Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(9): 2441-2444, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691739

RESUMO

Three-dimensional optical waveguides with hollow channels have many advantages, such as strong mode confinement and excellent dispersion control ability. Femtosecond laser enhanced wet etching is widely used to fabricate hollow channel waveguides in transparent dielectric materials. We propose a method for fabricating hollow channel waveguides in YAG using femtosecond laser enhanced wet etching with a simpler fabrication process and shorter etching time compared with the previous work. After 90 h of etching, a series of helical hollow channel waveguides with a length of 5 mm and a radius of 32 µm were successfully fabricated. At a pitch of 3 µm, the waveguide exhibited a loss (including coupling loss and transmission loss) as low as 0.68 dB at 1030 nm. The helical hollow channel waveguide also exhibited exceptional isotropic light confinement capability and remarkable supercontinuum-generating properties. Moreover, helical hollow channel waveguides with a radius of 2 µm were successfully fabricated. According to simulations, waveguides of such size can effectively control dispersion. Our work presents, to our knowledge, a novel approach to fabricating hollow channel waveguides with arbitrary lengths using femtosecond laser-enhanced wet etching.

2.
Materials (Basel) ; 17(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38591371

RESUMO

By virtue of its narrow pulse width and high peak power, the femtosecond pulsed laser can achieve high-precision material modification, material additive or subtractive, and other forms of processing. With additional good material adaptability and process compatibility, femtosecond laser-induced application has achieved significant progress in flexible electronics in recent years. These advancements in the femtosecond laser fabrication of flexible electronic devices are comprehensively summarized here. This review first briefly introduces the physical mechanism and characteristics of the femtosecond laser fabrication of various electronic microdevices. It then focuses on effective methods of improving processing efficiency, resolution, and size. It further highlights the typical progress of applications, including flexible energy storage devices, nanogenerators, flexible sensors, and detectors, etc. Finally, it discusses the development tendency of ultrashort pulse laser processing. This review should facilitate the precision manufacturing of flexible electronics using a femtosecond laser.

3.
Opt Express ; 32(4): 6701-6703, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439368

RESUMO

An erratum is presented to modify a calculating error in our published manuscript ["High-power 970 nm semiconductor disk laser" Opt. Express31, 43963 (2023)10.1364/OE.506462 [CrossRef]]. All results throughout the manuscript and its conclusions are unaffected by this correction and remain valid.

4.
Opt Express ; 32(3): 3933-3945, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297603

RESUMO

High-performance depressed cladding waveguides can be fabricated in crystals using ultrafast laser inscription. The investigation of nonlinear phenomena, which manifest during the transmission of high peak power femtosecond pulses within waveguides, holds significant importance for their practical integration into waveguide lasers and waveguide-based components, among other pioneering applications. In this study, the depressed cladding waveguides were successfully prepared in sapphire crystal by a femtosecond laser. The nonlinear phenomena occurring in this waveguide were investigated. The experimental results show that the nonlinearity in the depressed cladding waveguides is significantly enhanced compared with that of the bulk. This enhancement notably manifests through augmented nonlinear losses (NLs) and the third harmonic (TH) blueshift increase. Meanwhile, we theoretically investigate the influence of nonlinear effects on the TH, such as self-phase modulation (SPM), cross-phase modulation (XPM), and group delay. Our results reveal that the phase mismatch between the TH and the pump pulses is the main reason for the asymmetric broadening and blueshift of the TH spectrum. Our study reveals the unique nonlinear properties of the waveguides and lays the foundation for further relevant studies and applications of such waveguides.

5.
Light Sci Appl ; 13(1): 60, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413560

RESUMO

High electro-optical conversion efficiency is one of the most distinctive features of semiconductor lasers as compared to other types of lasers. Its further increase remains a significant objective. Further enhancing the efficiency of edge-emitting lasers (EEL), which represent the highest efficiency among semiconductor lasers at present, is challenging. The efficiency of vertical cavity surface emitting lasers (VCSELs) has always been relatively low compared to EEL. This paper, combining modeling with experiments, demonstrates the potential of multi-junction cascaded VCSELs to achieve high efficiency beyond that of EELs, our simulations show, that a 20-junction VCSEL can achieve an efficiency of more than 88% at room temperature. We fabricated VCSEL devices with different numbers of junctions and compared their energy efficiency. 15-junction VCSELs achieved a maximum efficiency of 74% at room temperature under nanosecond driving current, the corresponding differential quantum efficiency exceeds 1100%, being the largest electro-optical conversion efficiency and differential quantum efficiency reported until now for VCSELs.

6.
Opt Lett ; 48(15): 3885-3888, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527074

RESUMO

We report a voltage-tunable reflective gold wire grid metasurface on vanadium dioxide thin film, which consists of a metal-insulator-metal (MIM) structure. We excite surface plasmon polariton (SPP) modes on the gold surface by fabricating a one-dimensional structured gold wire grid. Joule heating of laser-induced graphene (LIG) can be controlled by the voltage at the bottom, allowing vanadium dioxide in the structure to complete the transition from the insulating state to the metallic state. The phase transition of vanadium dioxide strongly disrupts the plasmon modes excited by the gold wire grid above, thereby realizing a huge change in the reflection spectrum. This acts as a tunable metasurface optical switch with a maximum modulation depth (MD) of over 20 dB. We provide a more effective and simple method for creating tunable metasurfaces in the near-infrared band, which can allow metasurfaces to have wider applications in optical signal processing, optical storage, and holography.

7.
Opt Lett ; 48(15): 3961-3964, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527093

RESUMO

Miniature spectrometers have the advantage of high portability and integration, making them quick and easy to use in various working environments. The speckle patterns produced by light scattering through a disordered medium are highly sensitive to wavelength changes and can be used to design high-precision wavemeters and spectrometers. In this study, we used a self-organized, femtosecond laser-prepared nanostructure with a characteristic size of approximately 30-50 nm on a sapphire surface as a scattering medium to effectively induce spectral dispersion. By leveraging this random scattering structure, we successfully designed a compact scattering wavelength meter with efficient scattering properties. The collected speckle patterns were identified and classified using a neural network, and the variation of speckle patterns with wavelength was accurately extracted, achieving a measurement accuracy of 10 pm in multiple wavelength ranges. The system can effectively suppress instrument and environmental noise with high robustness. This work paves the way for the development of compact high-precision wavemeters.

8.
Sensors (Basel) ; 23(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37448094

RESUMO

The authors wish to make the following corrections to the original paper [...].

9.
Opt Express ; 31(5): 8190-8200, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859935

RESUMO

The performance of electrodes is a key factor affecting the development of smart fabrics. The preparation of common fabric flexible electrodes has defects such as high cost, complicated preparation, and complex patterning that limit the development of fabric-based metal electrodes. Therefore, this paper presented a simple fabrication method for preparing Cu electrodes using selective laser reduction of CuO nanoparticles. By optimizing laser processing power, scanning speed, and focusing degree), we prepared a Cu circuit with an electrical resistivity of ∼ 5.53 µΩ.m. Based on the photothermoelectric properties of Cu electrodes, a white light photodetector is developed. The detectivity of the photodetector reaches ∼2.14 mA/W at a power density of 10.01 mW/cm2. This method is instructive for preparing metal electrodes or conductive lines on the surface of fabrics, and provides specific techniques for manufacturing wearable photodetectors.

10.
Sensors (Basel) ; 23(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36991843

RESUMO

In high dynamic scenes, fringe projection profilometry (FPP) may encounter fringe saturation, and the phase calculated will also be affected to produce errors. This paper proposes a saturated fringe restoration method to solve this problem, taking the four-step phase shift as an example. Firstly, according to the saturation of the fringe group, the concepts of reliable area, shallow saturated area, and deep saturated area are proposed. Then, the parameter A related to the reflectivity of the object in the reliable area is calculated to interpolate A in the shallow and deep saturated areas. The theoretically shallow and deep saturated areas are not known in actual experiments. However, morphological operations can be used to dilate and erode reliable areas to produce cubic spline interpolation areas (CSI) and biharmonic spline interpolation (BSI) areas, which roughly correspond to shallow and deep saturated areas. After A is restored, it can be used as a known quantity to restore the saturated fringe using the unsaturated fringe in the same position, the remaining unrecoverable part of the fringe can be completed using CSI, and then the same part of the symmetrical fringe can be further restored. To further reduce the influence of nonlinear error, the Hilbert transform is also used in the phase calculation process of the actual experiment. The simulation and experimental results validate that the proposed method can still obtain correct results without adding additional equipment or increasing projection number, which proves the feasibility and robustness of the method.

11.
Nanomaterials (Basel) ; 13(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770453

RESUMO

We propose a heat-reconfigurable metasurface composed of the silicon-based gold grating. The asymmetric Fano-like line shape is formed due to the mutual coupling of the local surface plasmon (LSP) in the gap between the two layers of Au gratings and the surface propagating plasmon (SPP) on the surface of the Au gratings. Then, we effectively regulate the Fano resonance by applying a bias voltage to laser-induced graphene (LIG), to generate Joule heat, so that the resonant dip of one mode of the Fano resonance can shift up to 28.5 nm. In contrast, the resonant dip of the other mode barely changes. This effectively regulates the coupling between two resonant modes in Fano resonance. Our study presents a simple and efficient method for regulating Fano-like interference in the near-infrared band.

12.
Opt Express ; 31(26): 43963-43974, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178479

RESUMO

Semiconductor disk lasers (SDLs) have emerged at the frontier of laser technologies. Here, the chip design, packaging process, resonator, pumping strategy, etc. are optimized for the performance improvement of a 970 nm SDL. After optimization, a power of 70.3 W is attained under continuous wave (CW) operation, and the corresponding thermal resistance is around 0.49 K/W. The laser is highly efficient with a maximum slope efficiency of 58.2% and the pump threshold is only around 1.83 kW/cm2. Furthermore, the emission performances under quasi-continuous wave (QCW) pumping are also explored. Setting the duty cycle to about 11%, the chips can output a peak power of 138 W without thermal rollover, and the single pulse energy can reach about 13.6 mJ. As far as we know, they are the best results in terms of power/energy in this wavelength SDL. These explorations may help to understand the thermal characteristics in high-power SDLs and may also be regarded as an extension and enrichment of the earlier works on this topic.

13.
Sensors (Basel) ; 22(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502089

RESUMO

An improved three-frequency heterodyne synthesis phase unwrapping method is proposed to improve the measurement accuracy through phase difference and phase sum operations. This method can reduce the effect of noise and increase the equivalent phase frequency. According to the distribution found in the phase difference calculation process, the Otsu segmentation is introduced to judge the phase threshold. The equivalent frequency obtained from the phase sum is more than those of all projected fringe patterns. In addition, the appropriate period combinations are also studied. The simulations and related experiments demonstrate the feasibility of the proposed method and the ability to improve the accuracy of the measurement results further.

14.
Opt Express ; 30(26): 46888-46899, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558629

RESUMO

Focusing light through scattering media is essential for high-resolution optical imaging and deep penetration. Here, a two-step focusing method based on neural networks (NNs) and multi-pixel coding is proposed to achieve high-quality focusing with theoretical maximum enhancement. In the first step, a single-layer neural network (SLNN) is used to obtain the initial mask, which can be used to focus with a moderate enhancement. In the second step, we use multi-pixel coding to encode the initial mask. The coded masks and their corresponding speckle patterns are used to train another SLNN to get the final mask and achieve high-quality focusing. In this experiment, for a mask of 16 × 16 modulation units, in the case of using 8 pixels in a modulation unit, focus with the enhancement of 40.3 (only 0.44 less than the theoretical value) has been achieved with 3000 pictures (1000 pictures in the first step and 2000 pictures in the second step). Compared with the case of employing only the initial mask and the direct multi-pixel encoded mask, the enhancement is increased by 220% and 24%. The proposed method provides a new idea for improving the focusing effect through the scattering media using NNs.

15.
Nanotechnology ; 33(11)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34874289

RESUMO

In this work, graphene quantum dots (GQDs) were synthesized by femtosecond laser ablation in liquid using laser induced graphene as the carbon source. Nitrogen-doped graphene quantum dots (N-GQDs) were successfully synthesized by adding ammonia water to the graphene suspension. The GQDs/N-GQDs structure consist of a graphitic core with oxygen and nitrogen functionalities with particle size less than 10 nm, as demonstrated by x-ray photoelectron spectroscopy, Fourier infrared spectrometer spectroscopy, and transmission electron microscopy. The absorption peak, PL spectrum, and quantum yield of the N-GQDs were significantly enhanced compared with the undoped GQDs. Further, the possible mechanism of synthesis GQDs was discussed. Furthermore, the N-GQDs were used as a fluorescent probe for detection of Fe3+ions. The N-GQDs may extend the application of graphene-based materials to bioimaging, sensor, and photoelectronic.

16.
Opt Express ; 29(7): 11094-11105, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820228

RESUMO

We present a hybrid device based on graphene-coupled silicon (Si) photonic crystal (PhC) cavities, featuring triple light detection, modulation, and switching. Through depositing single-layer graphene onto the PhC cavity, the light-graphene interaction can be enhanced greatly, which enables significant detection and modulation of the resonant wavelength. The device is designed to generate a photocurrent directly by the photovoltaic effect and has an external responsivity of ∼14 mA/W at 1530.8 nm (on resonance), which is about 10 times higher than that off-resonance. Based on the thermo-optical effect of silicon and graphene, the device is also demonstrated in electro-optical and all-optical modulation. Also, due to the high-quality (Q) factor of the resonate cavity, the device can implement low threshold optical bistable switching, and it promises a fast response speed, with a rise (fall) time of ∼0.4 µs (∼0.5 µs) in the all-optical switch and a rise (fall) time of ∼0.5 µs (∼0.5 µs) in the electro-optical hybrid switch. The multifunctional photodetector, modulator, and optical bistable switch are achieved in a single device, which greatly reduces the photonic overhead and provides potential applications for future integrated optoelectronics.

17.
ACS Appl Mater Interfaces ; 12(39): 43705-43713, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32885658

RESUMO

Long-term thermal stability is one limiting factor that impedes the commercialization of the perovskite solar cell. Inspired by our prior results from machine learning, we discover that coating a thin layer of 4,4'-dibromotriphenylamine (DBTPA) on top of a CH3NH3PbI3 layer can improve the stability of resultant solar cells. The passivated devices kept 96% of the original power conversion efficiency for 1000 h at 85 °C in a N2 atmosphere without encapsulation. Near-ambient pressure X-ray photoelectron spectroscopy (XPS) was employed to investigate the evolution of the composition and evaluate thermal and moisture stability by in situ studies. A comparison between pristine MAPbI3 films and DBTPA-treated films shows that the DBTPA treatment suppresses the escape of iodide and methylamine up to 150 °C under 5 mbar humidity. Furthermore, we have used attenuated total reflection Fourier transform infrared and XPS to probe the interactions between DBTPA and MAPbI3 surfaces. The results prove that DBTPA coordinates with the perovskite by Lewis acid-base and cation-π interaction. Compared with the 19.9% efficiency of the pristine sample, the champion efficiency of the passivated sample reaches 20.6%. Our results reveal DBTPA as a new post-treating molecule that leads not only to the improvement of the photovoltaic efficiency but also thermal and moisture stability.

18.
Appl Opt ; 58(34): 9421-9425, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873533

RESUMO

Laser paint removal is a new cleaning technology with high efficiency. Dynamic monitoring and closed-loop control of the laser paint removal process are key to reducing the risk of metal substrate damage and to achieving the best cleaning. In this paper, the time-resolved characteristics of the elemental peaks in the laser-induced breakdown spectrum of paints and substrate were studied by using the combination of a monochromator (or a bandpass filter) and a photomultiplier tube (PMT) detector. The results show that the intensity of the elemental spectrum peak of the paint has a sudden drop while the intensity of the elemental spectrum peak of the substrate has a sudden increase when the paint is removed. The time-resolved signals can be fitted by double exponential functions, which are combinations of exponential functions with a longer and a shorter lifetime, respectively. The relative ratios of the coefficients of the shorter and longer lifetimes (A s h o r t /A l o n g ) at the wavelength correspond to the elements in paint increasing suddenly while decreasing suddenly at the wavelength corresponding to the substrate. The intensity of the elemental spectrum peaks of paints and substrate and the ratio (A s h o r t /A l o n g ) can be used to monitor the laser paint removal process in real time to reduce the damage risk of the metal substrate and achieve the purpose of efficient cleaning with low cost.

19.
Opt Express ; 27(11): 15136-15141, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31163714

RESUMO

We demonstrated the generation of an azimuthally and radially polarized laser beam in a Nd:YAG laser in which a birefringent yttrium vanadate (c-cut YVO4) crystal was used as the intra-cavity polarization discriminator. AP and RP with respective output 2.4W (o-o efficiency of 35.4%, M2 = 2.3) and 2.52W (o-o efficiency of 37.2%, M2 = 2.4) were generated at absorbed pump power 6.78W. We discuss a simple method for converting between azimuthal and radial polarizations by only regulating input pump power and mechanism of mode selection in the laser. This vector laser will facilitate many applications.

20.
Opt Express ; 26(21): 26925-26932, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30469770

RESUMO

Double-end polarized pumping scheme combined with off-axis pumping technique has been first introduced to generate vortex beams in a z-type cavity. By employing double-end pumping, two different transverse modes can be excited simultaneously. The phase delay between these two modes can be finely tuned by manipulating the cavity structure. Direct emission of a chirality controllable Laguerre Gaussian LG01 vortex beam with slope efficiency of more than 40% has been realized by a double-end polarized pumped Yb:KYW laser. Other modes, such as dual-LG01 mode, cross-shaped mode, and LG10 mode, have also been demonstrated from our laser setup.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA