Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(7): 1982-1996, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38124377

RESUMO

Drought-induced leaf senescence is associated with high sugar levels, which bears some resemblance to the syndrome of diabetes in humans; however, the underlying mechanisms of such 'plant diabetes' on carbon imbalance and the corresponding detoxification strategy are not well understood. Here, we investigated the regulatory mechanism of exogenous methylglyoxal (MG) on 'plant diabetes' in maize plants under drought stress applied via foliar spraying during the grain-filling stage. Exogenous MG delayed leaf senescence and promoted photoassimilation, thereby reducing the yield loss induced by drought by 14%. Transcriptome and metabolite analyses revealed that drought increased sugar accumulation in leaves through inhibition of sugar transporters that facilitate phloem loading. This led to disequilibrium of glycolysis and overaccumulation of endogenous MG. Application of exogenous MG up-regulated glycolytic flux and the glyoxalase system that catabolyses endogenous MG and glycation end-products, ultimately alleviating 'plant diabetes'. In addition, the expression of genes facilitating anabolism and catabolism of trehalose-6-phosphate was promoted and suppressed by drought, respectively, and exogenous MG reversed this effect, implying that trehalose-6-phosphate signaling in the mediation of 'plant diabetes'. Furthermore, exogenous MG activated the phenylpropanoid biosynthetic pathway, promoting the production of lignin and phenolic compounds, which are associated with drought tolerance. Overall, our findings indicate that exogenous MG activates defense-related pathways to alleviate the toxicity derived from 'plant diabetes', thereby helping to maintain leaf function and yield production under drought.


Assuntos
Diabetes Mellitus , Zea mays , Humanos , Zea mays/genética , Senescência Vegetal , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/farmacologia , Secas , Diabetes Mellitus/metabolismo , Açúcares/metabolismo , Folhas de Planta/metabolismo , Estresse Fisiológico
2.
Front Plant Sci ; 14: 1206829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731984

RESUMO

The growth of yield outputs is dwindling after the first green revolution, which cannot meet the demand for the projected population increase by the mid-century, especially with the constant threat from extreme climates. Cereal yield requires carbon (C) assimilation in the source for subsequent allocation and utilization in the sink. However, whether the source or sink limits yield improvement, a crucial question for strategic orientation in future breeding and cultivation, is still under debate. To narrow the knowledge gap and capture the progress, we focus on maize, rice, and wheat by briefly reviewing recent advances in yield improvement by modulation of i) leaf photosynthesis; ii) primary C allocation, phloem loading, and unloading; iii) C utilization and grain storage; and iv) systemic sugar signals (e.g., trehalose 6-phosphate). We highlight strategies for optimizing C allocation and utilization to coordinate the source-sink relationships and promote yields. Finally, based on the understanding of these physiological mechanisms, we envisage a future scenery of "smart crop" consisting of flexible coordination of plant C economy, with the goal of yield improvement and resilience in the field population of cereals crops.

3.
Plants (Basel) ; 12(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37765433

RESUMO

Understanding the water status of specific organs can be helpful in evaluating the life activities and growth conditions of maize. To accurately judge organ growth conditions and thus design appropriate interventions, it is necessary to clarify the true water dynamics of each maize organ. Using multiple maize cultivars with different growth periods, spatio-temporal water dynamics were analyzed here in the leaves, stalks, and ear components. Leaf water content was found to gradually decrease from both the bottom and top of the plant to the middle, whereas stalk water content decreased sequentially from the top to the bottom. Each successively higher node from the bottom of the plant was associated with decreases of 0.99% and 1.27% water content in the leaves and stalks, respectively. The water dynamics in leaves and internodes showed three clear stages: the slow loss, rapid loss, and balance stage. A water content of 60% appeared to be an irreversible turning point for initiation of senescence. Using normalized growth period as a measure, each of the tested cultivars could be assigned into one of two types based on their water dynamics: stay-water or general type. General-type cultivars had a shorter duration with a high water content and a water loss rate approximately twice as high as that of the stay-water type. This may have been related to the leaf senescence characteristics. However, the stay-water trait did not interfere with water dynamics of the ear components. Therefore, it may not be robust to evaluate the kernel dehydration of maize according to leaf senescence conditions due to the weak correlation between kernel water content and leaf senescence characteristics.

4.
Trends Plant Sci ; 28(8): 893-901, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37080837

RESUMO

As an evolutionary strategy, plants overproduce ovaries as a safety net for survival, with those losing in the competition for resources being aborted. Grain abortion is, however, highly detrimental agronomically. The molecular basis of selective abortion of grain siblings remains unknown. In this opinion article we assess the current understanding of the molecular players controlling carbon resource import into ovaries and young grains, followed by an evaluation of the spatial hierarchy of sink capacity among grain siblings, focusing on the roles exerted by sugar transporters and enzymes. We argue that, upon sequential pollination and fertilization, robust activation of the carbon import and sugar signaling system plays a key role in establishing the capacity of grain siblings to acquire enough carbon resources to survive and thrive.


Assuntos
Carbono , Grão Comestível , Transporte Biológico , Evolução Biológica , Açúcares
5.
Plants (Basel) ; 12(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36771709

RESUMO

In the North China Plain, the excessive application of nitrogen (N) fertilizer for ensuring high yield and a single application at sowing for simplifying management in farmer practice lead to low N use efficiency and environmental risk in maize (Zea mays L.) production. However, it is unclear whether and how late split application with a lower level of N fertilizer influences maize yield. To address this question, a two-year field experiment was conducted with two commercial maize cultivars (Zhengdan 958 and Denghai 605) using a lower level of N input (180 kg ha-1) by setting up single application at sowing and split application at sowing and later stages (V12, R1, and R2) with four different ratios, respectively. The maize yield with split-applied 180 kg ha-1 N did not decrease compared to the average yield with 240 kg ha-1 N input in farmer practice, while it increased by 6.7% to 11.5% in the four N split-application treatments compared with that of the single-application control. Morphological and physiological analyses demonstrated that late split application of N (i) increased the net photosynthetic rate and chlorophyll content and thus promoted the photosynthetic efficiency during the reproductive stages; (ii) promoted the sink capacity via improved kernel number, endosperm cells division, and grain-filling rate; and (iii) increased the final N content and N efficiency in the plant. Therefore, we propose that late split application of N could reduce N fertilizer input and coordinately improve N efficiency and grain yield in summer maize production, which are likely achieved by optimizing the source-sink relations during the grain-filling stage.

6.
Front Plant Sci ; 13: 901186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769293

RESUMO

Ear architecture is determined by two stable heritable traits, kernel row number (KRN) and kernel number per row (KNPR), but its relationship with drought resistance is still vague. To this end, we obtained 16 and 11 hybrids with slender (less KRN but more KNPR) and stubby (more KRN but less KNPR) ears by intentionally crossbreeding, respectively. These hybrids were exposed to a seven-day water deficit (WD) since silk emergence coupled with synchronous (SP) and continuous pollination (CP) to alter the pollination time gaps on ears. The results showed that the emerged silks in CP were 9.1 and 9.0% less than in the SP treatment in the stubby and slender ears, respectively, suggesting the suppression of asynchronous pollination on silk emergence. The stubby ears performed higher silking rate and yield compared with the slender ears with or without drought stress. To eliminate the inherent difference in sink capacities, we selected four hybrids for each ear type with similar silk and kernel numbers for further analyses. Interestingly, the stubby ears were less affected in silking rate and thus performed higher yield under drought compared with the slender ears. The finding suggests that ear architecture matters in the determination of drought resistance that deserves more attention in breeding.

7.
Plant J ; 110(1): 228-242, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35020972

RESUMO

Developing seed depends on sugar supply for its growth and yield formation. Maize (Zea mays L.) produces the largest grains among cereals. However, there is a lack of holistic understanding of the transcriptional landscape of genes controlling sucrose transport to, and utilization within, maize grains. By performing in-depth data mining of spatio-temporal transcriptomes coupled with histological and heterologous functional analyses, we identified transporter genes specifically expressed in the maternal-filial interface, including (i) ZmSWEET11/13b in the placento-chalazal zone, where sucrose is exported into the apoplasmic space, and (ii) ZmSTP3, ZmSWEET3a/4c (monosaccharide transporters), ZmSUT1, and ZmSWEET11/13a (sucrose transporters) in the basal endosperm transfer cells for retrieval of apoplasmic sucrose or hexoses after hydrolysis by extracellular invertase. In the embryo and its surrounding regions, an embryo-localized ZmSUT4 and a cohort of ZmSWEETs were specifically expressed. Interestingly, drought repressed those ZmSWEETs likely exporting sucrose but enhanced the expression of most transporter genes for uptake of apoplasmic sugars. Importantly, this drought-induced fluctuation in gene expression was largely attenuated by an increased C supply via controlled pollination, indicating that the altered gene expression is conditioned by C availability. Based on the analyses above, we proposed a holistic model on the spatio-temporal expression of genes that likely govern sugar transport and utilization across maize maternal and endosperm and embryo tissues during the critical stage of grain set. Collectively, the findings represent an advancement towards a holistic understanding of the transcriptional landscape underlying post-phloem sugar transport in maize grain and indicate that the drought-induced changes in gene expression are attributable to low C status.


Assuntos
Açúcares , Zea mays , Grão Comestível/genética , Grão Comestível/metabolismo , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Humanos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo , Zea mays/metabolismo
8.
J Plant Physiol ; 251: 153194, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32563766

RESUMO

The interception of irradiation by smog pollution and cloud cover associated with extreme rainfall events has become an increasingly important limiting factor in crop production in China. Little is known about the adaptation of carbon (C) allocation to periodic low irradiance in field conditions. The trehalose signaling pathway plays a critical role in adapting C allocation to the environment in crops but its importance in adaptation to low light in field conditions is not known. To determine the effects of low irradiance on C economy and maize yield, two commonly grown hybrids (LY-16 and ZD-958) were subject to three levels of shading (15 %, 50 %, and 97 %) for one week from V13 stage in two successive seasons. Shading led to yield loss mainly due to decreased kernel number, which was greater in LY-16 than ZD-958. Effects of shading on leaf area and photosynthesis were similar in both varieties. Starch levels in leaves were maintained, whereas total soluble carbohydrates were reduced up to fivefold by shading in both varieties. Shading increased the proportion of photoassimilate retained in leaves relative to reproductive organs. Carbohydrates in ears and stem were decreased by shading similarly in both varieties. Amongst the parameters measured, the main difference between LY-16 and ZD-958 associated with yield penalty was the expression of class II trehalose phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) genes which were increased due to shading in leaves and ears, particularly in ears of LY-16. It is concluded that altered C fixation and allocation by low irradiance limited ear growth at pre-anthesis. Activation of TPSII and TPP genes indicates that the trehalose pathway likely plays a role in ear development under low light and could be a target for yield improvement under such conditions as with other stresses.


Assuntos
Carbono/metabolismo , Inflorescência/crescimento & desenvolvimento , Fotossíntese , Luz Solar , Trealose/deficiência , Zea mays/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Zea mays/genética
9.
Sci Total Environ ; 734: 139269, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32450404

RESUMO

Climatic changes, such as global warming and altered precipitation are of major environmental concern. Given that ecosystem processes are strongly regulated by temperature and water content, climate changes are expected to affect the carbon (C) and nitrogen (N) cycles, especially in agricultural systems. However, the interactive effects of soil warming and increased precipitation on greenhouse gas emissions are poorly understood, particularly in the North China Plain (NCP). Therefore, a field experiment was conducted over two spring maize seasons (May-Sept.) in 2018 and 2019. Two levels of temperature (T0: ambient temperature; T1: increase on average of 4.0 °C) combined with two levels of precipitation (W0: no artificial precipitation; W1: +30% above ambient precipitation) were carried out in the NCP. Our results showed that soil warming significantly promoted cumulative N2O and CO2 emissions by 49% and 39%, respectively. Additionally, increased precipitation further enhanced the N2O and CO2 emissions by 54% and 14%, respectively. This suggests that high soil temperature and water content have the capacity to stimulate microbial activities, and thus accelerate the soil C and N cycles. Soil warming increased CH4 uptake by 293%, but increased precipitation had no effect on CH4 fluxes. Overall, soil warming and increased precipitation significantly enhanced the GHG budget by 39% and 16%, respectively. This study suggests that climate warming will lead to enhanced GHG emissions in the spring maize season in the NCP, while increased precipitation in the future may further stimulate GHG emissions in a warming world.

10.
Plant Cell Environ ; 43(4): 903-919, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31851373

RESUMO

During maize production, drought throughout the flowering stage usually induces seed abortion and yield losses. The influence of postpollination drought stress on seed abortion and its underlying mechanisms are not well characterized. By intervening in the competition for assimilates between kernel siblings under different degrees of postpollination drought stresses accompanied by synchronous pollination (SP) and incomplete pollination (ICP) approaches, the mechanisms of postpollination abortion were investigated at physiological and molecular levels. Upon SP treatment, up to 15% of the fertilized apical kernels were aborted in the drought-exacerbated competition for assimilates. The aborted kernels exhibited weak sucrose hydrolysis and starch synthesis but promoted the synthesis of trehalose-6-phosphate and ethylene. In ICP where basal pollination was prevented, apical kernel growth was restored with reinstated sucrose metabolism and starch synthesis and promoted sucrose and hexose levels under drought stress. In addition, the equilibrium between ethylene and polyamine in response to the drought and pollination treatments was associated with the abortion process. We conclude that competition for assimilates drives postpollination kernel abortion, whereas differences in sugar metabolism and the equilibrium between ethylene and polyamines may be relevant to the "live or die" choice of kernel siblings during this competition.


Assuntos
Grão Comestível/fisiologia , Zea mays/fisiologia , Carboidratos/análise , Desidratação , Grão Comestível/química , Grão Comestível/crescimento & desenvolvimento , Etilenos/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Polinização/fisiologia , Putrescina/análise , Espermidina/análise , Espermina/análise , Água/metabolismo , Zea mays/crescimento & desenvolvimento
11.
BMC Plant Biol ; 19(1): 508, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752685

RESUMO

BACKGROUND: Carbohydrate partitioning and utilization is a key determinant of growth rate and of yield in plants and crops. There are few studies on crops in field conditions. In Arabidopsis, starch accumulation in leaves is a negative indicator of growth rate. RESULTS: Here, we wished to establish if starch accumulation in leaves could potentially be a marker for growth rate and yield in crops such as maize. We characterized daily patterns of non-structural carbohydrate (NSC) at different growth stages over two seasons for maize hybrids in the field. In 27 commercial hybrids, we found a significant negative relationship between residual starch in leaves and plant growth, but not with final yield and biomass. We then focused on three typical hybrids and established a method for calculation of C turnover in photosynthetic leaves that took into account photosynthesis, leaf area and NSC accumulation. The ratios of stored NSC decreased from approximately 15% to less than 4% with ongoing ontogeny changes from V7 to 28 days after pollination. CONCLUSION: The proportion rather than absolute amount of carbon partitioned to starch in leaves at all stages of development related well with yield and biomass accumulation. It is proposed that screening plants at an early vegetative growth stage such as V7 for partitioning into storage may provide a prospective method for maize hybrid selection. Our study provides the basis for further validation as a screening tool for yield.


Assuntos
Carbono/metabolismo , Amido/metabolismo , Zea mays/fisiologia , Ontologias Biológicas , Biomassa , Metabolismo dos Carboidratos , Produtos Agrícolas , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Estações do Ano , Zea mays/crescimento & desenvolvimento
12.
J Exp Bot ; 69(7): 1599-1613, 2018 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-29365129

RESUMO

Selective seed abortion is a survival strategy adopted by many species that sacrifices some seeds to allow the remaining ones to set. While in evolutionary terms this is a successful approach, it causes huge losses to crop yields. A pollination time gap (PTG) has been suggested to be associated with position-related grain abortion. To test this hypothesis, we developed a novel approach to alter the natural pattern of maize (Zea mays L.) pollination and to examine the impact of PTGs on kernel growth and the underlying physiological basis. When apical and basal kernels were synchronously pollinated, the basal kernels set and matured but the apical kernels were aborted at an early stage. Delaying pollination to the basal ovaries suppressed their development and reduced invertase activity and sugar levels, which allowed the apical kernels to set and grow normally. In situ localization revealed normal cell wall invertase activity in apical and basal kernels under synchronous pollination but reduced activity in the delayed-pollinated kernels independent of their position. Starch, which was abundant in basal kernel areas, was absent in the apical kernel regions under synchronous pollination but apparent with delayed pollination. Our analyses identified PTG-related sink strength and a low level of local assimilates as the main causes of grain abortion.


Assuntos
Polinização , Sementes/crescimento & desenvolvimento , Amido/metabolismo , Zea mays/fisiologia , Sementes/fisiologia , Zea mays/crescimento & desenvolvimento
13.
J Plant Physiol ; 216: 1-10, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28544894

RESUMO

Abscisic acid (ABA) accumulates in plants under drought stress, but views on the role of ABA in kernel formation and abortion are not unified. The response of the developing maize kernel to exogenous ABA was investigated by excising kernels from cob sections at four days after pollination and culturing in vitro with different concentrations of ABA (0, 5, 10, 100µM). When ABA was applied at the early post-pollination stage (EPPS), significant weight loss was observed at high ABA concentration (100µM), which could be attributed to jointly affected sink capacity and activity. Endosperm cells and starch granules were decreased significantly with high concentration, and ABA inhibited the activities of soluble acid invertase and acid cell wall invertase, together with earlier attainment of peak values. When ABA was applied at the middle post-pollination stage (MPPS), kernel weight was observably reduced with high concentration and mildly increased with low concentration, which was regulated due to sink activity. The inhibitory effect of high concentration and the mild stimulatory effect of low concentration on sucrose synthase and starch synthase activities were noted, but a peak level of ADP-glucose pyrophosphorylase (AGPase) was stimulated in all ABA treatments. Interestingly, AGPase peak values were advanced by low concentration and postponed by high concentration. In addition, compared with the control, the weight of low ABA concentration treatments were not statistically significant at the two stages, whereas weight loss from high concentration applied at EPPS was considerably obvious compared with that of the MPPS, but neither led to kernel abortion. The temporal- and dose-dependent impacts of ABA reveal a complex process of maize kernel growth and development.


Assuntos
Ácido Abscísico/farmacologia , Metabolismo dos Carboidratos/efeitos dos fármacos , Polinização/efeitos dos fármacos , Sementes/anatomia & histologia , Zea mays/anatomia & histologia , Zea mays/metabolismo , Contagem de Células , Endosperma/citologia , Endosperma/efeitos dos fármacos , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/farmacologia , Tamanho do Órgão , Reguladores de Crescimento de Plantas/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Amido/metabolismo , Sacarose/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/fisiologia
14.
PLoS One ; 12(2): e0171014, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28170440

RESUMO

A considerable amount of surplus nitrogen (N), which primarily takes the form of nitrate, accumulates in the soil profile after harvesting crops from an intensive production system in the North China Plain. The residual soil nitrate (RSN) is a key factor that is included in the N recommendation algorithm. Quantifying the utilization and losses of RSN is a fundamental necessity for optimizing crop N management, improving N use efficiency, and reducing the impact derived from farmland N losses on the environment. In this study, a 15N-labeling method was introduced to study the fate of the RSN quantitatively during the winter wheat growing season by 15N tracer technique combined with a soil column study. A soil column with a 2 m height was vertically divided into 10 20-cm layers, and the RSN in each layer was individually labeled with a 15N tracer before the wheat was sown. The results indicated that approximately 17.68% of the crop N derived from RSN was located in the 0-2 m soil profile prior to wheat sowing. The wheat recovery proportions of RSN at various layers ranged from 0.21% to 33.46%. The percentages that still remained in the soil profile after the wheat harvest ranged from 47.08% to 75.44%, and 19.46-32.64% of the RSN was unaccounted for. Upward and downward movements in the RSN were observed, and the maximum upward and downward distances were 40 cm and 100 cm, respectively. In general, the 15N-labeling method contributes to a deeper understanding of the fates of the RSN. Considering the low crop recovery of the RSN from deep soil layers, water and N saving practices should be adopted during crop production.


Assuntos
Nitratos/análise , Estações do Ano , Solo/química , Triticum/crescimento & desenvolvimento , China , Produtos Agrícolas , Nitrogênio/análise , Triticum/metabolismo
15.
J Integr Plant Biol ; 53(5): 388-98, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21426488

RESUMO

Glucose appears to have an antagonistic relationship with ethylene and ethylene and polyamines appear to play antagonistic roles in the abortion of seeds and fruits. Moreover, ethylene, spermidine, and spermine share a common biosynthetic precursor. The synchronous changes of them and the relationships with kernel set are currently unclear. Here, we stimulated maize (Zea mays L.) apical kernel set and studied their changes at 4, 8, 12, and 16 d after pollination (DAP). The status of the apical kernels changed from abortion to set, showing a pattern similar to that of the middle kernels, with slow decrease in glucose and rapid decline in ethylene production, and a sharp increase in spermidine and spermine after four DAP. Synchronous changes in ethylene and spermidine were also observed. However, the ethylene production decreased slowly in the aborted apical kernels, the glucose and polyamines concentrations were lower. Ethephon application did not block the change from abortion to set for the setting apical kernels. These data indicate that the developmental change may be accompanied by an inhibition of adequate glucose to ethylene synthesis and subsequent promotion of spermidine and spermine synthesis, and adequate carbohydrate supply may play a key role in the developmental process.


Assuntos
Metabolismo dos Carboidratos , Etilenos/metabolismo , Poliaminas/metabolismo , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Glucose/metabolismo , Polinização , Sacarose/metabolismo , Zea mays/metabolismo
16.
Environ Pollut ; 152(3): 723-30, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17692443

RESUMO

In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of 15N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system.


Assuntos
Agricultura , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes , Nitratos , Estações do Ano , Adsorção , China , Produtos Agrícolas/metabolismo , Fertilizantes/análise , Nitratos/análise , Nitratos/metabolismo , Raízes de Plantas/metabolismo , Solo/análise , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA