Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 865: 161239, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36587665

RESUMO

Nowadays, the emission source and formation mechanism of fine particulate nitrate (pNO3-) in China are mired in controversy. In this study, the stable nitrogen isotope (δ15N-NO3-) and triple oxygen isotope (Δ17O-NO3-) were determined for the pNO3- samples collected at three heights under different atmospheric oxidation capacity (AOC) (Ox = O3 + NO2: 107 ± 29 µg m-3 at ground, 102 ± 28 µg m-3 at 118 m, 122 ± 23 µg m-3 at 488 m) conditions during the sampling period based on the Canton Tower, Guangzhou, China. The Bayesian mixing model showed that coal combustion was the largest contributor to pNO3- in this city, followed by biomass burning, vehicle exhaust, and soil emission. Interestingly, we found that vertical NOx and pNO3- concentrations displayed an opposite pattern owing to the different formation mechanisms among heights. The average contributions of oxidation pathways for (NO2 + OH, P1), (NO3 + DMS/HC, P2), and (N2O5 + H2O, P3) were 61 %, 12 %, and 27 % at the ground, respectively, and these values would vary greatly among heights. These results implied that both AOC and NOx loading played an important role in pNO3- production. The pNO3- displayed a positive correlation with NOx (r = 0.95) with an enhanced contribution of the P1 pathway under the relatively high AOC condition. However, pNO3- has a negative correlation with NOx (r = -0.99) with a rise of heterogeneous reaction (P2 and P3) under the relatively low AOC condition. Therefore, the current emission control strategy for air pollution in China needs to consider the AOC conditions among regions to effectively mitigate particulate air pollution.

2.
J Environ Sci (China) ; 127: 251-263, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522057

RESUMO

Nitrous acid (HONO) is an important source of hydrogen oxides (HOx), which affects air quality, the atmospheric oxidation capacity, and human health. Here, we present ambient measurements of the HONO concentrations in Zhuhai, a coastal city in Southern China, from February 7 to March 15, 2021. The campaign was classified into two periods during (P1) and after (P2) the Spring Festival holidays. The average HONO mixing ratio during P2 (1.19 ± 0.85 ppbv) was much higher than that during P1 (0.24 ± 0.18 ppbv), likely due to the contribution of homogeneous HONO formation. During nighttime, the heterogeneous conversion rate during P2 (0.0089/hr) was considerably higher than that during P1 (0.0057/hr), suggesting a higher heterogeneous NO2 conversion potential. However, the heterogeneous NO2 conversion was the dominant way during P1 with a high percentage of 88%, while comparable ratios of heterogeneous and homogeneous formation were found (54% vs. 46%) during P2, indicating that the homogeneous formation was also important during P2. During daytime, homogeneous reaction was the major known pathway, with a contribution of 16% during P1 and 27% during P2, leaving large unknown HONO sources which reasonably correlated with the photo-enhanced NO2 conversion. Two case scenarios were additionally explored, showing that there might be a primary emission source during one scenario (February 17-18) and vehicle emissions might be the major unknown HONO source for another scenario (March 3-5). The results suggest that large unknown daytime sources still exist which need more future ambient and laboratory studies.


Assuntos
Poluição do Ar , Férias e Feriados , Humanos , Dióxido de Nitrogênio , Ácido Nitroso/análise , Cidades , China
3.
Environ Pollut ; 316(Pt 1): 120539, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328278

RESUMO

Marine atmospheric aerosols impact the global climate and biogeochemical cycles. However, how the composition, sources, and aging of these aerosols affect the above processes has not been thoroughly studied. Here, we conducted ship-based measurements in the northern South China Sea to investigate the chemical composition and aging of aerosols from various sources during the summer of 2019. Separate measurements were conducted at the bow (marine environment) and stern (cooking, smoking, and engine exhaust) of the ship. Source apportionment of organic aerosols (OAs) was conducted using positive matrix factorization (PMF) and trajectory models. The results showed that ship exhaust and coastal submicron particles were composed of comparable sulfate and organic fractions (both approximately 43%), distinct from the sulfate-dominated particles in the marine atmosphere (52-77%). PMF using the multilinear engine-2 solver identified five factors for the stern sampling period: hydrocarbon-like OA (HOA-I, 9%), slightly oxidized HOA (HOA-II, 25%), cooking OA (COA, 13%), cigarette smoke OA (CSOA, 4%), and low-volatility oxygenated OA (LV-OOA, 49%). The primary OAs (HOA-I/II + COA + CSOA), derived mostly from direct ship-related emissions, contributed to approximately half of the OAs, whereas the contribution from the highly aged marine atmosphere was only 20%. Notably, certain living-related emissions (i.e., COA and CSOA), which were often neglected in previous studies, might represent a considerable contribution to OA emissions from the ship. Four factors were identified for the bow sampling periods: HOA (13%), biomass burning OA (BBOA, 9%), semi-volatile OOA (7%), and LV-OOA (71%). The BBOAs from the Indo-China and Malay peninsulas were aged, converted to secondary organic aerosols (SOAs) during transport, and influenced by the combined photo-oxidation and liquid-phase reactions, indicating a substantial impact of BB on SOA formation. Our study highlights the influence of ship and inland emissions and their aging during transport on marine atmospheric aerosols.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera , China , Monitoramento Ambiental/métodos , Material Particulado/análise , Navios , Sulfatos/análise , Emissões de Veículos/análise
4.
Sci Total Environ ; 856(Pt 1): 158895, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36130630

RESUMO

Phenolic compounds (PhCs) are crucial atmospheric pollutants typically emitted by biomass burning and receive particular concerns considering their toxicity, light-absorbing properties, and involvement in secondary organic aerosol (SOA) formation. A comprehensive understanding of the transformation mechanisms on chemical reactions in atmospheric waters (i.e., cloud/fog droplets and aerosol liquid water) is essential to predict more precisely the atmospheric fate and environmental impacts of PhCs. Laboratory studies play a core role in providing the fundamental knowledge of aqueous-phase chemical transformations in the atmosphere. This article critically reviews recent laboratory advances in SOA formation from the aqueous-phase reactions of PhCs. It focuses primarily on the aqueous oxidation of PhCs driven by two atmospheric reactive species: OH radicals and triplet excited state organics, including the important chemical kinetics and mechanisms. The effects of inorganic components (i.e., nitrate and nitrite) and transition metal ions (i.e., soluble iron) are highlighted on the aqueous-phase transformation of PhCs and on the properties and formation mechanisms of SOA. The review is concluded with the current knowledge gaps and future perspectives for a better understanding of the atmospheric transformation and SOA formation potential of PhCs.


Assuntos
Atmosfera , Compostos Orgânicos , Aerossóis/química , Atmosfera/química , Compostos Orgânicos/química , Água/química , Fenóis
5.
Sci Total Environ ; 848: 157750, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35926604

RESUMO

Ammonia (NH3) is the most prevalent alkaline gas in the atmosphere and plays a critical role in air pollution and public health. However, scientific debate remains over whether agricultural emissions (e.g., livestock and fertilizer application) dominate NH3 in urban atmosphere in China, which is one of the largest NH3 emitters in the world. In this study, we first simultaneously collected the fine atmospheric particles (PM2.5) at two heights (ground and 488 m) using the atmospheric observatories in Canton Tower, Guangzhou city, China for the measurements of stable nitrogen isotope composition in ammonium (δ15N-NH4+). Our results showed that the average δ15N-NH4+ value at the ground and the 488 m observatory were 16.9 ‰ and 3.8 ‰, respectively, implying that NH4+ aerosols between the two heights probably have different sources. Moreover, we found that the δ15N-NH4+ value would sharply decrease to -16.7 ‰ when the air masses came from western Guangzhou, where the urbanization is limited compared to other surrounding areas. The Bayesian mixing model indicated that NH4+ aerosol at the ground observatory was mainly derived from non-agricultural activities (76 %, e.g., vehicular exhaust), with the rest from agricultural sources (24 %). As for the 488 m observatory, the contribution of non-agricultural sources was 53 %, which is lower than the ground observatory. This is expected as the lower air receives more impacts from the local urban emission. However, the current "bottom-up" emission inventory illustrates that only ~20 % NH3 in Guangzhou is associated with non-agricultural emissions, which is significantly lower than our δ15N-based results. Overall, our findings strongly imply that non-agricultural sources dominate the urban NH3 in Guangzhou or maybe in adjacent cities of the Pearl River Delta region as well, suggesting that the emission inventory of NH3 in this region probably is urgently needed to be revisited in future studies.


Assuntos
Poluentes Atmosféricos , Compostos de Amônio , Aerossóis/análise , Poluentes Atmosféricos/análise , Amônia/análise , Compostos de Amônio/análise , Teorema de Bayes , China , Cidades , Monitoramento Ambiental , Fertilizantes , Isótopos de Nitrogênio/análise , Material Particulado/análise
6.
Environ Pollut ; 294: 118638, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890747

RESUMO

Black carbon (BC) aerosol negatively affects air quality and contributes to climate warming globally. However, little is known about the relative contributions of different source control measures to BC reduction owing to the lack of powerful source-diagnostic tools. We combine the fingerprints of dual-carbon isotope using an optimized Bayesian Markov chain Monte Carlo (MCMC) scheme and for the first time to study the key sources of BC in megacity Guangzhou of the Pearl River Delta (PRD) region, China in 2018 autumn season. The MCMC model-derived source apportionment of BC shows that the dominant contributor is petroleum combustion (39%), followed by coal combustion (34%) and biomass burning (27%). It should be noted that the BC source pattern is highly sensitive to the variations of air masses transported with an enhanced contribution of fossil source from the eastern area, suggesting the important impact of regional atmospheric transportation on the BC source profile in the PRD region. Also, we further found that fossil fuel combustion BC contributed 84% to the total BC reduction during 2013-2018. The response of PM2.5 concentration to the 14C-derived BC source apportionment is successfully fitted (r = 0.90) and the results predicted that it would take ∼6 years to reach the WHO PM2.5 guideline value (10 µg m-3) for the PRD region if the emission control measures keep same as they are at present. Taken together, our findings suggest that dual-carbon isotope is a powerful tool in constraining the source apportionment of BC for the evaluations of air pollution control and carbon emission measures.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Teorema de Bayes , Carbono/análise , Isótopos de Carbono , China , Monitoramento Ambiental , Estações do Ano
7.
Environ Pollut ; 289: 117948, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426195

RESUMO

Marine atmospheric aerosols play important roles in the global radiation balance and climate change. Hence, measuring physiochemical aerosol properties is essential to better understand their formation, aging processes, and source origins. However, high temporal resolution measurements of submicron particles are currently scarce in the northern South China Sea (SCS). In this study, we conducted a ship-based cruise campaign with a scanning mobility particle sizer and an online time of flight aerosol chemical speciation monitor to measure the particle number size distribution (PNSD) and the chemical composition of submicron particles over the northern SCS during summer 2018. The mean concentration of non-refractory submicron particulate matter (NR-PM1) was generally 9.11 ± 4.86 µg m-3; sulfate was the most abundant component, followed by organics, ammonium, nitrate, and chloride. Positive matrix factorization (PMF) analysis was applied to the PNSD (size PMF) and organic aerosols (OA PMF) and further investigated the source apportionment of the submicron particles. The size PMF identified four factors, including ship exhaust, ship influencing marine primary, continent affected marine secondary, and mixed accumulation aerosols. The most abundant particles in the number concentration were associated with ship emissions, which accounted for approximately 44 %. The submicron organic aerosols were highly oxidized and composed of low-volatility oxygenated OA (LV-OOA, 68 %), semi-volatile OOA (SV-OOA, 21 %), and hydrocarbon-like OA (HOA, 11 %). The backward trajectory of air masses showed that the northern SCS was most frequently (64.7 %) influenced by air masses from the Indo-Chinese Peninsula (ICP) during the campaign, implying that pollutants from ICP have a significant impact on the atmosphere of the northern SCS during summer. Thus, in situ ship-based cruise measurements can provide valuable data on the physiochemical characteristics of marine atmospheric aerosols to better understand their source origins.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Nitratos , Material Particulado/análise
8.
Sci Total Environ ; 793: 148176, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175600

RESUMO

Capturing the secondary organic aerosol (SOA) concentration using the chemical transport model is difficult due to a large knowledge gap of its formation mechanism. Previous studies demonstrated the uptake of dicarbonyls and semivolatile process of primary organic aerosol (POA) emissions are the significant sources of SOA. However, the uptake coefficients of dicarbonyls have large uncertainties and the SOA from the semivolatile process of POA emission remains unclear. We applied the revised reactive uptake parameterization, with "salting effects" for dicarbonyls, and updated approaches for POA to the Community Multiscale Air Quality Modeling System (CMAQ) simulations for October 2014 to study their impacts on modeling the SOA formation over eastern China. We introduce a method of quantifying crystalized or deliquescent aerosols to further improve the parameterization. The revised glyoxal uptake coefficients results in higher glyoxal SOA in the Beijing-Tianjin-Hebei region, where is typically under low relative humidity (RH) and high aerosol pH conditions. It gives lower glyoxal SOA in the Pearl River Delta region, where is typically under high RH and low pH conditions. The updated parameterization gives negligible methylglyoxal SOA due to the low uptake coefficients. The implementation of semivolatile process of POA and the approach for potential SOA from combustion sources will largely decrease the predicted POA and increase the modeled SOA concentrations over eastern China. The increased SOA from POA emissions could improve the model performance for organic carbon and SOA. It slightly improves the performance in PM2.5 modeling by compensating the reduction of modeled POA. This study indicates the mixed impact of a parameterization considering "salting effects" on modeling the dicarbonyls SOA in key regions of eastern China. It also demonstrates the improved performance by implementing the POA approaches in aerosol modeling using CMAQ. Meanwhile, the uncertainty in the revised reactive uptake parameterization and POA approaches is discussed.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Carbono/análise , Modelos Químicos
9.
Environ Pollut ; 285: 117185, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33957507

RESUMO

Low-molecular-weight dicarboxylic acids, which are important components of secondary organic aerosols, have been extensively studied in recent years. Many studies have focused on ground-level observations and literature reports on the vertical distribution of the organic aerosols within the urban boundary layer are limited. In this study, the vertical profiles of dicarboxylic acids and related organic compounds (DCRCs) in PM2.5 were investigated at altitudinal levels (ground level and 488 m above the ground level) at the Canton Tower in Guangzhou, southern China, to elucidate their primary sources and secondary formation processes. The concentrations of DCRCs at ground level were generally higher than those at 488 m. Oxalic acid (C2) was the most abundant species, followed by succinic acid (C4) and malonic acid (C3) at both heights. The higher ratio of DCRCs-bound carbon to organic carbon (i.e., DCRCs-C/OC) at 488 m (4.8 ± 1.2%) relative to that at ground level (2.7 ± 0.5%) indicated a higher degree of aerosol aging at 488 m. The abundance of C2 was increased and the conversion of C4 to C3 was enhanced due to the photochemical oxidation of its homologues during long-range transport periods. The increase in C2 was associated with in-cloud processes during pollution periods. Principal component analysis showed that DCRCs were mainly derived from atmospheric secondary processing and biomass burning was also an important source of long-chain carboxylic acids during autumn in Guangzhou. Our results illustrate that secondary processing and biomass burning play prominent roles in controlling the abundance of DCRCs. Furthermore, DCRCs are affected by air masses from regional areas, oxidation of their precursors via vertical transport and in-cloud processes.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Ácidos Dicarboxílicos/análise , Monitoramento Ambiental , Cetoácidos , Material Particulado/análise , Estações do Ano
10.
Gondwana Res ; 97: 138-144, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35721257

RESUMO

Iron (Fe) in the atmosphere can affect atmospheric chemical processes and human health. When deposited into oceans, it can further influence phytoplankton growth. These roles of Fe fundamentally depend on its concentration and solubility. However, the sources of aerosol Fe and controlling factors of Fe solubility in megacities remain poorly understood. The outbreak of the COVID-19 pandemic causes large changes in human activities, which provides a unique opportunity to answer these key issues. Field observations were conducted before, during, and after the COVID-19 lockdown in Hangzhou, China. Our results show that in the COVID-19 lockdown stage, the concentrations of total Fe (FeT, 75.0 ng m-3) and soluble Fe (FeS, 5.1 ng m-3) in PM2.5 decreased by 78% and 62%, respectively, compared with those (FeT 344.7 ng m-3, FeS 13.5 ng m-3) in the pre-lockdown stage. The sharp reduction (81%) in on-road vehicles was most responsible for the aerosol Fe decrease. Surprisingly, the Fe solubility increased by a factor of 1.9, from 4.2% in the pre-lockdown stage to 7.8% in the COVID-19 lockdown stage. We found that the atmospheric oxidizing capacity was enhanced after lockdown restrictions were implemented, which promoted the formation of more acidic species and further enhanced the dissolution of aerosol Fe.

11.
Chemosphere ; 262: 127842, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32799146

RESUMO

New Particle Formation (NPF) refers to transformation of gaseous precursors in the atmosphere due to nucleation and subsequent growth process through physicochemical interaction. It has generated a lot of interest due to its profound impact on global and regional environment, climate and human health. We reviewed the studies on NPF in three city clusters of China: the North China Plain, the Yangtze River Delta and the Pearl River Delta obtained through experiment simulations (e.g., chamber simulation, flow-tube simulation, etc.), field observations, and numerical simulations. Due to its atmospheric background pollution and strong oxidation capacities resulting in high source rate of precursors, China's atmosphere possesses challenges different from those evaluated in previous studies on cleaning sites and other developing countries. Hence, NPF events can simultaneously exhibit high condensable sink, formation rate and growth rate. In addition, the high intensity of anthropogenic emissions in urban China has led to greater diversity of pollutant species involved in NPF nucleation and subsequent growth, compared to the dominant role of biogenic precursors at cleaning sites. Differences in geographical location and industrial structure also lead to significant distinctions in NPF characteristics of the three city clusters. Consequently, the lack of understanding of nucleation mechanism of complexly polluted background sites makes the global and regional climate models with submodels based on clean background have enormous uncertainty when applied to urban China. The establishment of a mature research ecosystem including field observations, laboratory simulations and numerical simulations is the key to the breakthrough of NPF research in China.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Aerossóis/análise , Atmosfera/química , China , Cidades , Clima , Ecossistema , Poluição Ambiental , Gases , Humanos , Tamanho da Partícula , Material Particulado/análise
12.
Sci Total Environ ; 708: 134932, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31784178

RESUMO

It has increasingly become apparent in recent years that atmospheric elemental carbon (EC) is potentially a more sensitive indicator of human health risks from ambient aerosol exposure compared to particulate mass. However, a comprehensive evaluation of the factors affecting EC exposure is lacking so far. To address this, we performed measurements of size-segregated EC in Guangzhou, China, followed by an estimation of deposition in the human respiratory system. Most ambient EC was in the fine mode suggesting significant cloud processing, and ~40% was deposited in the human respiratory tract, with predominant deposition in the head region (47%), followed by the pulmonary (30%) and tracheobronchial (23%) regions. A significant fraction (36%) of deposited EC were coarse particles indicating the need to consider coarse-mode EC in future health effect studies. Infants and children exhibited greater vulnerability to EC exposure than adults, and the deposition amount varied linearly with breathing rate, a proxy for physical exertion. The nature of breathing was found to constrain EC inhalation significantly, with oronasal breathing associated with lower total deposition and nasal breathing leading to lower deposition in the tracheobronchial and pulmonary regions. Overall, these observations strengthen the need to include EC as an additional air quality indicator.


Assuntos
Sistema Respiratório , Adulto , Aerossóis , Poluentes Atmosféricos , Carbono , Criança , China , Humanos , Lactente , Tamanho da Partícula , Material Particulado , Rios
13.
Sensors (Basel) ; 19(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640133

RESUMO

This manuscript details the application of a profluorescent nitroxide (PFN) for the online quantification of radical concentrations on particulate matter (PM) using an improved Particle Into Nitroxide Quencher (PINQ). A miniature flow-through fluorimeter developed specifically for use with the 9,10-bis(phenylethynyl)anthracene-nitroxide (BPEAnit) probe was integrated into the PINQ, along with automated gas phase corrections through periodic high efficiency particle arrestor (HEPA) filtering. The resulting instrument is capable of unattended sampling and was operated with a minimum time resolution of 2.5 min. Details of the fluorimeter design and examples of data processing are provided, and results from a chamber study of side-stream cigarette smoke and ambient monitoring campaign in Guangzhou, China are presented. Primary cigarette smoke was shown to have both short-lived (t1/2 = 27 min) and long-lived (t1/2 = indefinite) PM-bound reactive oxygen species (ROS) components which had previously only been observed in secondary organic aerosol (SOA).

14.
Huan Jing Ke Xue ; 40(2): 525-531, 2019 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628313

RESUMO

The aerosol particle number size distribution(PNSD) is of great importance in calculating atmospheric radiation and optics. It can effectively supplement the inadequate observation of PNSD using the widely known aerosol mass concentration (PM2.5) measurement to invert PNSD. It would be valuable for research that needs PNSD data, like atmospheric visibility calculation. This paper created a PNSD inversed method based on the statistics and parameterization of the dry aerosol PM2.5 and PNSD dataset from the Guangzhou urban site's simultaneous measurements from November 2014 to January 2015. The inversed results appeared good in the accumulation mode, whereas more differences showed with higher PM2.5 loading. The applicability and stability of this method makes it preferable. It would provide advanced technical support for the visibility calculation and application in PRD.

15.
Chemosphere ; 202: 677-685, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29602100

RESUMO

Aerosol acidity has significant implications for atmospheric processing, and high time-resolution measurements can provide critical insights into those processes. This paper reports diurnal variations of aerosol acidity characterized using an open thermodynamic system in Guangzhou, China. Hourly measurements of PM2.5-associated ionic species and related parameters were carried out during June-September 2013 followed by application of the Extended Aerosol Inorganic Model in open mode to estimate aerosol pH. The model-estimated aerosol pH was 2.4 ±â€¯0.3, and the pH diurnal profile exhibited peaks in the early morning (6 a.m.) and troughs in the afternoon (2 p.m.) that appeared to be constrained by liquid water content (LWC) and free H+. A linear regression model was developed to predict aerosol pH, which performed strongly with 4 variables during daytime (NH4+, Na+, SO42- and RH; R2 = 0.95) and 3 during nighttime (NH4+, SO42- and RH; R2 = 0.91). The effect of aerosol acidity on the partitioning of HNO3, HCl and NH3 was studied based on theoretical considerations and measurement data. The fractions in particulate phase for acidic compounds correlated strongly with pH (R2 = 0.64-0.69) while that for NH3, interestingly, was weak (R2 = 0.17). Analytical expressions were developed to explain these observations and it was concluded that the partitioning of HCl and HNO3 was more sensitive to pH compared to that of NH3. These results are significant in terms of potential atmospheric depletion rates of HCl and HNO3 in the region and stress the need for future studies in this direction.


Assuntos
Ácidos/análise , Aerossóis/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , China , Monitoramento Ambiental/métodos , Temperatura , Termodinâmica
16.
Sci Total Environ ; 572: 634-648, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27549033

RESUMO

Hourly-resolved PM2.5 and PM10-2.5 samples were collected in the industrial city Foshan in the Pearl River Delta region, China. The samples were subsequently analyzed for elemental components and black carbon (BC). A key purpose of the study was to understand the composition of particulate matter (PM) at high-time resolution in a polluted urban atmosphere to identify key components contributing to extreme PM concentration events and examine the diurnal chemical concentration patterns for air quality management purposes. It was found that BC and S concentrations dominated in the fine mode, while elements with mostly crustal and oceanic origins such as Si, Ca, Al and Cl were found in the coarse size fraction. Most of the elements showed strong diurnal variations. S did not show clear diurnal variations, suggesting regional rather than local origin. Based on empirical orthogonal functions (EOF) method, 3 forcing factors were identified contributing to the extreme events of PM2.5 and selected elements, i.e., urban direct emissions, wet deposition and a combination of coarse mode sources. Conditional probability functions (CPF) were performed using wind profiles and elemental concentrations. The CPF results showed that BC and elemental Cl, K, Fe, Cu and Zn in the fine mode were mostly from the northwest, indicating that industrial emissions and combustion were the main sources. For elements in the coarse mode, Si, Al, K, Ca, Fe and Ti showed similar patterns, suggesting same sources such as local soil dust/construction activities. Coarse elemental Cl was mostly from the south and southeast, implying the influence of marine aerosol sources. For other trace elements, we found vanadium (V) in fine PM was mainly from the sources located to the southeast of the measuring site. Combined with CPF results of S and V in fine PM, we concluded shipping emissions were likely an important elemental emission source.


Assuntos
Poluição do Ar/análise , Material Particulado/análise , Material Particulado/química , Aerossóis/análise , China , Cloro/análise , Cidades , Poeira , Monitoramento Ambiental/métodos , Metais/análise , Conceitos Meteorológicos , Fuligem , Vento
17.
J Environ Sci (China) ; 26(1): 205-13, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24649708

RESUMO

Trace metals in PM2.5 were measured at one industrial site and one urban site during September, 2010 in Ji'nan, eastern China. Individual aerosol particles and PM2.5 samples were collected concurrently at both sites. Mass concentrations of eleven trace metals (i.e., Al, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Sr, Ba, and Pb) and one metalloid (i.e., As) were measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The result shows that mass concentrations of PM2.5 (130 microg/m3) and trace metals (4.03 microg/m3) at the industrial site were 1.3 times and 1.7 times higher than those at the urban site, respectively, indicating that industrial activities nearby the city can emit trace metals into the surrounding atmosphere. Fe concentrations were the highest among all the measured trace metals at both sites, with concentrations of 1.04 microg/m 3 at the urban site and 2.41 microg/m3 at the industrial site, respectively. In addition, Pb showed the highest enrichment factors at both sites, suggesting the emissions from anthropogenic activities existed around the city. Correlation coefficient analysis and principal component analysis revealed that Cu, Fe, Mn, Pb, and Zn were originated from vehicular traffic and industrial emissions at both sites; As, Cr, and part of Pb from coal-fired power plant; Ba and Ti from natural soil. Based on the transmission electron microscopy analysis, we found that most of the trace metals were internally mixed with secondary sulfate/organic particles. These internally mixed trace metals in the urban air may have different toxic abilities compared with externally mixed trace metals.


Assuntos
Metais Pesados/análise , Material Particulado/análise , Alumínio/análise , China , Cidades , Metais Pesados/toxicidade , Microscopia Eletrônica de Transmissão , Material Particulado/toxicidade , Análise de Componente Principal
18.
Environ Sci Technol ; 47(16): 9124-31, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23883299

RESUMO

Atmospheric metal-containing particles adversely affect human health because of their physiological toxicity. Mixing state, size, phase, aspect ratio, and sphericity of individual metal-containing particles collected in Hong Kong air in winter are examined through transmission electron microscopy (TEM). Eighteen percent of the sulfate particles have one or more tiny metal inclusions. Size distributions of metal and fly ash particles (or inclusions) with diameters from 15 nm to 2.7 µm show the same peak at 210 nm. The major metal particles were classified as Fe-rich (e.g., hematite), Zn-rich (e.g., zinc sulfate and zinc oxide), Pb-rich (e.g., anglesite), Mn-rich, and As-rich, which were likely emitted from industries and coal-fired power plants at high temperatures in mainland China. Compared to fly ash and S-rich particles, metal particles display a lower sphericity of 0.51 and a higher aspect ratio of 1.47, which means their shapes are poorly defined. The elemental mapping of individual particles reveal that sulfate areas without metal inclusions also contain minor Fe, Mn, or Zn. Therefore, the internal mixing of metals and acidic constituents likely solubilize metals and modify metal inclusion shapes. Solubilization of metals in airborne particles can extend their toxicity into nontoxicity parts in the particles. The structure of the metal-containing particles may provide important information for assessing health effects of fine sulfate and nitrate particles with metal inclusions in urban areas.


Assuntos
Poluentes Atmosféricos/análise , Metais/análise , Aerossóis/análise , Queixo , Ecossistema , Humanos , Tamanho da Partícula , Centrais Elétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA