Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 507: 153886, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39002880

RESUMO

Benzo[a]pyrene (BaP) is associated with the development of lung cancer, but the underlying mechanism has not been completely clarified. Here, we used 10 µM BaP to induce malignant transformation of human bronchial epithelial BEAS-2B cells, named BEAS-2B-T. Results indicated that BaP (6.25, 12.5 and 25 µM) treatment significantly promoted the migration and invasion of BEAS-2B-T cells. Meanwhile, BaP exposure inhibited ferroptosis in BEAS-2B-T, ferroptosis-related indexes Fe2+, malondialdehyde (MDA), lipid peroxidation (LPO) and reactive oxygen species (ROS) decreased significantly. The protein level of ferroptosis-related molecule transferrin receptor (TFRC) decreased significantly, while solute carrier family 7 membrane 11 (SLC7A11), ferritin heavy chain 1 (FTH1) and glutathione peroxidase 4 (GPX4) increased significantly. The intervention of ferroptosis dramatically effected the migration and invasion of BEAS-2B-T induced by BaP. Furthermore, the expression of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) was markedly increased after BaP exposure. YTHDF1 knockdown inhibited BEAS-2B-T migration and invasion by promoting ferroptosis. In the meantime, the contents of Fe2+, MDA, LPO and ROS increased significantly, TFRC was markedly increased, and SLC7A11, FTH1, and GPX4 were markedly decreased. Moreover, overexpression of YTHDF1 promoted BEAS-2B-T migration and invasion by inhibiting ferroptosis. Importantly, knockdown of YTHDF1 promoted ferroptosis and reduced BEAS-2B-T migration and invasion during BaP exposure, and overexpression of YTHDF1 increased migration and invasion of BEAS-2B-T by inhibiting ferroptosis during BaP exposure. RNA immunoprecipitation assays indicated that the binding of YTHDF1 to SLC7A11 and FTH1 markedly increased after YTHDF1 overexpression. Therefore, we concluded that BaP promotes the malignant progression of BEAS-2B-T cells through YTHDF1 upregulating SLC7A11 and FTH1 to inhibit ferroptosis. This study reveals new epigenetic and ferroptosis markers for preventing and treating lung cancer induced by environmental carcinogens.

2.
Environ Pollut ; 359: 124531, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996995

RESUMO

Bisphenol F (BPF) has been extensively utilized in daily life, which brings new hazards to male reproductive health. However, the specific functional mechanism is still unclear. Both cell and animal models were utilized for exploring the role of RNA methylation and ferroptosis and its underlying mechanisms in male reproductive injury induced by BPF. In animal model, BPF severely destroyed the integrity of the blood-testis barrier (BTB) and induced ferroptosis. Furthermore, BPF significantly affected the barrier function of TM4 cells and promoted ferroptosis. Importantly, ChIP assays revealed that BPF inhibited AR transcriptional regulation of FTO and FTO expression was downregulated in TM4 cells. Overexpression of FTO prevented the impairment of BTB by inhibiting ferroptosis in TM4 cells. Mechanistically, FTO could significantly down-regulate the m6A modification level of TfRc and SLC7A11 mRNA through MeRIP experiment. RIP experiments showed that YTHDF1 can bind to TfRc mRNA and promote its translation while YTHDF2 could bind to SLC7A11 mRNA and reduce its mRNA stability. Therefore, our results suggest that FTO plays a key role in BPF induced male reproductive toxicity through YTHDF1-TfRc axis and YTHDF2-SLC7A11 axis and may provide new ideas and methods for the prevention and treatment of male reproductive diseases associated with environmental pollutants.

3.
Mol Neurobiol ; 60(6): 3379-3395, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36854997

RESUMO

Fragile X syndrome (FXS) is one of the most common inherited mental retardation diseases and is caused by the loss of fragile X mental retardation protein (FMRP) expression. The metabotropic glutamate receptor (mGluR) theory of FXS states that enhanced mGluR-dependent long-term depression (LTD) due to FMRP loss is involved in aberrant synaptic plasticity and autistic-like behaviors, but little is known about the underlying molecular mechanism. Here, we found that only hippocampal mGluR-LTD was exaggerated in adolescent Fmr1 KO mice, while N-methyl-D-aspartate receptor (NMDAR)-LTD was intact in mice of all ages. This development-dependent alteration was related to the differential expression of caveolin-1 (Cav1), which is essential for caveolae formation. Knockdown of Cav1 restored the enhanced mGluR-LTD in Fmr1 KO mice. Moreover, hippocampal Cav1 expression in Fmr1 KO mice induced excessive endocytosis of the α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA) receptor subunit GluA2. This process relied on mGluR1/5 activation rather than NMDAR. Interference with Cav1 expression reversed these changes. Furthermore, massive cholesterol accumulation contributed to redundant caveolae formation, which provided the platform for mGluR-triggered Cav1 coupling to GluA2. Importantly, injection of the cholesterol scavenger methyl-ß-cyclodextrin (Mß-CD) recovered AMPA receptor trafficking and markedly alleviated hyperactivity, hippocampus-dependent fear memory, and spatial memory defects in Fmr1 KO mice. Together, our findings elucidate the important role of Cav1 in mediating mGluR-LTD enhancement and further inducing AMPA receptor endocytosis and suggest that cholesterol depletion by Mß-CD during caveolae formation may be a novel and safe strategy to treat FXS.


Assuntos
Síndrome do Cromossomo X Frágil , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Camundongos Knockout , Caveolina 1/metabolismo , Receptores de AMPA/metabolismo , Depressão , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal , Síndrome do Cromossomo X Frágil/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Cognição , Camundongos Endogâmicos C57BL
4.
Environ Pollut ; 325: 121393, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36878272

RESUMO

Studies have shown that Bisphenol F (BPF) as an emerging bisphenol pollutant also has caused many hazards to the reproductive systems of humans and animals. However, its specific mechanism is still unclear. The mouse TM3 Leydig cell was used to explore the mechanism of BPF-induced reproductive toxicity in this study. The results showed BPF (0, 20, 40 and 80 µM) exposure for 72 h significantly increased cell apoptosis and decreased cell viability. Correspondingly, BPF increased the expression of P53 and BAX, and decreased the expression of BCL2. Moreover, BPF significantly increased the intracellular ROS level in TM3 cells, and significantly decreased oxidative stress-related molecule Nrf2. BPF decreased the expression of FTO and YTHDF2, and increased the total cellular m6A level. ChIP results showed that AhR transcriptionally regulated FTO. Differential expression of FTO revealed that FTO reduced the apoptosis rate of BPF-exposed TM3 cells and increased the expression of Nrf2, MeRIP confirmed that overexpression of FTO reduced the m6A of Nrf2 mRNA. After differential expression of YTHDF2, it was found that YTHDF2 enhanced the stability of Nrf2, and RIP assay showed that YTHDF2 was bound to Nrf2 mRNA. Nrf2 agonist enhanced the protective effect of FTO on TM3 cells exposure to BPF. Our study is the first to demonstrate that AhR transcriptionally regulated FTO, and then FTO regulated Nrf2 in a m6A-modified manner through YTHDF2, thereby affecting apoptosis in BPF-exposed TM3 cells to induce reproductive damage. It provides new insights into the importance of FTO-YTHDF2-Nrf2 signaling axis in BPF-induced reproductive toxicity and provided a new idea for the prevention of male reproductive injury.


Assuntos
Células Intersticiais do Testículo , Fator 2 Relacionado a NF-E2 , Animais , Masculino , Camundongos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Células Intersticiais do Testículo/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/farmacologia
5.
Environ Pollut ; 321: 121144, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702435

RESUMO

Bisphenol S (BPS) causes reproductive adverse effects on humans and animals. However, the detailed mechanism is still unclear. This research aimed to clarify the role of RNA binding protein YTHDF1 in Leydig cell damage induced by BPS. The mouse TM3 Leydig cells were exposed to BPS of 0, 20, 40, and 80 µmol/L for 72 h. Results showed that TM3 Leydig cells apoptosis rate markedly increased in BPS exposure group. Meanwhile, the apoptosis-related molecule BCL2 protein level decreased significantly, and Caspase9, Caspase3, and BAX increased significantly. Moreover, the cell cycle was blocked in the G1/S phase, CDK2 and CyclinE1 were considerably down-regulated in BPS exposure groups, and the protein level of RNA binding protein YTHDF1 decreased sharply. Furthermore, after overexpression of YTHDF1, the cell viability significantly increased, and the apoptosis rate significantly decreased in TM3 Leydig cells. In the meantime, BCL2, CDK2, and CyclinE1 were significantly up-regulated, and BAX, Caspase9, and Caspase3 were significantly down-regulated. Conversely, interference with YTHDF1 decreased cell proliferation and promoted apoptosis. Importantly, overexpression of YTHDF1 alleviated the cell viability decrease induced by BPS, and interference with YTHDF1 exacerbated the situation. RIP assays showed that the binding of YTHDF1 to CDK2, CyclinE1, and BCL2 significantly increased after overexpressing YTHDF1. Collectively, our study suggested that YTHDF1 plays an essential role in BPS-induced TM3 Leydig cell damage by regulating CDK2-CyclinE1 and BCL2 mitochondrial pathway at the translational level.


Assuntos
Células Intersticiais do Testículo , Fenóis , Animais , Humanos , Masculino , Camundongos , Apoptose , Proteína X Associada a bcl-2/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Fenóis/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/farmacologia
6.
Environ Pollut ; 319: 120943, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584854

RESUMO

Numerous evidence showed that the occurrence and development of lung cancer is closely related to environmental pollution. Therefore, new environmental response predictive markers are urgently needed for early diagnosis and screening of lung cancer. Interferon-induced protein 44-like (IFI44L) has been shown to be related in a variety of tumors, but its function and mechanism during lung carcinogenesis still have remained largely unknown. In this study, gene expression and methylation status were analyzed through online tools and malignant transformation models. Differentially expressed cell models and xenograft tumor models were established and used to clarify the gene function. RT-qPCR, western blotting, immunohistochemistry, and co-immunoprecipitation (Co-IP) were used to explore the mechanism. Results showed that IFI44L was dramatically downexpressed during lung carcinogenesis, and its low expression may be attributed to DNA methylation. Overexpression of IFI44L obviously inhibited cell growth and promoted apoptosis. After knockdown of IFI44L expression, the proliferation ability was remarkably increased and the apoptosis was significantly reduced. Functional enrichment showed that IFI44L was involved in apoptosis and JAK/STAT1 signaling pathway, and was highly correlated with downstream molecules. After overexpression of IFI44L, the expression of P-STAT1 and downstream molecules XAF1, OAS1, OAS2 and OAS3 were significantly increased. After knockdown of STAT1 expression, the pro-apoptotic effect of IFI44L was reduced. Co-IP results showed that IFI44L had protein interaction with STAT1. Results proved that IFI44L promoted STAT1 phosphorylation and activated the JAK/STAT1 signaling pathway by directly binding to STAT1 protein, thereby leading to cell apoptosis. Our study revealed that IFI44L promotes cell apoptosis and exerts tumor suppressors by activating the JAK/STAT1 signaling pathway. It further suggests that IFI44L has clinical therapeutic potential and may be a promising biomarker during lung carcinogenesis.


Assuntos
Neoplasias Pulmonares , Humanos , Apoptose , Carcinogênese/genética , Linhagem Celular Tumoral , Epigênese Genética , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
7.
Chemosphere ; 312(Pt 1): 137171, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370755

RESUMO

Bisphenol A (BPA), an important environmental pollutant, is known to damage reproductive development. However, the underlying epigenetic mechanism in Leydig cells during BPA exposure has not been explored in detail. In this study, TM3 Leydig cells were treated with BPA (0, 20, 40 and 80 µM) for 72 h. The differentially expressed TET1 cell model was constructed to explore the mechanism of BPA-induced cytotoxicity. Results showed that BPA exposure significantly inhibited cell viability and increased apoptosis of TM3 Leydig cells. Meanwhile, the mRNA of TET1, Cav3.2 and Cav3.3 decreased significantly with the increase of BPA exposure. Importantly, TET1 significantly promoted proliferation of TM3 Leydig cells and inhibited apoptosis. Differentially expressed TET1 significantly affected BPA-induced toxicity in TM3 Leydig cells. Notably, TET1 elevated the mRNA levels of Cav3.2 and Cav3.3. MeDIP and hMeDIP confirmed that TET1 regulated the expression of Cav3.3 through DNA hydroxymethylation. Our study firstly presented that TET1 participated in BPA-induced toxicity in TM3 Leydig cells through regulating Cav3.3 hydroxymethylation modification. These findings suggest that TET1 acts as a potential epigenetic marker for reproductive toxicity induced by BPA exposure and may provide a new direction for the research on male reproductive damage.


Assuntos
Compostos Benzidrílicos , Células Intersticiais do Testículo , Masculino , Humanos , Compostos Benzidrílicos/metabolismo , Fenóis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Environ Pollut ; 296: 118739, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953956

RESUMO

Bisphenol A (BPA) exposure has many adverse effects on the reproductive system in animals and humans. Ten-eleven translocation 1 (TET1) is closely related to a variety of biological processes through regulating the dynamic balance of DNA demethylation and methylation. However, the role and mechanism of TET1 during BPA induced reproductive toxicity are largely unknown. In this study, mouse spermatogonia cell line GC-2 was treated with BPA in the final concentration of 0, 20, 40 and 80 µM for 72 h. The cell model of differential TET1 gene expression was established to explore the role and mechanism. We found that the growth rate of GC-2 cells, and the intracellular calcium level decreased significantly with the increase of BPA dose, while TET1 and Catsper1-4 expression level decrease with a dose-dependent relationship. Furthermore, TET1 overexpression promoted the proliferation of GC-2 cell, the increase of calcium ion concentration, and the expression level of Catsper1-4, while knockdown of TET1 leads to the opposite results. Mechanistically, TET1 expression promoted the hydroxymethylation of Catsper1-4 and reduced their methylation level. In addition, the expression level of Catsper1-4 was positively correlated with TET1 gene expression level in semen samples of the population. Our study revealed for the first time that TET1 gene regulates the expression of related molecules in the Catsper calcium signal pathway through its hydroxymethylation modification to affect the calcium level, thereby participating in the process of BPA induced damage. These results indicated that TET1 gene may be a potential biomarker of BPA induced male reproductive toxicity.


Assuntos
Compostos Benzidrílicos , Proteínas Proto-Oncogênicas , Animais , Compostos Benzidrílicos/toxicidade , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Masculino , Camundongos , Fenóis/toxicidade , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais
9.
Mol Brain ; 10(1): 38, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28800762

RESUMO

The G protein-coupled receptor 55 (GPR55) is a novel cannabinoid receptor, whose exact role in anxiety remains unknown. The present study was conducted to explore the possible mechanisms by which GPR55 regulates anxiety and to evaluate the effectiveness of O-1602 in the treatment of anxiety-like symptoms. Mice were exposed to two types of acute stressors: restraint and forced swimming. Anxiety behavior was evaluated using the elevated plus maze and the open field test. We found that O-1602 alleviated anxiety-like behavior in acutely stressed mice. We used lentiviral shRNA to selective ly knockdown GPR55 in the medial orbital cortex and found that knockdown of GPR55 abolished the anxiolytic effect of O-1602. We also used Y-27632, a specific inhibitor of ROCK, and U73122, an inhibitor of PLC, and found that both inhibitors attenuated the effectiveness of O-1602. Western blot analysis revealed that O-1602 downregulated the expression of GluA1 and GluN2A in mice. Taken together, these results suggest that GPR55 plays an important role in anxiety and O-1602 may have therapeutic potential in treating anxiety-like symptoms.


Assuntos
Ansiedade/metabolismo , Ansiedade/psicologia , Córtex Pré-Frontal/metabolismo , Receptores de Canabinoides/metabolismo , Estresse Psicológico/metabolismo , Doença Aguda , Amidas/administração & dosagem , Amidas/farmacologia , Amidas/uso terapêutico , Animais , Ansiolíticos/administração & dosagem , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Canabidiol/análogos & derivados , Doença Crônica , Cicloexanos/farmacologia , Cicloexanos/uso terapêutico , Estrenos/farmacologia , Técnicas de Silenciamento de Genes , Injeções Intraperitoneais , Masculino , Camundongos Endogâmicos C57BL , Piridinas/administração & dosagem , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirrolidinonas/farmacologia , Resorcinóis/farmacologia , Resorcinóis/uso terapêutico , Restrição Física , Transdução de Sinais , Estresse Psicológico/tratamento farmacológico , Natação
10.
Neuroreport ; 28(5): 259-267, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28240721

RESUMO

Cucurbitacin IIa (CuIIa) is the major active component of the Helmseya amabilis root and is known to have antiviral and anti-inflammatory effects. In this study, we examined the antidepressant-like effects of CuIIa in a mouse model of chronic unpredictable mild stress (CUMS) and investigated the possible underlying mechanisms. To evaluate the antidepressant-like effects of CuIIa on depression-like behaviors, mice were subjected to the open-field test, the elevated plus-maze test, the forced-swimming test, and the tail-suspension test. We found that CuIIa treatment reversed the CUMS-induced behavioral abnormalities. Western blot analyses showed that CUMS significantly decreased brain-derived neurotrophic factor (BDNF) levels, cAMP-response element binding protein (CREB), and calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylation, and N-methyl-D-aspartate receptor subtype GluN2B and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 expression in the amygdala; in addition, the expression of gamma-aminobutyric acid receptor A subunit α2 was upregulated in CUMS mice. These CUMS-induced changes were all normalized by CuIIa treatment and administration of the BDNF antagonist ANA-12 can block the antidepressant effect of CuIIa. Our findings suggest that the antidepressant-like effects of CuIIa may be exerted by regulation of the CaMKIIα-CREB-BDNF pathway and the balance between excitatory and inhibitory synaptic transmission in the amygdala.


Assuntos
Antidepressivos/uso terapêutico , Cucurbitacinas/uso terapêutico , Depressão/tratamento farmacológico , Depressão/etiologia , Estresse Psicológico/complicações , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Azepinas/uso terapêutico , Benzamidas/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação a CREB/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Doença Crônica , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Elevação dos Membros Posteriores , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Receptores de N-Metil-D-Aspartato/metabolismo , Estresse Psicológico/tratamento farmacológico , Natação/psicologia
11.
Biomed Pharmacother ; 86: 81-87, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27939523

RESUMO

Huntington's disease (HD) is an autosomal dominant inherited disease characterized by movement, psychiatric, and cognitive disorders. Previous research suggests that Praeruptorin C (Pra-C), an effective component in the root of Peucedanum praeruptorum dunn, a traditional Chinese medicine, may function in neuroprotection. The present study was conducted to evaluate the effectiveness of Pra-C in the treatment of HD-like symptoms in a 3-nitropropionic acid (3-NP) mouse model, and to explore the possible mechanism of the drug's activity. We treated 3-NP-injected mice with two different doses of Pra-C (1.5 and 3.0mg/kg) for 3 days. Motor behavior was tested using the open field test (OFT) and rotarod test, while psychiatric symptoms were tested using the forced swimming test (FST) and tail suspension test (TST). We found that Pra-C alleviated the motor deficits and depression-like behavior in the 3-NP-treated mice, and protected neurons from excitotoxicity. Western blot analysis revealed that Pra-C upregulated BDNF, DARPP32, and huntingtin protein in the striatum of 3-NP mice. These results taken together suggest that Pra-C may have therapeutic potential with respect to the movement, psychiatric, and cognitive symptoms of HD.


Assuntos
Cumarínicos/uso terapêutico , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Doença de Huntington/induzido quimicamente , Doença de Huntington/tratamento farmacológico , Nitrocompostos/toxicidade , Propionatos/toxicidade , Animais , Relação Dose-Resposta a Droga , Doença de Huntington/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/uso terapêutico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA