Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 28: 196-205, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37250864

RESUMO

Mechanical force is crucial in the whole process of embryonic development. However, the role of trophoblast mechanics during embryo implantation has rarely been studied. In this study, we constructed a model to explore the effect of stiffness changes in mouse trophoblast stem cells (mTSCs) on implantation: microcarrier was prepared by sodium alginate using a droplet microfluidics system, and mTSCs were attached to the microcarrier surface with laminin modifications, called T(micro). Compared with the spheroid, formed by the self-assembly of mTSCs (T(sph)), we could regulate the stiffness of the microcarrier, making the Young's modulus of mTSCs (367.70 ± 79.81 Pa) similar to that of the blastocyst trophoblast ectoderm (432.49 ± 151.90 Pa). Moreover, T(micro) contributes to improve the adhesion rate, expansion area and invasion depth of mTSCs. Further, T(micro) was highly expressed in tissue migration-related genes due to the activation of the Rho-associated coiled-coil containing protein kinase (ROCK) pathway at relatively similar modulus of trophoblast. Overall, our study explores the embryo implantation process with a new perspective, and provides theoretical support for understanding the effect of mechanics on embryo implantation.

2.
Plant Physiol ; 190(4): 2217-2228, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36063458

RESUMO

Endoreduplication plays an important role in cell growth and differentiation, but the mechanisms regulating endoreduplication are still elusive. We have previously reported that UBIQUITIN-SPECIFIC PROTEASE14 (UBP14) encoded by DA3 interacts with ULTRAVIOLETB INSENSITIVE4 (UVI4) to influence endoreduplication and cell growth in Arabidopsis (Arabidopsis thaliana). The da3-1 mutant possesses larger cotyledons and flowers with higher ploidy levels than the wild-type. Here, we identify the suppressor of da3-1 (SUPPRESSOR OF da3-1 3; SUD3), which encodes SNW/SKI-INTERACTING PROTEIN (SKIP). Biochemical studies demonstrate that SUD3 physically interacts with UBP14/DA3 and UVI4 in vivo and in vitro. Genetic analyses support that SUD3 acts in a common pathway with UBP14/DA3 and UVI4 to control endoreduplication. Our findings reveal an important genetic and molecular mechanism by which SKIP/SUD3 associates with UBP14/DA3 and UVI4 to modulate endoreduplication.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Endorreduplicação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Ciclo Celular
3.
J Cell Physiol ; 237(8): 3408-3420, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35699648

RESUMO

Little is known about the complex molecular and cellular events occurring during implantation, which represents a critical step for pregnancy. The conventional 2D culture could not support postimplantation embryos' normal development, and 3D conditions shed light into the "black box". 3D printing technology has been widely used in recapitulating the structure and function of native tissues in vitro. Here, we 3D printed anisotropic microporous scaffolds to culture embryos by manipulating the advancing angle between printed layers, which affected embryo development. The 30° and 60° scaffolds promote embryo development with moderate embryo-scaffold attachments. T-positive cells and FOXA2-positive cells were observed to appear in the posterior region of the embryo and migrated to the anterior region of the embryo on day 7. These findings demonstrate a 3D printed stand that supports embryonic development in vitro and the critical role of 3D architecture for embryo implantation, in which additive manufacturing is a versatile tool.


Assuntos
Desenvolvimento Embrionário , Impressão Tridimensional , Alicerces Teciduais , Movimento Celular , Engenharia Tecidual , Alicerces Teciduais/química
4.
Plant Cell ; 34(4): 1308-1325, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34999895

RESUMO

Endoreduplication, a process in which DNA replication occurs in the absence of mitosis, is found in all eukaryotic kingdoms, especially plants, where it is assumed to be important for cell growth and cell fate maintenance. However, a comprehensive understanding of the mechanism regulating endoreduplication is still lacking. We previously reported that UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, acts upstream of CYCLIN-DEPENDENT KINASE B1;1 (CDKB1;1) to influence endoreduplication and cell growth in Arabidopsis thaliana. The da3-1 mutant possesses large cotyledons with enlarged cells due to high ploidy levels. Here, we identified a suppressor of da3-1 (SUPPRESSOR OF da3-1 6; SUD6), encoding CYCLIN-DEPENDENT KINASE G2 (CDKG2), which promotes endoreduplication and cell growth. CDKG2/SUD6 physically associates with CDKB1;1 in vivo and in vitro. CDKB1;1 directly phosphorylates SUD6 and modulates its stability. Genetic analysis indicated that SUD6 acts downstream of DA3 and CDKB1;1 to control ploidy level and cell growth. Thus, our study establishes a regulatory cascade for UBP14/DA3-CDKB1;1-CDKG2/SUD6-mediated control of endoreduplication and cell growth in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Quinases Ciclina-Dependentes/genética , Endorreduplicação/genética , Ubiquitina/genética
5.
Plant Commun ; 1(4): 100083, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33367247

RESUMO

Plants recognize pathogens and activate immune responses, which usually involve massive transcriptional reprogramming. The evolutionarily conserved kinase, Sucrose non-fermenting-related kinase 1 (SnRK1), functions as a metabolic regulator that is essential for plant growth and stress responses. Here, we identify barley SnRK1 and a WRKY3 transcription factor by screening a cDNA library. SnRK1 interacts with WRKY3 in yeast, as confirmed by pull-down and luciferase complementation assays. Förster resonance energy transfer combined with noninvasive fluorescence lifetime imaging analysis indicates that the interaction occurs in the barley nucleus. Transient expression and virus-induced gene silencing analyses indicate that WRKY3 acts as a repressor of disease resistance to the Bgh fungus. Barley plants overexpressing WRKY3 have enhanced fungal microcolony formation and sporulation. Phosphorylation assays show that SnRK1 phosphorylates WRKY3 mainly at Ser83 and Ser112 to destabilize the repressor, and WRKY3 non-phosphorylation-null mutants at these two sites are more stable than the wild-type protein. SnRK1-overexpressing barley plants display enhanced disease resistance to Bgh. Transient expression of SnRK1 reduces fungal haustorium formation in barley cells, which probably requires SnRK1 nuclear localization and kinase activity. Together, these findings suggest that SnRK1 is directly involved in plant immunity through phosphorylation and destabilization of the WRKY3 repressor, revealing a new regulatory mechanism of immune derepression in plants.


Assuntos
Ascomicetos/fisiologia , Proteínas de Ligação a DNA/genética , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Resistência à Doença/genética , Fosforilação , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA