Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Comput Biol Med ; 170: 107955, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215618

RESUMO

Multi-organ segmentation is vital for clinical diagnosis and treatment. Although CNN and its extensions are popular in organ segmentation, they suffer from the local receptive field. In contrast, MultiLayer-Perceptron-based models (e.g., MLP-Mixer) have a global receptive field. However, these MLP-based models employ fully connected layers with many parameters and tend to overfit on sample-deficient medical image datasets. Therefore, we propose a Cascaded Spatial Shift Network, CSSNet, for multi-organ segmentation. Specifically, we design a novel cascaded spatial shift block to reduce the number of model parameters and aggregate feature segments in a cascaded way for efficient and effective feature extraction. Then, we propose a feature refinement network to aggregate multi-scale features with location information, and enhance the multi-scale features along the channel and spatial axis to obtain a high-quality feature map. Finally, we employ a self-attention-based fusion strategy to focus on the discriminative feature information for better multi-organ segmentation performance. Experimental results on the Synapse (multiply organs) and LiTS (liver & tumor) datasets demonstrate that our CSSNet achieves promising segmentation performance compared with CNN, MLP, and Transformer models. The source code will be available at https://github.com/zkyseu/CSSNet.


Assuntos
Neoplasias Hepáticas , Humanos , Redes Neurais de Computação , Software , Processamento de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA