Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Ecol Evol ; 14(5): e11393, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38746547

RESUMO

Plants can adapt to environmental changes by adjusting their functional traits and biomass allocation. The size and number of flowers are functional traits related to plant reproduction. Life history theory predicts that there is a trade-off between flower size and number, and the trade-off can potentially explain the adaptability of plants. Elevation gradients in mountains provide a unique opportunity to test how plants will respond to climate change. In this study, we tried to better explain the adaptability of the alpine plant Gentiana lawrencei var. farreri in response to climate change. We measured the flower size and number, individual size, and reproductive allocation of G. lawrencei var. farreri during the flowering period along an elevation gradient from 3200 to 4000 m, and explored their relationships using linear mixed-effect models and the structural equation model. We found that with elevation increasing, individual size and flower number decreased and flower size increased, while reproductive allocation remained unchanged. Individual size positively affected flower number, but was not related to flower size; reproductive allocation positively affected flower size, but was not related to flower number; there is a clear trade-off between flower size and number. We also found that elevation decreased flower number indirectly via directly reducing individual size. In sum, this study suggests that G. lawrencei var. farreri can adapt to alpine environments by the synergies or trade-offs among individual size, reproductive allocation, flower size, and flower number. This study increases our understanding of the adaptation mechanisms of alpine plants to climate change in alpine environments.

2.
New Phytol ; 242(2): 687-699, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396376

RESUMO

The effect of pathogens on host diversity has attracted much attention in recent years, yet how the influence of pathogens on individual plants scales up to affect community-level host diversity remains unclear. Here, we assessed the effects of foliar fungal pathogens on plant growth and species richness using allometric growth theory in population-level and community-level foliar fungal pathogen exclusion experiments. We calculated growth scaling exponents of 24 species to reveal the intraspecific size-dependent effects of foliar fungal pathogens on plant growth. We also calculated the intercepts to infer the growth rates of relatively larger conspecific individuals. We found that foliar fungal pathogens inhibited the growth of small conspecific individuals more than large individuals, resulting in a positive allometric growth. After foliar fungal pathogen exclusion, species-specific growth scaling exponents and intercepts decreased, but became positively related to species' relative abundance, providing a growth advantage for individuals of abundant species with a higher growth scaling exponent and intercept compared with rare species, and thus reduced species diversity. By adopting allometric growth theory, we elucidate the size-dependent mechanisms through which pathogens regulate species diversity and provide a powerful framework to incorporate antagonistic size-dependent processes in understanding species coexistence.


Assuntos
Fungos , Plantas , Plantas/microbiologia , Fungos/patogenicidade
3.
Mol Ther Nucleic Acids ; 35(1): 102126, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38352859

RESUMO

Activating cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) holds great potential for cancer immunotherapy by eliciting type-I interferon (IFN-I) responses. Yet, current approaches to cGAS-STING activation rely on STING agonists, which suffer from difficult formulation, poor pharmacokinetics, and marginal clinical therapeutic efficacy. Here, we report nature-inspired oligonucleotide, Svg3, as a cGAS agonist for cGAS-STING activation in tumor combination immunotherapy. The hairpin-shaped Svg3 strongly binds to cGAS and enhances phase separation to form Svg3-cGAS liquid-like droplets. This results in cGAS-specific immunoactivation and robust IFN-I responses. Remarkably, Svg3 outperforms several state-of-the-art STING agonists in murine and human cells/tissues. Nanoparticle-delivered Svg3 reduces tumor immunosuppression and potentiates immune checkpoint blockade therapeutic efficacy of multiple syngeneic tumor models in wild-type mice, but in neither cGas-/- nor Sting-/- mice. Overall, these results demonstrate the great potential of Svg3 as a cGAS agonistic oligonucleotide for cancer combination immunotherapy.

4.
Cancer Nurs ; 47(1): 20-30, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36729799

RESUMO

BACKGROUND: A variety of nonpharmacological interventions that improve the quality of life of patients with advanced cancer have been difficult for medical staff to select through randomized controlled trials or traditional meta-analyses. Thus, a network meta-analysis is necessary. OBJECTIVE: This study used network meta-analysis to analyze the effect of 13 different nonpharmacological interventions on improving the living quality of patients with advanced cancer. METHODS: Five English databases were searched up to January 2019. The search strategy only included terms relating to or describing the intervention. RESULTS: The study included 13 different nonpharmacological interventions. The overall efficacy was summarized through a holistic study of quality of life. The study found that the combined effect sizes of 13 nonpharmacological interventions crossed the invalid line (weighted mean difference, -13 [95% confidence interval, -33 to 8.5] to 1.7 [95% confidence interval, -18 to 22]), indicating that none of the intervention was significantly different from each other. By evaluating the heterogeneity of this outcome, no significant evidence of heterogeneity ( P > .05) was observed. Probability ranking according to the surface under the cumulative ranking curve showed that there was a great possibility for the CanWalk intervention and structured multidisciplinary intervention to improve outcomes for cancer patients. CONCLUSIONS: Thirteen nonpharmacological interventions did not significantly impact quality of life. Regarding the probability rank, CanWalk intervention may be the most promising way that advanced cancer patients can help themselves to a better life. Because of the limitations of the current studies, the conclusion needs further evidence. IMPLICATIONS FOR PRACTICE: Nurses should consider recommending moderate physical activity for patients with advanced cancer.


Assuntos
Neoplasias , Qualidade de Vida , Humanos , Neoplasias/terapia , Metanálise em Rede
5.
Acc Chem Res ; 56(21): 2933-2943, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37802125

RESUMO

The cyclic GMP-AMP synthase-stimulator interferon gene (cGAS-STING) pathway is an emerging therapeutic target for the prophylaxis and therapy of a variety of diseases, ranging from cancer, infectious diseases, to autoimmune disorders. As a cytosolic double stranded DNA (dsDNA) sensor, cGAS can bind with relatively long dsDNA, resulting in conformational change and activation of cGAS. Activated cGAS catalyzes the conversion of adenosine triphosphate (ATP) and guanosine triphosphate (GTP) into cGAMP, a cyclic dinucleotide (CDN). CDNs, including 2'3'-cGAMP, stimulate adapter protein STING on the endoplasmic membrane, triggering interferon regulatory factor 3 (IRF3) phosphorylation and nuclear factor kappa B (NF-κB) activation. This results in antitumor and antiviral type I interferon (IFN-I) responses. Moreover, cGAS-STING overactivation and the resulting IFN-I responses have been associated with a number of inflammatory and autoimmune diseases. This makes cGAS-STING appealing immunomodulatory targets for the prophylaxis and therapy of various related diseases. However, drug development of CDNs and CDN derivatives is challenged by their limited biostability, difficult formulation, poor pharmacokinetics, and inefficient tissue accumulation and cytosolic delivery. Though recent synthetic small molecular CDN- or non-CDN-based STING agonists have been reported with promising preclinical therapeutic efficacy, their therapeutic efficacy and safety remain to be fully evaluated preclinically and clinically. Therefore, it is highly desirable and clinically significant to advance drug development for cGAS-STING activation by innovative approaches, such as drug delivery systems and drug development for pharmacological immunomodulation of cGAS. In this Account, we summarize our recent research in the engineering and delivery of immunostimulatory or immunoregulatory modulators for cGAS and STING for the immunotherapy of cancer and autoimmune diseases. To improve the delivery efficiency of CDNs, we developed ionizable and pH-responsive polymeric nanocarriers to load STING agonists, aiming to improve the cellular uptake and facilitate the endosomal escape to induce efficient STING activation. We also codelivered STING agonists with complementary immunostimulatants in nanoparticle-in-hydrogel composites to synergetically elicit potent innate and adaptive antitumor responses that eradicate local and distant large tumors. Further, taking advantage of the simplicity of manufacturing and the established nucleic acid delivery system, we developed oligonucleotide-based cGAS agonists as immunostimulant immunotherapeutics as well as adjuvants for peptide antigens for cancer immunotherapy. To suppress the overly strong proinflammatory responses associated with cGAS-STING overactivation in some of the autoimmune disorders, we devised nanomedicine-in-hydrogel (NiH) that codelivers a cGAS inhibitor and cell-free DNA (cfDNA)-scavenging cationic nanoparticles (cNPs) for systemic immunosuppression in rheumatoid arthritis (RA) therapy. Lastly, we discussed current drug development by targeting cGAS-STING for cancer, infectious diseases, and autoimmune diseases, as well as the potential opportunities for utilizing cGAS-STING pathway for versatile applications in disease treatment.


Assuntos
Doenças Autoimunes , Doenças Transmissíveis , Interferon Tipo I , Neoplasias , Humanos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo , DNA/metabolismo , Neoplasias/terapia , Imunoterapia , Fatores Imunológicos , Adjuvantes Imunológicos , Hidrogéis
6.
Ecology ; 104(11): e4166, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37671835

RESUMO

Natural enemies and their interaction with host nutrient availability influence plant population dynamics, community structure, and ecosystem functions. However, the way in which these factors influence patterns of community stability, as well as the direct and indirect processes underlying that stability, remains unclear. Here, we investigated the separate and interactive roles of fungal/oomycete pathogens and nutrient fertilization on the temporal stability of community biomass and the potential mechanisms using a factorial experiment in an alpine meadow. We found that fungal pathogen exclusion reduced community temporal stability mainly through decreasing species asynchrony, while fertilization tended to reduce community temporal stability by decreasing species stability. However, there was no interaction between pathogen exclusion and nutrient fertilization. These effects were largely due to the direct effects of the treatments on plant biomass and not due to indirect effects mediated through plant diversity. Our findings highlight the need for a multitrophic perspective in field studies examining ecosystem stability.


Assuntos
Ecossistema , Pradaria , Biomassa , Plantas , Nutrientes , Fertilização , Solo/química
7.
Theranostics ; 13(13): 4304-4315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649594

RESUMO

Glioblastoma multiforme (GBM) is the most common and lethal type of adult brain cancer. Current GBM standard of care, including radiotherapy, often ends up with cancer recurrence, resulting in limited long-term survival benefits for GBM patients. Immunotherapy, such as immune checkpoint blockade (ICB), has thus far shown limited clinical benefit for GBM patients. Therapeutic vaccines hold great potential to elicit anti-cancer adaptive immunity, which can be synergistically combined with ICB and radiotherapy. Peptide vaccines are attractive for their ease of manufacturing and stability, but their therapeutic efficacy has been limited due to poor vaccine co-delivery and the limited ability of monovalent antigen vaccines to prevent tumor immune evasion. To address these challenges, here, we report GBM radioimmunotherapy that combines radiotherapy, ICB, and multivalent lymph-node-targeting adjuvant/antigen-codelivering albumin-binding vaccines (AAco-AlbiVax). Specifically, to codeliver peptide neoantigens and adjuvant CpG to lymph nodes (LNs), we developed AAco-AlbiVax based on a Y-shaped DNA scaffold that was site-specifically conjugated with CpG, peptide neoantigens, and albumin-binding maleimide-modified Evans blue derivative (MEB). As a result, these vaccines elicited antitumor immunity including neoantigen-specific CD8+ T cell responses in mice. In orthotopic GBM mice, the combination of AAco-AlbiVax, ICB, and fractionated radiation enhanced GBM therapeutic efficacy. However, radioimmunotherapy only trended more efficacious over radiotherapy alone. Taken together, these studies underscore the great potential of radioimmunotherapy for GBM, and future optimization of treatment dosing and scheduling would improve the therapeutic efficacy.


Assuntos
Glioblastoma , Vacinas , Animais , Camundongos , Glioblastoma/radioterapia , Radioimunoterapia , Recidiva Local de Neoplasia , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Albuminas , Linfonodos
8.
Materials (Basel) ; 16(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570081

RESUMO

The bond between a steel reinforcement/rod and glulam plays a crucial role in the resistance and deformation capacity of timbers joints. Existing studies provide different bond-slip models for reinforcements and rods with different anchorage lengths, in which the relationship between local bond stress and global bond behaviour cannot not be established. This study presents a unified analytical method for predicting the bond-slip behaviour of ribbed bars and threaded rods along the grain using a local bond-slip model of reinforcement at the elastic and post-yield stages. In the analytical method, equilibrium, compatibility, and constitutive models for reinforcement and rods are considered. The method is verified using test data of rebars and rods with different anchorage lengths. Comparisons between the experimental and calculated results suggest that the analytical method yields reasonably good predictions of the load-slip relationship and failure mode. Furthermore, the embedment lengths required for yield and the ultimate strengths of the reinforcement and rods along the grain are determined by assuming uniform bond stress distributions over the elastic and post-yield steel segment. The average bond stress over the entire anchorage length is calculated and compared with existing equations. Design recommendations for anchorage lengths are proposed for ribbed bars and threaded rods glued in glulam.

9.
New Phytol ; 240(1): 399-411, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482960

RESUMO

Nitrogen (N) enrichment is widely known to affect the root-associated arbuscular mycorrhizal fungal (AMF) community in different ways, for example, via altering soil properties and/or shifting host plant functional structure. However, empirical knowledge of their relative importance is still lacking. Using a long-term N addition experiment, we measured the AMF community taxonomic and phylogenetic diversity at the single plant species (roots of 15 plant species) and plant community (mixed roots) levels. We also measured four functional traits of 35 common plant species along the N addition gradient. We found divergent responses of AMF diversity to N addition for host plants with different innate heights (i.e. plant natural height under unfertilized treatment). Furthermore, our data showed that species-specific responses of AMF diversity to N addition were negatively related to the change in maximum plant height. When scaling up to the community level, N addition affected AMF diversity mainly through increasing the maximum plant height, rather than altering soil properties. Our results highlight the importance of plant height in driving AMF community dynamics under N enrichment at both species and community levels, thus providing important implications for understanding the response of AMF diversity to anthropogenic N deposition.


Assuntos
Micobioma , Micorrizas , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Nitrogênio/farmacologia , Filogenia , Plantas/microbiologia , Solo/química , Microbiologia do Solo
10.
bioRxiv ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37502970

RESUMO

Current cancer immunotherapy (e.g., immune checkpoint blockade (ICB)) has only benefited a small subset of patients. Cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) activation holds the potential to improve cancer immunotherapy by eliciting type-I interferon (IFN-I) responses in cancer cells and myeloid cells. Yet, current approaches to this end, mostly by targeting STING, have marginal clinical therapeutic efficacy. Here, we report a cGAS-specific agonistic oligonucleotide, Svg3, as a novel approach to cGAS-STING activation for versatile cancer immunotherapy. Featured with a hairpin structure with consecutive guanosines flanking the stem, Svg3 binds to cGAS and enhances cGAS-Svg3 phase separation to form liquid-like droplets. This results in cGAS activation by Svg3 for robust and dose-dependent IFN-I responses, which outperforms several state-of-the-art STING agonists in murine and human immune cells, and human tumor tissues. Nanocarriers efficiently delivers Svg3 to tissues, cells, and cytosol where cGAS is located. Svg3 reduces tumor immunosuppression and potentiates ICB therapeutic efficacy of multiple syngeneic tumors, in wildtype but neither cGas-/- nor goldenticket Sting-/- mice. Further, as an immunostimulant adjuvant, Svg3 enhances the immunogenicity of peptide antigens to elicit potent T cell responses for robust ICB combination immunotherapy of tumors. Overall, cGAS-agonistic Svg3 is promising for versatile cancer combination immunotherapy.

11.
Adv Sci (Weinh) ; 10(26): e2302575, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37435620

RESUMO

Rheumatoid arthritis (RA) is a systemic autoimmune disease with pathogenic inflammation caused partly by excessive cell-free DNA (cfDNA). Specifically, cfDNA is internalized into immune cells, such as macrophages in lymphoid tissues and joints, and activates pattern recognition receptors, including cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS), resulting in overly strong proinflammation. Here, nanomedicine-in-hydrogel (NiH) is reported that co-delivers cGAS inhibitor RU.521 (RU) and cfDNA-scavenging cationic nanoparticles (cNPs) to draining lymph nodes (LNs) for systemic immunosuppression in RA therapy. Upon subcutaneous injection, NiH prolongs LN retention of RU and cNPs, which pharmacologically inhibit cGAS and scavenged cfDNA, respectively, to inhibit proinflammation. NiH elicits systemic immunosuppression, repolarizes macrophages, increases fractions of immunosuppressive cells, and decreases fractions of CD4+ T cells and T helper 17 cells. Such skewed immune milieu allows NiH to significantly inhibit RA progression in collagen-induced arthritis mice. These studies underscore the great potential of NiH for RA immunotherapy.


Assuntos
Artrite Reumatoide , Ácidos Nucleicos Livres , Camundongos , Animais , Nanomedicina , Hidrogéis , Artrite Reumatoide/terapia , Terapia de Imunossupressão , Nucleotidiltransferases , Imunoterapia , Linfonodos , DNA
12.
Sci Adv ; 9(28): eade6257, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450588

RESUMO

Current cancer immunotherapy [e.g., immune checkpoint blockade (ICB)] only benefits small subsets of patients, largely due to immunosuppressive tumor microenvironment (TME). In situ tumor vaccination can reduce TME immunosuppression and thereby improve cancer immunotherapy. Here, we present single-dose injectable (nanovaccines + ICBs)-in-hydrogel (NvIH) for robust immunotherapy of large tumors with abscopal effect. NvIH is thermo-responsive hydrogel co-encapsulated with ICB antibodies and novel polymeric nanoparticles loaded with three immunostimulatory agonists for Toll-like receptors 7/8/9 (TLR7/8/9) and stimulator of interferon genes (STING). Upon in situ tumor vaccination, NvIH undergoes rapid sol-to-gel transformation, prolongs tumor retention, sustains the release of immunotherapeutics, and reduces acute systemic inflammation. In multiple poorly immunogenic tumor models, single-dose NvIH reduces multitier TME immunosuppression, elicits potent TME and systemic innate and adaptive antitumor immunity with memory, and regresses both local (vaccinated) and distant large tumors with abscopal effect, including distant orthotopic glioblastoma. Overall, NvIH holds great potential for tumor immunotherapy.


Assuntos
Hidrogéis , Neoplasias , Humanos , Linhagem Celular Tumoral , Imunoterapia , Terapia de Imunossupressão , Neoplasias/terapia , Imunidade Adaptativa , Microambiente Tumoral
13.
Ecology ; 104(2): e3944, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36477908

RESUMO

The rapid biodiversity losses of the Anthropocene have motivated ecologists to understand how biodiversity affects infectious diseases. Spatial scale is thought to moderate negative biodiversity-disease relationships (i.e., dilution effects) in zoonotic diseases, whereas evidence from plant communities for an effect of scale remains limited, especially at local scales where the mechanisms (e.g., encounter reduction) underlying dilution effects actually work. Here, we tested how spatial scale affects the direction and magnitude of biodiversity-disease relationships. We utilized a 10-year-old nitrogen addition experiment in a Tibetan alpine meadow, with 0, 5, 10, and 15 g/m2 nitrogen addition treatments. Within the treatment plots, we arranged a total of 216 quadrats (of either 0.125 × 0.125 m, 0.25 × 0.25 m or 0.5 × 0.5 m size) to test how the sample area affects the relationship between plant species richness and foliar fungal disease severity. We found that the dilution effects were stronger in the 0.125 × 0.125 m and 0.25 × 0.25 m quadrats, compared with 0.5 × 0.5 m quadrats. There was a significant interaction between species richness and nitrogen addition in the 0.125 × 0.125 m and 0.25 × 0.25 m quadrats, indicating that a dilution effect was more easily observed under higher levels of nitrogen addition. Based on multigroup structural equation models, we found that even accounting for the direct impact of nitrogen addition (i.e., "nitrogen-disease hypothesis"), the dilution effect still worked at the 0.125 × 0.125 m scale. Overall, these findings suggest that spatial scale directly determines the occurrence of dilution effects, and can partly explain the observed variation in biodiversity-disease relationships in grasslands. Next-generation frameworks for predicting infectious diseases under rapid biodiversity loss scenarios need to incorporate spatial information.


Assuntos
Biodiversidade , Pradaria , Plantas , Doenças das Plantas , Nitrogênio , Ecossistema
14.
Glob Chang Biol ; 29(3): 874-889, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36177515

RESUMO

The thermal compensatory response of microbial respiration contributes to a decrease in warming-induced enhancement of soil respiration over time, which could weaken the positive feedback between the carbon cycle and climate warming. Climate warming is also predicted to cause a worldwide decrease in soil moisture, which has an effect on the microbial metabolism of soil carbon. However, whether and how changes in moisture affect the thermal compensatory response of microbial respiration are unexplored. Here, using soils from an 8-year warming experiment in an alpine grassland, we assayed the thermal response of microbial respiration rates at different soil moisture levels. The results showed that relatively low soil moisture suppressed the thermal compensatory response of microbial respiration, leading to an enhanced response to warming. A subsequent moisture incubation experiment involving off-plot soils also showed that the response of microbial respiration to 100 d warming shifted from a slight compensatory response to an enhanced response with decreasing incubation moisture. Further analysis revealed that such respiration regulation by moisture was associated with shifts in enzymatic activities and carbon use efficiency. Our findings suggest that future drought induced by climate warming might weaken the thermal compensatory capacity of microbial respiration, with important consequences for carbon-climate feedback.


Assuntos
Microbiologia do Solo , Solo , Clima , Respiração , Carbono/metabolismo
15.
Ecology ; 103(12): e3841, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178025

RESUMO

Plant pathogens are often hypothesized to promote species coexistence by generating conspecific negative density dependence (CNDD). However, the relative importance of fungal versus oomycete pathogens in maintaining plant species coexistence and community composition remains unresolved, despite their recognized effects on plant performance. Here, we use fungicide application to investigate how fungal versus oomycete pathogens affect plant species coexistence in an alpine meadow. We found that the severity of foliar fungal disease was density-dependent at both intra- and interspecific levels. Fungal pathogen-exclusion treatment successfully decreased the severity of foliar fungal diseases, with no detectable effects on root colonization by arbuscular mycorrhizal fungi or on soil chemical properties. Fungal pathogens were important factors shaping CNDD across 25 coexisting plant species. Exclusion of fungal pathogens significantly reduced plant species richness and Shannon's evenness. Treatments that excluded fungal pathogens also led to significant shifts in plant community composition toward more Poaceae and Cyperaceae. These results indicate that fungal pathogens, especially those affecting aboveground plant parts, may play a larger role in maintaining species coexistence and shaping community composition than has been previously recognized.


Assuntos
Micorrizas , Oomicetos , Plantas/microbiologia , Solo/química , Microbiologia do Solo
16.
Ecol Lett ; 25(11): 2489-2499, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36134698

RESUMO

Microbial thermal adaptation is considered to be one of the core mechanisms affecting soil carbon cycling. However, the role of microbial community composition in controlling thermal adaptation is poorly understood. Using microbial communities from the rhizosphere and bulk soils in an 8-year warming experiment as a model, we experimentally demonstrate that respiratory thermal adaptation was much stronger in microbial K-strategist-dominated bulk soils than in microbial r-strategist-dominated rhizosphere soils. Soil carbon availability exerted strong selection on the dominant ecological strategy of the microbial community, indirectly influencing respiratory thermal adaptation. Our findings shed light on the linchpin of the dominant ecological strategy exhibited by the microbial community in determining its respiratory thermal adaptation, with implications for understanding soil carbon losses under warming.


Assuntos
Ciclo do Carbono , Microbiologia do Solo , Rizosfera , Solo , Carbono
17.
Ann Bot ; 130(4): 525-534, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35809261

RESUMO

BACKGROUND AND AIMS: Plant disease can dramatically affect population dynamics, community composition and ecosystem functions. However, most empirical studies focus on diseases at a certain time point and largely ignore their temporal stability, which directly affects our ability to predict when and where disease outbreaks will occur. METHODS: Using a removal experiment that manipulates plant diversity (i.e. a plant biodiversity and ecosystem function experiment) and a fertilization experiment in a Tibetan alpine meadow, we investigated how different plant biodiversity indices and nitrogen fertilization affect the temporal stability of foliar fungal diseases (measured as the mean value of community pathogen load divided by its standard deviation) over seven consecutive years. KEY RESULTS: We found that the temporal stability of foliar fungal diseases increased with plant diversity indices in the plant biodiversity and ecosystem function experiment. Meanwhile, we observed a weakly positive relationship between host diversity and temporal stability in the fertilization experiment. However, the nitrogen treatment did not affect temporal stability, given that fertilization increased both the mean and standard deviation of pathogen load by roughly the same magnitude. CONCLUSIONS: We conclude that host diversity regulates the temporal stability of pathogen load, but we note that this effect may be attenuated under rapid biodiversity loss in the Anthropocene.


Assuntos
Pradaria , Micoses , Biodiversidade , Ecossistema , Nitrogênio/análise , Solo , Tibet
18.
J Control Release ; 348: 84-94, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35649485

RESUMO

Circular RNAs (circRNA) is a class of natural (biogenic) or synthetic closed RNA without 5' or 3' ends. Meanwhile, their unique covalently-closed structures of circRNA prevent RNA degradation by exonucleases, thereby empowering them with high pharmaceutical stability and biostability relative to current standard-of-care linear mRNA. Natural circRNA can be non-coding RNAs as well as protein-coding RNA, the latter of which was recently discovered. The physiological functions of biogenic circRNAs, which largely remain elusive, include protein and gene sponges, cell activity modulators, and protein translation. The discovery that the circRNA levels can be correlated with some human diseases empowers circRNA with the potential as a novel type of disease biomarkers and a noncanonical class of therapeutic targets. Recently, synthetic circRNA have been engineered to explore their applications as a novel class of mRNA therapeutics and vaccines. In this review, we will discuss the current understanding of the biogenesis and physiological functions of natural circRNAs, the approaches to circRNA synthesis, and current research in the exploration of endogenous circRNAs as novel therapeutic targets and testing circRNAs as an emerging class of RNA therapeutics and vaccines.


Assuntos
RNA Circular , RNA , Humanos , RNA/genética , RNA Mensageiro/genética , Vacinas Sintéticas , Vacinas de mRNA
19.
Adv Sci (Weinh) ; 9(23): e2201895, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35712773

RESUMO

Immune checkpoint blockade (ICB) has significantly advanced cancer immunotherapy, yet its patient response rates are generally low. Vaccines, including immunostimulant-adjuvanted peptide antigens, can improve ICB. The emerging neoantigens generated by cancer somatic mutations elicit cancer-specific immunity for personalized immunotherapy; the novel cyclic dinucleotide (CDN) adjuvants activate stimulator of interferon genes (STING) for antitumor type I interferon (IFN-I) responses. However, CDN/neoantigen vaccine development has been limited by the poor antigen/adjuvant codelivery. Here, pH-responsive CDN/neoantigen codelivering nanovaccines (NVs) for ICB combination tumor immunotherapy are reported. pH-responsive polymers are synthesized to be self-assembled into multivesicular nanoparticles (NPs) at physiological pH and disassembled at acidic conditions. NPs with high CDN/antigen coloading are selected as NVs for CDN/antigen codelivery to antigen presenting cells (APCs) in immunomodulatory lymph nodes (LNs). In the acidic endosome of APCs, pH-responsive NVs facilitate the vaccine release and escape into cytosol, where CDNs activate STING for IFN-I responses and antigens are presented by major histocompatibility complex (MHC) for T-cell priming. In mice, NVs elicit potent antigen-specific CD8+ T-cell responses with immune memory, and reduce multifaceted tumor immunosuppression. In syngeneic murine tumors, NVs show robust ICB combination therapeutic efficacy. Overall, these CDN/neoantigen-codelivering NVs hold the potential for ICB combination tumor immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Vacinas , Adjuvantes Imunológicos , Animais , Imunoterapia , Camundongos , Neoplasias/terapia , Polímeros
20.
Oecologia ; 195(3): 737-749, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33582871

RESUMO

Foliar fungi (defined as all fungal species in leaves after surface sterilization; hereafter, 'FF') are of great importance to host plant growth and health, and can also affect ecosystem functioning. Despite this importance, few studies have explicitly examined the role of host filtering in shaping local FF communities, and we know little about the differences of FF community assembly between symptomatic (caused by fungal pathogens) and asymptomatic leaves, and whether there is phylogenetic congruence between host plants and FF. We examined FF communities from 25 host plant species (for each species, symptomatic and asymptomatic leaves, respectively) in an alpine meadow of the Tibetan Plateau using MiSeq sequencing of ITS1 gene biomarkers. We evaluated the phylogenetic congruence of FF-plant interactions based on cophylogenetic analysis, and examined α- and ß-phylogenetic diversity indices of the FF communities. We found strong support for phylogenetic congruence between host plants and FF for both asymptomatic and symptomatic leaves, and a host-caused filter appears to play a major role in shaping FF communities. Most importantly, we provided independent lines of evidence that host environmental filtering (caused by fungal infections) outweighs competitive exclusion in driving FF community assembly in symptomatic leaves. Our results help strengthen the foundation of FF community assembly by demonstrating the importance of host environmental filtering in driving FF community assembly.


Assuntos
Micobioma , Ecossistema , Filogenia , Folhas de Planta , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA