Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(12): e32819, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975110

RESUMO

Purpose: To evaluate the performance of calcium quantification on photon-counting detector CT (PCD-CT) with high-pitch at low radiation doses compared to third-generation dual-source energy-integrating detector CT (EID-CT). Materials and methods: The phantom with three calcium inserts (50, 100, and 300 mg of calcium per milliliter), with and without the elliptical outer layer, was evaluated using high-pitch (3.2) and standard pitch (0.8) on PCD-CT, and standard pitch on EID-CT. Scans were performed with different tube voltages (PCD-CT: 120 and 140 kilo-voltage peak [kVp]; EID-CT: 70/Sn150 and 100/Sn150 kVp) and four radiation doses (1, 3, 5, and, 10 milli-Gray [mGy]). Utilizing the true calcium concentrations (CCtrue) of the phantom as the gold standard references, regression equations for each kVp setting were formulated to convert CT attenuations (CaCT) into measured calcium concentrations (CCm). The correlation analysis between CaCT and CCtrue was performed. The percentage absolute bias (PAB) was calculated from the differences between CCm and CCtrue and used to analyze the effects of scanning parameters on calcium quantification accuracy. Results: A strong correlation was found between CaCT and CCtrue on PCD-CT (r > 0.99) and EID-CT (r > 0.98). For high- and standard-pitch scans on PCD-CT, the accuracy of calcium quantification is comparable (p = 0.615): the median (interquartile range [IQR]) of PAB was 5.59% (2.79%-8.31%) and 4.87 % (2.62%-8.01%), respectively. The PAB median (IQR) was 7.43% (3.77%-11.75%) for EID-CT. The calcium quantification accuracy of PCD-CT is superior to EID-CT at the large phantom (5.46% [2.68%-9.55%] versus 9.01% [6.22%-12.74%]), and at the radiation dose of 1 mGy (4.43% [2.08%-8.59%] versus 13.89% [8.93%-23.09%]) and 3 mGy (4.61% [2.75%-6.51%] versus 9.97% [5.17%-14.41%]), all p < 0.001. Conclusions: Calcium quantification using low-dose PCD-CT with high-pitch scanning is feasible and accurate, and superior to EID-CT.

2.
Transl Oncol ; 45: 101993, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38743988

RESUMO

BACKGROUND: To construct and validate the CT-based radiomics model for predicting the tyrosine kinase inhibitors (TKIs) effects in osteosarcoma (OS) patients with pulmonary metastasis. METHODS: OS patients with pulmonary metastasis treated with TKIs were randomly separated into training and testing cohorts (2:1 ratio). Radiomic features were extracted from the baseline unenhanced chest CT images. The random survival forest (RSF) and Kaplan-Meier survival analyses were performed to construct and evaluate radiomics signatures (R-model-derived). The univariant and multivariant Cox regression analyses were conducted to establish clinical (C-model) and combined models (RC-model). The discrimination abilities, goodness of fit and clinical benefits of the three models were assessed and validated in both training and testing cohorts. RESULTS: A total of 90 patients, 57 men and 33 women, with a mean age of 18 years and median progression-free survival (PFS) of 7.2 months, were enrolled. The R-model was developed with nine radiomic features and demonstrated significant predictive and prognostic values. In both training and testing cohorts, the time-dependent area under the receiver operating characteristic curves (AUC) of the R-model and RC-model exhibited obvious superiority over C-model. The calibration and decision curve analysis (DCA) curves indicated that the accuracy of the R-model was comparable to RC-model, which exhibited significantly better performance than C-model. CONCLUSIONS: The R-model showed promising potential as a predictor for TKI responses in OS patients with pulmonary metastasis. It can potentially identify pulmonary metastatic OS patients most likely to benefit from TKIs treatment and help guide optimized clinical decisions.

3.
Eur Radiol ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676731

RESUMO

OBJECTIVES: This study aimed to compare the image quality and diagnostic performance of standard-resolution (SR) and ultra-high-resolution (UHR) coronary CT angiography (CCTA) based on photon-counting detector CT (PCD-CT) of coronary stents and explore the best reconstruction kernel for stent imaging. METHODS: From July 2023 to September 2023, patients were enrolled to undergo CCTA using a dual-source PCD-CT system after coronary angioplasty with stent placement. SR images with a slice thickness/increment of 0.6/0.4 mm were reconstructed using a vascular kernel (Bv48), while UHR images with a slice thickness/increment of 0.2/0.2 mm were reconstructed using vascular kernels of six sharpness levels (Bv48, Bv56, Bv60, Bv64, Bv72, and Bv76). The in-stent lumen diameters were evaluated. Subjective image quality was also evaluated by a 5-point Likert scale. Invasive coronary angiography was conducted in 12 patients (25 stents). RESULTS: Sixty-nine patients (68.0 [61.0, 73.0] years, 46 males) with 131 stents were included. All UHR images had significantly larger in-stent lumen diameter than SR images (p < 0.001). Specifically, UHR-Bv72 and UHR-Bv76 for in-stent lumen diameter (2.17 [1.93, 2.63] mm versus 2.20 [1.93, 2.59] mm) ranked the two best kernels. The subjective analysis demonstrated that UHR-Bv72 images had the most pronounced effect on reducing blooming artifacts, showcasing in-stent lumen and stent demonstration, and diagnostic confidence (p < 0.001). Furthermore, SR and UHR-Bv72 images showed a diagnostic accuracy of 78.3% (95% confidence interval [CI]: 56.3%-92.5%) and 88.0% (95%CI: 68.8%-97.5%), respectively. CONCLUSION: UHR CCTA by PCD-CT leads to significantly improved visualization and diagnostic performance of coronary stents, and Bv72 is the optimal reconstruction kernel showing the stent struts and in-stent lumen. CLINICAL RELEVANCE STATEMENT: The significantly improved visualization of coronary stents using ultra-high resolution CCTA could increase the diagnostic accuracy for in-stent restenosis and avoid unnecessary invasive quantitative coronary angiography, thus changing the clinical management for patients after percutaneous coronary intervention. KEY POINTS: Coronary stent imaging is challenging with energy-integrating detector CT due to "blooming artifacts." UHR images using a PCD-CT enhanced coronary stent visualization. UHR coronary stent imaging demonstrated improved diagnostic accuracy in clinical settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA