Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.369
Filtrar
1.
Transl Psychiatry ; 14(1): 205, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769320

RESUMO

Growing evidence suggests an association between osteocalcin (OCN), a peptide derived from bone and involved in regulating glucose and lipid metabolism, and the risk of Alzheimer's disease (AD). However, the causality of these associations and the underlying mechanisms remain uncertain. We utilized a Mendelian randomization (MR) approach to investigate the causal effects of blood OCN levels on AD and to assess the potential involvement of glucose and lipid metabolism. Independent instrumental variables strongly associated (P < 5E-08) with blood OCN levels were obtained from three independent genome-wide association studies (GWAS) on the human blood proteome (N = 3301 to 35,892). Two distinct summary statistics datasets on AD from the International Genomics of Alzheimer's Project (IGAP, N = 63,926) and a recent study including familial-proxy AD patients (FPAD, N = 472,868) were used. Summary-level data for fasting glucose (FG), 2h-glucose post-challenge, fasting insulin, HbA1c, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol (TC), and triglycerides were incorporated to evaluate the potential role of glucose and lipid metabolism in mediating the impact of OCN on AD risk. Our findings consistently demonstrate a significantly negative correlation between genetically determined blood OCN levels and the risk of AD (IGAP: odds ratio [OR, 95%CI] = 0.83[0.72-0.96], P = 0.013; FPAD: OR = 0.81 [0.70-0.93], P = 0.002). Similar estimates with the same trend direction were obtained using other statistical approaches. Furthermore, employing multivariable MR analysis, we found that the causal relationship between OCN levels and AD was disappeared after adjustment of FG and TC (IGAP: OR = 0.97[0.80-1.17], P = 0.753; FPAD: OR = 0.98 [0.84-1.15], P = 0.831). There were no apparent instances of horizontal pleiotropy, and leave-one-out analysis showed good stability of the estimates. Our study provides evidence supporting a protective effect of blood OCN levels on AD, which is primarily mediated through regulating FG and TC levels. Further studies are warranted to elucidate the underlying physio-pathological mechanisms.


Assuntos
Doença de Alzheimer , Metabolismo Energético , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Osteocalcina , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Osteocalcina/sangue , Metabolismo Energético/genética , Glicemia/metabolismo , Polimorfismo de Nucleotídeo Único , Masculino , Feminino , Triglicerídeos/sangue , Insulina/sangue
2.
Angew Chem Int Ed Engl ; : e202405417, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761059

RESUMO

Lithium-sulfur (Li-S) batteries have many advantages but still face problems such as retarded polysulfides redox kinetics and Li dendrite growth. Most reported single atom catalysts (SACs) for Li-S batteries are based on d-band transition metals whose d orbital constitutes active valence band, which is inclined to occur catalyst passivation. SACs based on 4f inner valence orbital of rare earth metals are challenging for their great difficulty to be activated. In this work, we design and synthesize the first rare earth metal Sm SACs which has electron-rich 4f inner orbital to promote catalytic conversion of polysulfides and uniform deposition of Li. Sm SACs enhance the catalysis by the activated 4f orbital through an f-d-p orbital hybridization. Using Sm-N3C3 modified separators, the half cells deliver a high capacity over 600 mAh g-1 and a retention rate of 84.3% after 2000 cycles. The fabricated S/CNTs|Sm-N3C3@PP|Sm-N3C3-Li full batteries can provide an ultra-stable cycling performance of a retention rate of 80.6% at 0.2 C after 100 cycles, one of the best full Li-S batteries. This work provides a new perspective for the development of rare earth metal single atom catalysis in electrochemical reactions of Li-S batteries and other electrochemical systems for next-generation energy storage.

3.
Sci Total Environ ; 933: 173180, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740212

RESUMO

Projected changes in climate patterns, increase of weather extreme, water scarcity, and land degradation are going to challenge agricultural production and food security. Currently, studies concerning effects of climate change on agriculture mainly focus on yield and quality of cereal crops. In contrast, there has been little attention on the effects of environmental changes on vegetables that are necessary and key nutrition component for human beings, but quite sensitive to these climatic changes. Therefore, we reviewed the main changes of environmental factors under the current scenario as well as the impacts of these factors on the physiological responses and nutritional alteration of vegetables and the key findings based on modelling. The gaps between cereal crops and vegetables were pinpointed and the actions to take in the future were proposed. The review will enhance our understanding concerning the effects of environmental changes on production, physiological responses, nutrition, and modelling of vegetable plants.

4.
Hortic Res ; 11(4): uhae013, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585015

RESUMO

Flowering is one of the most important biological phenomena in the plant kingdom, which not only has important ecological significance, but also has substantial horticultural ornamental value. In this study, we undertook an exhaustive review of the advancements in our understanding of plant flowering genes. We delved into the identification and conducted comparative analyses of flowering genes across virtually all sequenced angiosperm plant genomes. Furthermore, we established an extensive angiosperm flowering atlas, encompassing a staggering 183 720 genes across eight pathways, along with 10 155 ABCDE mode genes, which play a pivotal role in plant flowering regulation. Through the examination of expression patterns, we unveiled the specificities of these flowering genes. An interaction network between flowering genes of the ABCDE model and their corresponding upstream genes offered a blueprint for comprehending their regulatory mechanisms. Moreover, we predicted the miRNA and target genes linked to the flowering processes of each species. To culminate our efforts, we have built a user-friendly web interface, named the Plant Flowering-time Gene Database (PFGD), accessible at http://pfgd.bio2db.com/. We firmly believe that this database will serve as a cornerstone in the global research community, facilitating the in-depth exploration of flowering genes in the plant kingdom. In summation, this pioneering endeavor represents the first comprehensive collection and comparative analysis of flowering genes in plants, offering valuable resources for the study of plant flowering genetics.

5.
Mol Hortic ; 4(1): 13, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589963

RESUMO

The auxin response factor (ARF) and auxin/indole-3-acetic acid (Aux/IAA) family of genes are central components of the auxin signaling pathway and play essential roles in plant growth and development. Their large-scale analysis and evolutionary trajectory of origin are currently not known. Here, we identified the corresponding ARF and Aux/IAA family members and performed a large-scale analysis by scanning 406 plant genomes. The results showed that the ARF and Aux/IAA gene families originated from charophytes. The ARF family sequences were more conserved than the Aux/IAA family sequences. Dispersed duplications were the common expansion mode of ARF and Aux/IAA families in bryophytes, ferns, and gymnosperms; however, whole-genome duplication was the common expansion mode of the ARF and Aux/IAA families in basal angiosperms, magnoliids, monocots, and dicots. Expression and regulatory network analyses revealed that the Arabidopsis thaliana ARF and Aux/IAA families responded to multiple hormone, biotic, and abiotic stresses. The APETALA2 and serum response factor-transcription factor gene families were commonly enriched in the upstream and downstream genes of the ARF and Aux/IAA gene families. Our study provides a comprehensive overview of the evolutionary trajectories, structural functions, expansion mechanisms, expression patterns, and regulatory networks of these two gene families.

6.
Plants (Basel) ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38592830

RESUMO

Plants' response to single environmental changes can be highly distinct from the response to multiple changes. The effects of a single environmental factor on wheat growth have been well documented. However, the interactive influences of multiple factors on different wheat genotypes need further investigation. Here, treatments of three important growth factors, namely water regime, temperature, and CO2 concentration ([CO2]), were applied to compare the response of two wheat genotypes with different heat sensitivities. The temperature response curves showed that both genotypes showed more variations at elevated [CO2] (e[CO2]) than ambient [CO2] (a[CO2]) when the plants were treated under different water regimes and temperatures. This corresponded to the results of water use efficiency at the leaf level. At e[CO2], heat-tolerant 'Gladius' showed a higher net photosynthetic rate (Pn), while heat-susceptible 'Paragon' had a lower Pn at reduced water, as compared with full water availability. The temperature optimum for photosynthesis in wheat was increased when the growth temperature was high, while the leaf carbon/nitrogen was increased via a reduced water regime. Generally, water regime, temperature and [CO2] have significant interactive effects on both wheat genotypes. Two wheat genotypes showed different physiological responses to different combinations of environmental factors. Our investigation concerning the interactions of multi-environmental factors on wheat will benefit the future wheat climate-response study.

7.
Physiol Plant ; 176(2): e14267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566236

RESUMO

High-temperature stress (HS) is a major abiotic stress that affects the yield and quality of plants. Cathepsin B-like protease 2 (CathB2) has been reported to play a role in developmental processes and stress response, but its involvement in HS response has not been identified. Here, overexpression, virus-induced gene silencing (VIGS)and RNA-sequencing analysis were performed to uncover the functional characteristics of SlCathB2-1 and SlCathB2-2 genes for HS response in tomato. The results showed that overexpression of SlCathB2-1 and SlCathB2-2 resulted in reduced heat tolerance of tomato to HS while silencing the genes resulted in enhanced heat tolerance. RNA-sequencing analysis revealed that the heat shock proteins (HSPs) exhibited higher expression in WT than in SlCathB2-1 and SlCathB2-2 overexpression lines. Furthermore, the possible molecular regulation mechanism underlying SlCathB2-1 and SlCathB2-2-mediated response to HS was investigated. We found that SlCathB2-1 and SlCathB2-2 negatively regulated antioxidant capacity by regulating a set of genes involved in antioxidant defence and reactive oxygen species (ROS) signal transduction. We also demonstrated that SlCathB2-1 and SlCathB2-2 positively regulated ER-stress-induced PCD (ERSID) by regulating unfolded protein response (UPR) gene expression. Furthermore, SlCathB2-1 and SlCathB2-2 interacting with proteasome subunit beta type-4 (PBA4) was identified in the ERSID pathway using yeast two-hybrid (Y2H) analysis and bimolecular fluorescence complementation (BiFC) screening. Overall, the study identified both SlCathB2-1 and SlCathB2-2 as new negative regulators to HS and presented a new HS response pathway. This provided the foundation for the construction of heat-tolerant molecular mechanisms and breeding strategies aiming to improve the thermotolerance of tomato plants.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Antioxidantes/metabolismo , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA , Resposta ao Choque Térmico/genética , Regulação da Expressão Gênica de Plantas
8.
BMJ Open ; 14(4): e074493, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631826

RESUMO

INTRODUCTION: Pre-eclampsia (PE) affects about 5% of Chinese pregnant women and is a major cause of maternal and perinatal morbidity and mortality. The first trimester screening model developed by the Fetal Medicine Foundation, which uses the Bayes theorem to combine maternal characteristics and medical history together with measurements of biomarkers, has been proven to be effective and has superior screening performance to that of the traditional risk factor-based approach for the prediction of PE. Prophylactic use of low-dose aspirin in women at risk for PE has resulted in a lower incidence of preterm-PE. However, there is no consensus on the preferred aspirin dosage for the prevention of preterm-PE. Evidence has also suggested that metformin has the potential benefit in preventing PE in pregnant women who are at high risk of the disorder. METHOD AND ANALYSIS: We present a protocol (V.2.0, date 17 March 2022) for the AVERT trial, which is a multicentre, double-blinded, 3-arm randomised controlled trial (RCT) that uses an effective PE screening programme to explore the optimal dosage of aspirin and the role of metformin for the prevention of PE among high-risk pregnant women in China. We intend to recruit 66 000 singleton pregnancies without treatment of low-dose aspirin and metformin at 11-13 weeks' gestation and all eligible women attending for their first trimester routine scan will be invited to undergo screening for preterm-PE by the combination of maternal factors, mean arterial pressure and placental growth factor. Women found to be at high risk of developing preterm-PE will be invited to take part in the RCT. This study will compare the incidence of preterm-PE with delivery at <37 weeks' gestation, as the primary outcome, of three different interventional groups: (1) aspirin 75 mg daily, (2) aspirin 150 mg daily and (3) aspirin 75 mg with metformin 1.5 g daily. 957 participants per treatment group are required to detect a significant difference of 59% in the reduction of the incidence of preterm-PE with 80% power and type I error of 5%. Pregnancy and neonatal outcomes will be collected and analysed. ETHICS AND DISSEMINATION: Ethical approval for the study was obtained from the Joint Chinese University of Hong Kong-New Territories East Cluster Clinical Research Ethics Committee (CREC Ref. No. 2021.406) in Hong Kong and the Ethics Committee of each participating hospital in Mainland China. The study is registered at ClinicalTrials.gov. The results of the AVERT trial will be disseminated at international academic conferences and published in high-impact factor journals. TRIAL REGISTRATION NUMBER: NCT05580523.


Assuntos
Metformina , Pré-Eclâmpsia , Gravidez , Feminino , Recém-Nascido , Humanos , Aspirina , Pré-Eclâmpsia/epidemiologia , Método Duplo-Cego , China , Biomarcadores , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
9.
Antioxidants (Basel) ; 13(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38671895

RESUMO

Under natural conditions, abiotic stresses that limit plant growth and development tend to occur simultaneously, rather than individually. Due to global warming and climate change, the frequency and intensity of heat and salt stresses are becoming more frequent. Our aim is to determine the response mechanisms of tomato to different intensities of combined heat and salt stresses. The physiological and morphological responses and photosynthesis/reactive oxygen species (ROS)-related genes of tomato plants were compared under a control, heat stress, salt stress (50/100/200/400 mM NaCl), and a combination of salt and heat stresses. The stomatal conductance (gs) of tomato leaves significantly increased at a heat + 50 mM NaCl treatment on day 4, but significantly decreased at heat + 100/200/400 mM NaCl treatments, compared with the control on days 4 and 8. The O2·- production rate of tomato plants was significantly higher at heat + 100/200/400 mM NaCl than the control, which showed no significant difference between heat + 50 mM NaCl treatment and the control on days 4 and 8. Ascorbate peroxidase 2 was significantly upregulated by heat + 100/200/400 mM NaCl treatment as compared with heat + 50 mM NaCl treatment on days 4 and 8. This study demonstrated that the dominant effect ratio of combined heat and salt stress on tomato plants can shift from heat to salt, when the intensity of salt stress increased from 50 mM to 100 mM or above. This study provides important information for tomato tolerance improvement at combined heat and salt stresses.

10.
Aging (Albany NY) ; 16(7): 6478-6487, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579176

RESUMO

Stigmasterol is a common dietary phytosterol with high nutritional value and physiological activity. In this study, we evaluated the effects of stigmasterol on inflammatory cytokines and the TGF-ß1/Smad2 and IL-17A signaling pathway in an ovalbumin (OVA)-induced asthma mouse model. Stigmasterol treatment improved airway remodeling. In addition, it significantly attenuated the symptoms of asthma attacks, reduced the number of macrophages, lymphocytes, neutrophils, and eosinophils in BALF and inflammatory cytokines, including IL-1ß, IL-5, IL-6, and IL-13. It further decreased the level of IL-17A in BALF, serum and spleen. Spleen single-cell suspension analysis via flow cytometry showed that IL-17A level was consistent with the results obtained in BALF, serum and spleen. Stigmasterol decreased the protein expression levels of TGF-ß, p-Smad2 and IL-17A in the spleen, by increasing the protein expression level of IL-10. After 24 h of co-culture of TGF-ß, IL-6 and stigmasterol, the level of IL-17 in CD4+ T cell supernatant was lower relative to levels in the group without stigmasterol. Meanwhile, stigmasterol treatment attenuated the expression level of TGF- ß, p-Smad2 and IL-17A proteins in CD4+ T cells and enhanced the expression levels of IL-10 protein. These data suggested that stigmasterol inhibited the TGF-ß1/Smad2 and IL-17A signaling pathway to achieve anti-asthmatic effects in the OVA-induced asthma mouse model. Collectively, the results of this study are that stigmasterol has achieved preliminary efficacy in the non-clinical laboratory, further studies are needed to consider the clinical application of stigmasterol.


Assuntos
Asma , Interleucina-17 , Ovalbumina , Transdução de Sinais , Proteína Smad2 , Estigmasterol , Fator de Crescimento Transformador beta1 , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Asma/induzido quimicamente , Asma/imunologia , Proteína Smad2/metabolismo , Camundongos , Fator de Crescimento Transformador beta1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Interleucina-17/metabolismo , Estigmasterol/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Feminino , Remodelação das Vias Aéreas/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/tratamento farmacológico
11.
Parasitol Res ; 123(4): 189, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639821

RESUMO

Toxocara canis is a parasitic zoonose that is distributed worldwide and is one of the two pathogens causing toxocariasis. After infection, it causes serious public health and safety problems, which pose significant veterinary and medical challenges. To better understand the regulatory effects of T. canis infection on the host immune cells, murine macrophages (RAW264.7) were incubated with recombinant T. canis C-type lectin 4 (rTc-CTL-4) protein in vitro. The quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to analyze the nucleotide-binding oligomerization domain-containing protein 1/2 (NOD1/2), receptor-interacting protein 2 (RIP2), nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) on mRNA level and protein expression level in macrophages. Our results indicated that 10 µg/mL rTc-CTL-4 protein could modulate the expression of NOD1, NOD2, and RIP2 at both the transcriptional and translational levels. The protein translation levels of NF-κB, P-p65, p38, and P-p38 in macrophages were also modulated by rTc-CTL-4 protein. Macrophages were co-incubated with rTc-CTL-4 protein after siRNA silencing of NOD1, NOD2, and RIP2. The expression levels of NF-κB, P-p65, p38, and P-p38 were significantly changed compared with the negative control groups (Neg. Ctrl.). Taken together, rTc-CTL-4 protein seemed to act on NOD1/2-RIP2-NF-κB and MAPK signaling pathways in macrophages and might activate MAPK and NF-κB signaling pathways by regulating NOD1, NOD2, and RIP2. The insights from the above studies could contribute to our understanding of immune recognition and regulatory mechanisms of T. canis infection in the host animals.


Assuntos
NF-kappa B , Toxocara canis , Animais , Camundongos , NF-kappa B/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Toxocara canis/metabolismo , Transdução de Sinais/fisiologia , Macrófagos
12.
Int J Biol Macromol ; 267(Pt 2): 131636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641287

RESUMO

Although bioactive peptides enhancing bone healing have demonstrated effectiveness in treating bone defects, in vivo instability poses a challenge to their clinical application. Currently reported peptide delivery systems do not meet the demands of bone tissue repair regarding stability and peptide release efficacy. Herein, the self-assembling recombinant chimeric protein (Sbp5-2RGD) is developed by genetic engineering with cell adhesion peptide RGD as the targeted peptide and a newly discovered scallop byssal-derived protein Sbp5-2 that can assemble into wet stable films as the structural domain. In vitro studies show that the Sbp5-2RGD film exhibits excellent extensibility and biocompatibility. In vitro and in vivo degradation experiments demonstrate that the film remains stable due to the layer-by-layer degradation mode, resulting in sustained delivery of RGD in situ for up to 4 weeks. Consequently, the film can effectively promote osteogenesis, which accelerates bone defect healing and the implants osseointegration. Cell-level studies further show that the film up-regulates the expression of genes and proteins (ALP, OCN, OSX, OPN, RUNX2, VEGF) associated with osteogenesis and angiogenesis. Overall, this novel protein film represents an intelligent platform for peptide immobilization, protection, and release through its self-assembly, dense structure, and degradation mode, providing a therapeutic strategy for bone repair.


Assuntos
Engenharia Genética , Oligopeptídeos , Animais , Humanos , Camundongos , Sistemas de Liberação de Medicamentos , Engenharia Genética/métodos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Osseointegração/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Pectinidae , Ratos Sprague-Dawley , Masculino , Ratos
13.
Sensors (Basel) ; 24(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38676236

RESUMO

The overall gain of a scintillation detector is temperature-dependent, leading to a drift in the measured gamma energy spectrum with changes in temperature. To mitigate this effect, a temperature drift correction is essential prior to conducting gamma spectrum analysis. In this study, the detector gain ratio is determined by comparing the positions of the same background peak across different spectra. Subsequently, the original spectrum is adjusted accordingly to obtain a gamma spectrum free from temperature drift. Experimental results demonstrate that after implementing this correction, the relative deviation of the 57Co characteristic peak positions in the gamma spectrum measured by the NaI(Tl) detector is reduced from 18.64% to 0.91%. Furthermore, by performing energy calibration beforehand, the characteristic peak position can be utilized for secondary correction, further minimizing temperature drift. Our findings indicate that the relative deviation of the 22Na characteristic peak positions was reduced, respectively, to 0.51% and 0.46% through secondary correction. This approach, which utilizes the background peak for correction, avoids the need for additional radioactivity or circuitry and effectively mitigates peak drift. Overall, this method holds significant implications for enhancing the accuracy of gamma spectrum analysis.

14.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(2): 201-206, 2024 Feb 15.
Artigo em Chinês | MEDLINE | ID: mdl-38436320

RESUMO

Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in children and adolescents, and its etiology and pathogenesis are still unclear. Brain is the organ with the largest oxygen consumption in human body and is easily affected by oxidative imbalance. Oxidative stress has become the key research direction for the pathogenesis of ADHD, but there is still a lack of relevant studies in China. Based on the latest research findings in China and overseas, this article reviews the clinical and experimental studies on oxidative stress in ADHD and explores the association of oxidative stress with neurotransmitter imbalance, neuroinflammation, and cell apoptosis in the pathogenesis of ADHD, so as to provide new research ideas for exploring the pathogenesis of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Adolescente , Criança , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Estresse Oxidativo , Apoptose , Encéfalo , China
15.
Pathol Res Pract ; 255: 155220, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38432050

RESUMO

BACKGROUND: This study investigates the role of IGFBP3-mediated m6A modification in regulating the miR-23a-3p/SMAD5 axis and its impact on fracture healing, aiming to provide insights into potential therapeutic targets. METHODS: Utilizing fracture-related datasets, we identified m6A modification-related mRNA and predicted miR-23a-3p as a regulator of SMAD5. We established a mouse fracture healing model and conducted experiments, including Micro-CT, RT-qPCR, Alizarin Red staining, and Alkaline phosphatase (ALP) staining, to assess gene expression and osteogenic differentiation. RESULTS: IGFBP3 emerged as a crucial player in fracture healing, stabilizing miR-23a-3p through m6A modification, leading to SMAD5 downregulation. This, in turn, inhibited osteogenic differentiation and delayed fracture healing. Inhibition of IGFBP3 partially reversed through SMAD5 inhibition, restoring osteogenic differentiation and fracture healing in vivo. CONCLUSION: The IGFBP3/miR-23a-3p/SMAD5 axis plays a pivotal role in fracture healing, highlighting the relevance of m6A modification. IGFBP3's role in stabilizing miR-23a-3p expression through m6A modification offers a potential therapeutic target for enhancing fracture healing outcomes.


Assuntos
Adenina , Consolidação da Fratura , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Animais , Camundongos , Adenina/análogos & derivados , Diferenciação Celular , Modelos Animais de Doenças , Regulação para Baixo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/fisiologia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo
16.
BMC Oral Health ; 24(1): 375, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519926

RESUMO

BACKGROUND: While observational studies and experimental data suggest a link between oral lichen planus (OLP) and oral cavity cancer (OCC), the causal relationship and the role of inflammatory cytokines remain unclear. METHODS: This study employed a univariable and multivariable Mendelian Randomization (MR) analysis to investigate the causal relationship between OLP and the risk of OCC. Additionally, the potential role of inflammatory cytokines in modulating this association was explored. Instrumental variables were derived from genetic variants associated with OLP (n = 377,277) identified in Finngen R9 datasets, with 41 inflammatory cytokines as potential mediators, and OCC (n = 4,151) as the outcome variable. Analytical methods including Inverse Variance Weighted (IVW), Weighted Median, MR-Egger, and MR-PRESSO were utilized to assess the causal links among OLP, inflammatory cytokines, and OCC risk. Multivariable MR (MVMR) was then applied to quantify the mediating effects of these cytokines in the relationship between OLP and increased OCC risk. RESULTS: MR analysis provided strong evidence of a causal relationship between OLP (OR = 1.417, 95% CI = 1.167-1.721, p < 0.001) and the risk of OCC. Furthermore, two inflammatory cytokines significantly influenced by OLP, IL-13 (OR = 1.088, 95% CI: 1.007-1.175, P = 0.032) and IL-9 (OR = 1.085, 95% CI: 1.005-1.171, P = 0.037), were identified. Subsequent analysis revealed a significant causal association only between IL-13 (OR = 1.408, 95% CI: 1.147-1.727, P = 0.001) and higher OCC risk, establishing it as a potential mediator. Further, MVMR analysis indicated that IL-13 (OR = 1.437, 95% CI = 1.139-1.815, P = 0.002) mediated the relationship between OLP and OCC, accounting for 8.13% of the mediation. CONCLUSION: This study not only elucidates the potential causal relationship between OLP and the risk of OCC but also highlights the pivotal mediating role of IL-13 in this association.


Assuntos
Líquen Plano Bucal , Neoplasias Bucais , Humanos , Citocinas , Interleucina-13/genética , Líquen Plano Bucal/genética , Análise da Randomização Mendeliana , Neoplasias Bucais/genética , Estudo de Associação Genômica Ampla
17.
J Stomatol Oral Maxillofac Surg ; : 101836, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508395

RESUMO

INTRODUCTION: The established association between thyroid disorders (TD) and its two main subtypes-hyperthyroidism and hypothyroidism-and the incidence of oral and oropharyngeal cancer (OCPC) has been substantiated. However, the direct causal relationship and potential intermediary mechanisms linking these conditions have not been clearly defined in prior studies. MATERIAL & METHODS: This study employed univariate Mendelian randomization (MR) analysis to explore those relationship. Instrumental variables from genome-wide association study (GWAS) datasets for TD (n = 218,792), hyperthyroidism (n = 460,499), hypothyroidism (n = 213,990), and OCPC (n = 12,619), along with 41 intermediary inflammatory cytokines (n = 8293), were analyzed. Inverse variance weighting (IVW) method assessed the causal relationships, while summary MR analysis with pQTL datasets from decode and 91 inflammatory cytokines explored the cytokines' roles as biomarkers and therapeutic targets for OCPC. Multivariable MR (MVMR) analysis quantified the mediation effect of these cytokines in the TD-OCPC relationship. RESULTS: UVMR analysis provided strong evidence for a causal relationship between TD (OR = 1.376, 95 % CI = 1.142-1.656, p = 0.001), hyperthyroidism (OR = 1.319, 95 % CI=1.129-1.541, p = 0.001), hypothyroidism (OR = 1.224, 95 % CI = 1.071-1.400, p = 0.003), and the risk of OCPC. CXCL9 was identified as a significant intermediary in mediating the risk of OCPC from TD and its two subtypes (OR = 1.218, 95 % CI = 1.016-1.461, P = 0.033), suggesting its potential as a predictive biomarker for OCPC. MVMR analysis further revealed that CXCL9 mediated 7.94 %, 14.4 %, and 18 % of the effects of TD, hyperthyroidism, and hypothyroidism on OCPC risk, respectively. DISCUSSION: This study not only elucidated the potential causal relationships between TD including its two subtypes and OCPC risk, but also highlighted CXCL9 as a pivotal mediator in this association.

18.
Sci Rep ; 14(1): 5386, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443672

RESUMO

Systemic inflammation and reciprocal organ interactions are associated with the pathophysiology of heart failure with preserved ejection fraction (HFpEF). However, the clinical value, especially the diagnositc prediction power of inflammation and extra-cardiac organ dysfunction for HfpEF is not explored. In this cross-sectional study, 1808 hospitalized patients from January 2014 to June 2022 in ChiHFpEF cohort were totally enrolled according to inclusion and exclusion criteria. A diagnostic model with markers from routine blood test as well as liver and renal dysfunction for HFpEF was developed using data from ChiHFpEF-cohort by logistic regression and assessed by receiver operating characteristic curve (ROC) and Brier score. Then, the model was validated by the tenfold cross-validation and presented as nomogram and a web-based online risk calculator as well. Multivariate and LASSO regression analysis revealed that age, hemoglobin, neutrophil to lymphocyte ratio, AST/ALT ratio, creatinine, uric acid, atrial fibrillation, and pulmonary hypertension were associated with HFpEF. The predictive model exhibited reasonably accurate discrimination (ROC, 0.753, 95% CI 0.732-0.772) and calibration (Brier score was 0.200). Subsequent internal validation showed good discrimination and calibration (AUC = 0.750, Brier score was 0.202). In additoin to participating in pathophysiology of HFpEF, inflammation and multi-organ interactions have diagnostic prediction value for HFpEF. Screening and optimizing biomarkers of inflammation and multi-organ interactions stand for a new field to improve noninvasive diagnostic tool for HFpEF.


Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/diagnóstico , Estudos Transversais , Volume Sistólico , Inflamação , Fígado
19.
Clin Respir J ; 18(3): e13746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529683

RESUMO

OBJECTIVES: The aim of this study is to evaluate the diagnostic value of rapid on-site evaluation (ROSE) combined with computed tomography-guided percutaneous needle biopsy (CT-PNB) or radial endobronchial ultrasound-guided transbronchial lung biopsy (EBUS-TBLB) for pulmonary cryptococcosis (PC). METHODS: Clinical data of 33 patients diagnosed with PC at the Third Affiliated Hospital of Soochow University between February 2018 and June 2023 were retrospectively analysed. Patients were divided into the CT-PNB and EBUS-TBLB groups based on the intervention method, and the diagnostic positivity rate and incidence of complications were compared between the two groups. RESULTS: Compared with the final diagnosis, the positive diagnostic rates of ROSE, histopathology and serum CrAg of all patients were 81.8% (27/33), 72.7% (24/33) and 63.6% (21/33), respectively. The average turnaround times of the three methods were 0.1 (0.1-0.2) h, 96.0 (48.0-120.0) h and 7.8 (4.5-13.6) h, respectively (P < 0.001). The coincidence rate between histopathology and ROSE was 84.8% with a kappa value of 0.574. The positive diagnostic rate for PC was significantly higher in the CT-PNB group than in the EBUS-TBLB group (92.9% vs. 57.9%), and the difference was statistically significant (P < 0.05). Combined with the ROSE results, the positive diagnostic rate in the EBUS-TBLB group increased to 84.2% (16/19). CONCLUSION: ROSE has commendable accuracy and timeliness, and CT-PNB offers further advantages in this regard. ROSE enhances the diagnostic efficiency of EBUS-TBLB for PC and is safe and effective.


Assuntos
Criptococose , Neoplasias Pulmonares , Pneumologia , Humanos , Avaliação Rápida no Local , Estudos Retrospectivos , Broncoscopia/métodos , Biópsia Guiada por Imagem/métodos , Criptococose/diagnóstico , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia
20.
In Vitro Cell Dev Biol Anim ; 60(4): 354-364, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38530594

RESUMO

Peroxiredoxin 6 (PRDX6) is a protective biomarker associated with ferroptosis in heart failure (HF). This study investigated the specific mechanism of PRDX6 on doxorubicin (DOX)-induced ferroptosis in HF. Wistar rats and H9c2 cells were induced by DOX to construct HF models. Pathological changes and collagen deposition in myocardium were investigated using HE and Masson staining. PRDX6 levels, indexes of ferroptosis, and JAK2/STAT1 pathway were detected by qRT-PCR, Western blot, and biochemical kits. DOX promoted heart weight/body weight, increased inflammation and collagen deposition, increased PTGS2 and MDA levels, and decreased SLC7A11, GPX4, FTH1, and PRDX6 levels in myocardium. PRDX6 overexpression reduced PTGS2, MDA, Fe2+, and LDH levels, inhibited JAK2 and STAT1 phosphorylation, and increased SLC7A11, GPX4, and FTH1 levels in DOX-added H9c2 cells. RO8191 and erastin reversed the inhibition of PRDX6 on ferroptosis through the JAK2/STAT1 pathway. Overall, PRDX6 alleviated HF by inhibiting DOX-induced ferroptosis through the JAK2/STAT1 pathway inactivation.


Assuntos
Doxorrubicina , Ferroptose , Insuficiência Cardíaca , Janus Quinase 2 , Peroxirredoxina VI , Ratos Wistar , Fator de Transcrição STAT1 , Transdução de Sinais , Animais , Doxorrubicina/farmacologia , Ferroptose/efeitos dos fármacos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/tratamento farmacológico , Fator de Transcrição STAT1/metabolismo , Janus Quinase 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Peroxirredoxina VI/metabolismo , Masculino , Linhagem Celular , Miocárdio/metabolismo , Miocárdio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA