Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 20(6): e2305596, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775944

RESUMO

The ever-growing demands for efficient energy storage accelerate the development of high-rate lithium-metal battery (LMB) with desirable energy density, power density, and cycling stability. Nevertheless, the practical application of LMB is critically impeded by internal temperature rise and lithium dendrite growth, especially at high charge/discharge rates. It is highly desired but remains challenging to develop high-performance thermotolerant separators that can provide favorable channels to enable fast Li+ transport for high-rate operation and simultaneously homogenize the lithium deposition for dendrite inhibition. Polyimide-based separators with superior thermal properties are promising candidate alternatives to the commercial polyolefin-based separators, but previous strategies of designing either nanoporous or microporous channels in polyimide-based separators often meet a dilemma. Here, a facile and scalable approach is reported to develop a polyimide fiber/aerogel (denoted as PIFA) separator with the microporous polyimide fiber membrane sandwiched between two nanoporous polyimide aerogel layers, which can enable LMBs with remarkable capacity retention of 97.2% after 1500 cycles at 10 C. The experimental and theoretical studies unravel that the sandwiched structure of PIFA can appreciably enhance the electrolyte adsorption and ionic conductivity; while, the aerogel coating can effectively inhibit dendrite growth to realize durable high-rate LMBs.

2.
Adv Mater ; 35(10): e2209855, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36651132

RESUMO

Electroreduction of nitrate into ammonia (NRA) provides a sustainable route to convert the widespread nitrate pollutants into high-value-added products under ambient conditions, which unfortunately suffers from unsatisfactory selectivity due to the competitive hydrogen evolution reaction (HER). Previous strategies of modifying the metal sites of catalysts often met a dilemma for simultaneously promoting activity and selectivity toward NRA. Here, a general strategy is reported to enable an efficient and selective NRA process through coordination modulation of single-atom catalysts to tailor the local proton concentration at the catalyst surface. By contrast, two analogous Ni-single-atom enriched conjugated coordination polymers (NiO4 -CCP and NiN4 -CCP) with different coordination motifs are investigated for the proof-of-concept study. The NiO4 -CCP catalyst exhibits an ammonia yield rate as high as 1.83 mmol h-1 mg-1 with a Faradaic efficiency of 94.7% under a current density of 125 mA cm-2 , outperforming the NiN4 -CCP catalyst. These experimental and theoretical studies both suggest that the strategy of coordination modulation can not only accelerate the NRA by adjusting the adsorption energies of NRA intermediates on the metal sites but also inhibit the HER through regulating the proton migration with contributions from the metal-hydrated cations adsorbed at the catalyst surface, thus achieving simultaneous enhancement of NRA selectivity and activity.

3.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36558938

RESUMO

Immune checkpoint blockade (ICB) is currently considered to be an important therapeutic method, which obtained FDA approval for clinical use in gastric cancer in 2017. As a new mechanism, it was found that the effect of αPDL1 could be improved by blocking the TGF-ß1 signaling pathway, which converts the tumor immune microenvironment from the "immune-excluded phenotype" to the "immune-inflamed phenotype". Based on this phenomenon, this project was designed to prepare TGF-ß1-siRNA-loaded PEG-PCL nanoparticles conjugated to αPDL1 (siTGF-ß1-αPDL1-PEG-PCL) since we have linked similar antibodies to PEG-PCL previously. Therefore, MFC tumor-engrafted mice were established to simulate the biological characteristics of converting the phenotype of the immune microenvironment, and to study the anti-tumor effect and possible molecular mechanism. In this study, αPDL1 antibody conjugates markedly increased the cell uptake of NPs. The produced αPDL1-PEG-PCL NPs efficiently reduced the amounts of TGF-ß1 mRNA in MFC cells, converting the immune microenvironment of MFC tumors engrafted mice from the "immune-excluded phenotype" to the "immune-inflamed phenotype". PDL1-harboring gastric cancer had increased susceptibility to αPDL1. The value of this drug-controlled release system targeting the tumor microenvironment in immune checkpoint therapy of gastric cancer would provide a scientific basis for clinically applying nucleic acid drugs.

4.
ACS Appl Mater Interfaces ; 14(34): 38717-38726, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35983881

RESUMO

Access to high-performance and cost-effective catalyst materials is one of the crucial preconditions for the industrial application of electrochemical CO2 reduction (ECR). In this work, a facile and simple strategy is proposed for the construction of a free-standing electrocatalyst via confining a superbase and hydrophobic ionic liquid (IL, [P66614][triz]) into Ni foam pores, denoted as [P66614][triz]@Ni foam. These ILs can modulate the surface of Ni foam and create a microenvironment with high CO2 concentration around the electrode/electrolyte interface, which successfully suppresses the hydrogen evolution reaction (HER) of Ni foam. Consequently, the synthesized [P66614][triz]@Ni foam sample can obtain a CO product with 63% Faradaic efficiency from the ECR procedure, while no detectable CO can be found on pristine Ni foam. Owing to the superbase IL, the valency of Ni species retains Ni(I)/Ni(0) during electrolysis. Furthermore, the strikingly high CO2 capacity by [P66614][Triz] (0.91 mol CO2 per mole of IL) offers a high CO2 local concentration in the reaction region. Theoretical calculations indicated that the neutral CO2 molecule turned to be negatively charged with -0.546 e and changed into a bent geometry, thus rendering CO2 activation and reduction in a low-energy pathway. This study provides a new method of electrode interface modification for the design of efficient ECR catalysts.

5.
Front Genet ; 13: 903393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677557

RESUMO

This study aimed to explore an immune response-related gene signature to predict the clinical prognosis and tumor immunity of stomach adenocarcinomas (STAD). Based on the expression and clinical data of STAD in the TCGA database, the immune cell infiltration status was evaluated using CIBERSORT and ESTIMATE methods. Samples were grouped into "hot" and "cold" tumors based on immune cell infiltration status and consensus clustering. The infiltration abundance of activated memory CD4 T cells and CD8 T cells had a significant effect on the overall survival of STAD patients. Among the three clusters, cluster 2 had a higher immune score and a significantly higher abundance of CD8 T cells and activated memory CD4 T cells were assigned as a hot tumor, while cluster 1 and 3 were assigned as a cold tumor. DEGs between hot and cold tumors were mainly enriched in immune-related biological processes and pathways. Total of 13 DEGs were related to the overall survival (OS). After the univariate and multivariable Cox regression analysis, three signature genes (PEG10, DKK1, and RGS1) was identified to establish a prognostic model. Patients with the high-risk score were associated with worse survival, and the risk score had an independent prognostic value. Based on TIMER online tool, the infiltration levels of six immune cell types showed significant differences among different copy number statuses of PEG10, DKK1, and RGS1. In this study, an immune-related prognostic model containing three genes was established to predict survival for STAD patients.

6.
Mol Ther Oncolytics ; 24: 148-159, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35024441

RESUMO

The anticancer effects of immune checkpoint inhibitors (ICIs) have been widely examined recently. Although ICIs have been progressively improved for successful gastric cancer treatment, different trials of ICIs such as pembrolizumab and nivolumab have yielded widely variable response rates. Strategies to further improve the efficacy of ICIs are still needed. Previous studies have shown that de novo DNA methylation is acquired by PD1+CD8+ tumor-infiltrating T cells (TILs), which cause a hierarchical downregulation of cytokines such as interferon-γ (IFN-γ). The epigenetic agent 5-Aza-2'-deoxycytidine (DAC) blocks de novo DNA methylation in activated PD1+CD8+ TILs. Such a feature might help enhance the anti-tumor effect of immune checkpoint blockade (ICB) treatment. In this study, polyethylene glycol-poly(ε-caprolactone) (PEG-PCL) nanoparticles (NPs) were linked to the anti-programmed death-1 monoclonal antibody nivolumab to yield αPD1-NPs for targeting TILs with PD1 overexpression using DAC. In addition, the NPs increased DAC stability and improved IFN-γ secretion and the anti-tumor effect of ICB in vitro. Therefore, targeted delivery of DAC reverses the exhaustion of PD1+CD8+ TILs and improves T cell responses and the treatment effect of ICB. These findings suggest that nivolumab-NPs are a potential tool for the delivery of epigenetic drugs, which could enhance the anti-tumor effect of ICB in gastric cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA