RESUMO
Two-dimensional (2D) antiferromagnetic (AFM) semiconductors are promising components of opto-spintronic devices due to terahertz operation frequencies and minimal interactions with stray fields. However, the lack of net magnetization significantly limits the number of experimental techniques available to study the relationship between magnetic order and semiconducting properties. Here, they demonstrate conditions under which photocurrent spectroscopy can be employed to study many-body magnetic excitons in the 2D AFM semiconductor NiI2. The use of photocurrent spectroscopy enables the detection of optically dark magnetic excitons down to bilayer thickness, revealing a high degree of linear polarization that is coupled to the underlying helical AFM order of NiI2. In addition to probing the coupling between magnetic order and dark excitons, this work provides strong evidence for the multiferroicity of NiI2 down to bilayer thickness, thus demonstrating the utility of photocurrent spectroscopy for revealing subtle opto-spintronic phenomena in the atomically thin limit.
RESUMO
The moiré potential in rotationally misfit two-dimensional (2D) heterostructures has been used to build artificial exciton and electron lattices, which have become platforms for realizing exotic electronic phases. Here, we demonstrate a different approach to create a superlattice potential in 2D crystals by using the near field of an array of polar molecules. A bilayer of titanyl phthalocyanine (TiOPc), consisting of alternating out-of-plane dipoles, is deposited on monolayer MoS2. Time-resolved two-photon photoemission spectroscopy reveals a pair of interlayer exciton states with an energy difference of â¼0.1 eV, which is consistent with the electrostatic potential modulation induced by the TiOPc bilayer as determined by density functional theory calculations. Because the symmetry and the period of this potential superlattice can be changed readily by using molecules of different shapes and sizes, molecule/2D heterostructures can be promising platforms for designing artificial exciton and electron lattices.
RESUMO
Lattice defects play an important role in determining the optical and electrical properties of monolayer semiconductors such as MoS2. Although the structures of various defects in monolayer MoS2 are well studied, little is known about the nature of the fluorescent defect species and their interaction with molecular adsorbates. In this study, the quenching of the low-temperature defect photoluminescence (PL) in MoS2 is investigated following the deposition of metallophthalocyanines (MPcs). The quenching is found to significantly depend on the identity of the phthalocyanine metal, with the quenching efficiency decreasing in the order CoPc > CuPc > ZnPc, and almost no quenching by metal-free H2Pc is observed. Time-correlated single photon counting (TCSPC) measurements corroborate the observed trend, indicating a decrease in the defect PL lifetime upon MPc adsorption, and the gate voltage-dependent PL reveals the suppression of the defect emission even at large Fermi level shifts. Density functional theory modeling argues that the MPc complexes stabilize dark negatively charged defects over luminescent neutral defects through an electrostatic local gating effect. These results demonstrate the control of defect-based excited-state decay pathways via molecular electronic structure tuning, which has broad implications for the design of mixed-dimensional optoelectronic devices.
RESUMO
We compute the electronic structure and optical excitation energies of metal-free and transition-metal phthalocyanines (H2Pc and MPc for M = Fe, Co, Ni, Cu, Zn, Mg) using density functional theory with optimally tuned range-separated hybrid functionals (OT-RSH). We show that the OT-RSH approach provides photoemission spectra in quantitative agreement with experiments as well as optical band gaps within 10% of their experimental values, capturing the interplay of localized d-states and delocalized π-π* states for these organometallic compounds. We examine the tunability of MPcs and H2Pc through fluorination, resulting in quasi-rigid shifts of the molecular orbital energies by up to 0.7 eV. Our comprehensive data set provides a new computational benchmark for gas-phase phthalocyanines, significantly improving upon other density-functional-theory-based approaches.
RESUMO
Layered indium selenide (InSe) is an emerging two-dimensional semiconductor that has shown significant promise for high-performance transistors and photodetectors. The range of optoelectronic applications for InSe can potentially be broadened by forming mixed-dimensional van der Waals heterostructures with zero-dimensional molecular systems that are widely employed in organic electronics and photovoltaics. Here, we report the spatially resolved investigation of photoinduced charge separation between InSe and two molecules (C70 and C8-BTBT) using scanning tunneling microscopy combined with laser illumination. We experimentally and computationally show that InSe forms type-II and type-I heterojunctions with C70 and C8-BTBT, respectively, due to an interplay of charge transfer and dielectric screening at the interface. Laser-excited scanning tunneling spectroscopy reveals a â¼0.25 eV decrease in the energy of the lowest unoccupied molecular orbital of C70 with optical illumination. Furthermore, photoluminescence spectroscopy and Kelvin probe force microscopy indicate that electron transfer from InSe to C70 in the type-II heterojunction induces a photovoltage that quantitatively matches the observed downshift in the tunneling spectra. In contrast, no significant changes are observed upon optical illumination in the type-I heterojunction formed between InSe and C8-BTBT. Density functional theory calculations further show that, despite the weak coupling between the molecular species and InSe, the band alignment of these mixed-dimensional heterostructures strongly differs from the one suggested by the ionization potential and electronic affinities of the isolated components. Self-energy-corrected density functional theory indicates that these effects are the result of the combination of charge redistribution at the interface and heterogeneous dielectric screening of the electron-electron interactions in the heterostructure. In addition to providing specific insight for mixed-dimensional InSe-organic van der Waals heterostructures, this work establishes a general experimental methodology for studying localized charge transfer at the molecular scale that is applicable to other photoactive nanoscale systems.
RESUMO
The weak van der Waals bonding between monolayers in layered materials enables fabrication of heterostructures without the constraints of conventional heteroepitaxy. Although many novel heterostructures have been created by mechanical exfoliation and stacking, the direct growth of 2D chalcogenide heterostructures creates new opportunities for large-scale integration. This paper describes the epitaxial growth of layered, p-type tin sulfide (SnS) on n-type molybdenum disulfide (MoS2) by pulsed metal-organic chemical vapor deposition at 180 °C. The influence of precursor pulse and purge times on film morphology establishes growth conditions that favor layer-by-layer growth of SnS, which is critical for materials with layer-dependent electronic properties. Kelvin probe force microscopy measurements determine a built-in potential as high as 0.95 eV, and under illumination a surface photovoltage is generated, consistent with the expected Type-II band alignment for a multilayer SnS/MoS2 heterostructure. The bottom-up growth of a nonisostructural heterojunction comprising 2D semiconductors expands the combinations of materials available for scalable production of ultrathin devices with field-tunable responses.
RESUMO
We study the impact of organic surface ligands on the electronic structure and electronic band edge energies of quasi-two-dimensional (2D) colloidal cadmium selenide nanoplatelets (NPLs) using density functional theory. We show how control of the ligand and ligand-NPL interface dipoles results in large band edge energy shifts, over a range of 5 eV for common organic ligands with a minor effect on the NPL band gaps. Using a model self-energy to account for the dielectric contrast and an effective mass model of the excitons, we show that the band edge tunability of NPLs together with the strong dependence of the optical band gap on NPL thickness can lead to favorable photochemical and optoelectronic properties.
RESUMO
Mixed-dimensional heterojunctions, such as zero-dimensional (0D) organic molecules deposited on two-dimensional (2D) transition metal dichalcogenides (TMDCs), often exhibit interfacial effects that enhance the properties of the individual constituent layers. Here we report a systematic study of interfacial charge transfer in metallophthalocyanine (MPc) - MoS2 heterojunctions using optical absorption and Raman spectroscopy to elucidate M core (M = first row transition metal), MoS2 layer number, and excitation wavelength effects. Observed phenomena include the emergence of heterojunction-specific optical absorption transitions and strong Raman enhancement that depends on the M identity. In addition, the Raman enhancement is tunable by excitation laser wavelength and MoS2 layer number, ultimately reaching a maximum enhancement factor of 30x relative to SiO2 substrates. These experimental results, combined with density functional theory (DFT) calculations, indicate strong coupling between nonfrontier MPc orbitals and the MoS2 band structure as well as charge transfer across the heterojunction interface that varies as a function of the MPc electronic structure.
RESUMO
Density functional theory calculations have been used to identify the optimum design for a novel, light-responsive ring monomer expected to allow spatial and temporal control of ring-opening metathesis polymerization (ROMP) via light-mediated changes in ring strain energy. The monomer design leverages ring-shaped molecules composed of 4,4'-diaminoazobenzene (ABn) closed by alkene-α,ω-dioic acid linkers. The atomic geometries, formation enthalpies and ring strain energies of azobenzene (AB)-containing rings with various length linkers have been calculated. The AB(2,2) monomer is identified as having optimal properties for light-mediated ROMP, including high thermodynamic stability, low ring strain energy (RSE) with cis-AB, and high RSE with trans-AB. Time-dependent DFT calculations have been used to explore the photoisomerization mechanism of isolated AB and AB-containing rings, and calculations show that trans-to-cis and cis-to-trans photoisomerization of the optimal AB(2,2) ring molecule can be achieved with monochromatic green and blue light, respectively. The AB(2,2) monomer identified here is expected to allow precise, reversible, spatial and temporal light-mediated control of ROMP through AB photoisomerization, and to have promising potential applications in the fabrication of patterned and/or responsive AB-containing polymer materials.
RESUMO
Mechanical properties and biological evaluation of buffalo horn material were examined in this study. The effects of sampling position of buffalo horn on mechanical properties were investigated with uniaxial tension and micron indentation tests. Meanwhile, the variation of element contents in different parts of buffalo horn was determined with elemental analysis, and the microstructure of the horn was measured with scanning electron microscopy. In addition, biological evaluation of buffalo horn was studied with hemolytic test, erythrocyte morphology, platelet and erythrocyte count, and implantation into mouse. Results showed that the buffalo horn had good mechanical properties and mechanical characteristic values of it gradually increased along with the growth direction of the horn, which may be closely related to its microstructure and element content of C, N, and S in different parts of the buffalo horn. On the other hand, because the buffalo horn does not have toxicity, it therefore does not cause hemolysis of erythrocyte and has a good affinity with it. Buffalo horn has good histocompatibility but meanwhile it may induce the platelet adhesion and aggregation. Even so, it does not continue to rise to induce a large number of platelet to aggregate with resulting blood clotting. Therefore, the buffalo horn material has been proved to possess good blood compatibility according to the preliminary evaluation.