Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 572
Filtrar
1.
Nat Commun ; 15(1): 3926, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724513

RESUMO

Patients with decreased levels of CD18 (ß2 integrins) suffer from life-threatening bacterial and fungal infections. CD11b, the α subunit of integrin CR3 (CD11b/CD18, αMß2), is essential for mice to fight against systemic Candida albicans infections. Live elongating C. albicans activates CR3 in immune cells. However, the hyphal ligands that activate CR3 are not well defined. Here, we discovered that the C. albicans Als family proteins are recognized by the I domain of CD11b in macrophages. This recognition synergizes with the ß-glucan-bound lectin-like domain to activate CR3, thereby promoting Syk signaling and inflammasome activation. Dectin-2 activation serves as the "outside-in signaling" for CR3 activation at the entry site of incompletely sealed phagosomes, where a thick cuff of F-actin forms to strengthen the local interaction. In vitro, CD18 partially contributes to IL-1ß release from dendritic cells induced by purified hyphal Als3. In vivo, Als3 is vital for C. albicans clearance in mouse kidneys. These findings uncover a novel family of ligands for the CR3 I domain that promotes fungal clearance.


Assuntos
Antígenos CD18 , Candidíase , Proteínas Fúngicas , Lectinas Tipo C , Macrófagos , Animais , Camundongos , beta-Glucanas/metabolismo , beta-Glucanas/imunologia , Candida albicans/imunologia , Candidíase/imunologia , Candidíase/microbiologia , Antígeno CD11b/metabolismo , Antígeno CD11b/imunologia , Antígenos CD18/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/imunologia , Lectinas Tipo C/metabolismo , Lectinas Tipo C/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Transdução de Sinais
2.
Nat Commun ; 15(1): 4005, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740786

RESUMO

The neocortex comprises six cortical layers that play a crucial role in information processing; however, it remains unclear whether laminar processing is consistent across all regions within a single cortex. In this study, we demonstrate diverse laminar response patterns in the primary visual cortex (V1) of three male macaque monkeys when exposed to visual stimuli at different spatial frequencies (SFs). These response patterns can be categorized into two groups. One group exhibit suppressed responses in the output layers for all SFs, while the other type shows amplified responses specifically at high SFs. Further analysis suggests that both magnocellular (M) and parvocellular (P) pathways contribute to the suppressive effect through feedforward mechanisms, whereas amplification is specific to local recurrent mechanisms within the parvocellular pathway. These findings highlight the non-uniform distribution of neural mechanisms involved in laminar processing and emphasize how pathway-specific amplification selectively enhances representations of high-SF information in primate V1.


Assuntos
Estimulação Luminosa , Córtex Visual Primário , Vias Visuais , Animais , Masculino , Córtex Visual Primário/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Córtex Visual/fisiologia , Macaca mulatta
3.
Hortic Res ; 11(4): uhad215, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38689695

RESUMO

Apricot, belonging to the Armeniaca section of Rosaceae, is one of the economically important crop fruits that has been extensively cultivated. The natural wild apricots offer valuable genetic resources for crop improvement. However, some of them are endemic, with small populations, and are even at risk of extinction. In this study we unveil chromosome-level genome assemblies for two southern China endemic apricots, Prunus hongpingensis (PHP) and P. zhengheensis (PZH). We also characterize their evolutionary history and the genomic basis of their local adaptation using whole-genome resequencing data. Our findings reveal that PHP and PZH are closely related to Prunus armeniaca and form a distinct lineage. Both species experienced a decline in effective population size following the Last Glacial Maximum (LGM), which likely contributed to their current small population sizes. Despite the observed decrease in genetic diversity and heterozygosity, we do not observe an increased accumulation of deleterious mutations in these two endemic apricots. This is likely due to the combined effects of a low inbreeding coefficient and strong purifying selection. Furthermore, we identify a set of genes that have undergone positive selection and are associated with local environmental adaptation in PHP and PZH, respectively. These candidate genes can serve as valuable genetic resources for targeted breeding and improvement of cultivated apricots. Overall, our study not only enriches our comprehension of the evolutionary history of apricot species but also offers crucial insights for the conservation and future breeding of other endemic species amidst rapid climate changes.

