobilizes most of arsenic (As) in acidic As-contaminated environments, but secondary As pollution may occur during dissolution of scorodite in environments involving redox changes. Reductive dissolution of scorodite by coexisting dissolved Fe2+ (Fe(II)aq) under anaerobic conditions and its effects on the behavior of As have yet to be examined. Here, this study monitored the changes in mineralogy, solubility and speciation of As during scorodite transformation induced by Fe(II) under anaerobic conditions at pH 7.0 and discussed the underlying mechanisms. Mössbauer and X-ray diffraction (XRD) analysis showed the formation of parasymplesite and ferrihydrite-like species during scorodite transformation, which was highly controlled by Fe(II)aq concentrations. 1 mM Fe(II)aq enhanced As mobilization into the solution, whereas As was repartitioned to the PO43--extractable and HCl-extractable phases with 5 and 10 mM Fe(II). The neo-formed parasymplesite and ferrihydrite-like species immobilized dissolved As(V) through adsorption and incorporation. Additionally, As(V) reduction occurred during Fe(II)-induced scorodite transformation. Our results provide new insights into the stability and risk of scorodite in anaerobic environments as well as the geochemical behavior of As in response to Fe cycling.
Assuntos
Arsênio , Arsenicais , Arsênio/análise , Compostos Férricos , Compostos Ferrosos , Oxirredução , SolubilidadeRESUMO
The first manganese-catalyzed oxidation of organosilanes to silanols with H2 O2 under neutral reaction conditions has been accomplished. A variety of organosilanes with alkyl, aryl, alknyl, and heterocyclic substituents were tolerated, as well as sterically hindered organosilanes. The oxidation appears to proceed by a concerted process involving a manganese hydroperoxide species. Featuring mild reaction conditions, fast oxidation, and no waste byproducts, the protocol allows a low-cost, eco-benign synthesis of both silanols and silanediols.
RESUMO
AIM OF THE STUDY: Garcinia hanburyi is a traditional herbal medicine with activities of anti-inflammation and hemostasis used by people in South Asia. Gambogic acid (GA) is the main active component extracted from it, which has anticancer and anti-inflammatory effects. The aim of the current study is to investigate the molecular mechanisms of GA's effective anticancer activity. MATERIALS AND METHODS: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to measure cell proliferation. Apoptosis induced by GA was analyzed by flow cytometry. In addition, monodansylcadaverine (MDC) and 2',7'-dichlorofluorescein diacetate were used to evaluate autophagy and reactive oxygen species (ROS) generation, respectively. RESULTS: GA could significantly inhibit nonsmall cell lung cancer (NSCLC) NCI-H441 cell growth. In addition, GA induced NCI-H441 cells autophagy, confirmed by MDC staining, upregulation of Beclin 1 (initiation factor for autophagosome formation), and conversion of LC3 I to LC3 II (autophagosome marker). Moreover, generated ROS was induced by GA in NCI-H441 cells and the ROS scavenger N-acetylcysteine reversed GA-induced autophagy and restored the cell survival, which indicated GA-induced autophagy in NCI-H441 cells through an ROS-dependent pathway. In addition, in vivo results further indicated that GA significantly inhibited the growth of NCI-H441 xenografts. CONCLUSIONS: The results shed new light on the interaction between ROS generation and autophagy in NSCLC cells and provide theoretical support for the usage of GA in clinical treatment.