4.
Chemosphere ; 358: 142225, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705415

RESUMO

Short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs) have garnered significant attention because they have persistence and potential toxicity, and can undergo long-distance transport. Chlorinated paraffins (CPs) inhaled in the size-fractionated particulate phase and gas phase can carry different risks to human health due to their ability to accumulate in different regions of the respiratory tract and exhibit varying deposition efficiencies. In our study, large-volume ambient air samples in both the size-fractionated particulate phase (Dp < 1.0 µm, 1.0-2.5 µm, 2.5-10 µm, and Dp ≥ 10 µm) and gas phase were collected simultaneously in Beijing using an active sampler. The overall levels of SCCPs and MCCPs were relatively high, the ranges being 57-881 and 30-385 ng/m3, respectively. SCCPs tended to be partitioned in the gas phase (on average 75% of the ΣSCCP concentration), while MCCPs tended to be partitioned in the particulate phase (on average 62% of the ΣMCCP concentration). Significant correlations were discovered between the logarithm-transformed gas-particle partition coefficients (KP) and predicted subcooled vapor pressures (PL0) (p < 0.01 for SCCPs and MCCPs) and between the logarithm-transformed KP values and octanol-air partition coefficients (KOA) (p < 0.01 for SCCPs and MCCPs). Thus, the slopes indicated that organic matter absorption was the dominant process involved in gas-particle partitioning. We used the ICRP model to calculate deposition concentrations for particulate-associated CPs in head airways region (15.6-71.4 ng/m³), tracheobronchial region (0.8-4.8 ng/m³), and alveolar region (5.1-21.9 ng/m³), then combined these concentrations with the CP concentrations in the gas phase to calculate estimated daily intakes (EDIs) for inhalation. The EDIs for SCCPs and MCCPs through inhalation of ambient air for the all-ages group were 67.5-184.2 ng/kg/day and 19.7-53.7 ng/kg/day, respectively. The results indicated that SCCPs and MCCPs in ambient air do not currently pose strong risks to human health in the study area.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Hidrocarbonetos Clorados , Parafina , Tamanho da Partícula , Material Particulado , Parafina/análise , Poluentes Atmosféricos/análise , Humanos , Material Particulado/análise , Hidrocarbonetos Clorados/análise , Medição de Risco , Exposição por Inalação/análise , Exposição por Inalação/estatística & dados numéricos , Pequim , Halogenação , Gases/análise
5.
Fish Shellfish Immunol ; : 109554, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641217

RESUMO

Nocardia seriolae pathogen causes chronic granulomatous disease, reportedly affecting over 40 species of marine and freshwater cultured fish. Hence, research is required to address and eliminate this significant threat to the aquaculture industry. In this respect, a reliable and reproducible infection model needs to be established to better understand the biology of this pathogen and its interactions with the host during infection, as well as to develop new vaccines or other effective treatment methods. In this study, we examined the pathogenicity of the pathogen and the immune response of snakehead (Channa argus) juvenile to N. seriolae using a range of methods and analyses, including pathogen isolation and identification, histopathology, Kaplan-Meier survival curve analysis, and determination of the median lethal dose (LD50) and cytokine expression. We have preliminarily established a N. seriolae - C. argus model. According to our morphological and phylogenetic analysis data, the isolated strain was identified as N. seriolae and named NSE01. Eighteen days post-infection of healthy juvenile C. argus with N. seriolae NSE01, the mortality rate in all four experimental groups (intraperitoneally injected with 1 × 105 CFU/mL - 1 × 108 CFU/mL of bacterial suspension) (n = 120) was 100%. The LD50 of N. seriolae NSE01 for juvenile C. argus was determined to be 1.13 × 106 CFU/fish. Infected juvenile C. argus had significant pathological changes, including visceral tissue swelling, hemorrhage, and the presence of numerous nodules of varying sizes in multiple tissues. Further histopathological examination revealed typical systemic granuloma formation. Additionally, following infection with N. seriolae NSE01, the gene expression of important cytokines, such as Toll-like receptor genes TLR2, TLR13, interleukin-1 receptor genes IL1R1, IL1R2, and interferon regulatory factor IRF2 were significantly upregulated in different tissues, indicating their potential involvement in the host immune response and regulation against N. seriolae. In conclusion, juvenile C. argus can serve as a suitable model for N. seriolae infection. The establishment of this animal model will facilitate the study of the pathogenesis of nocardiosis and the development of vaccines.

6.
Chin Med ; 19(1): 60, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589903

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis is a persistent disease of the lung interstitium for which there is no efficacious pharmacological therapy. Protodioscin, a steroidal saponin, possesses diverse pharmacological properties; however, its function in pulmonary fibrosis is yet to be established. Hence, in this investigation, it was attempted to figure out the anti-pulmonary fibrosis influences of protodioscin and its pharmacological properties related to oxidative stress. METHODS: A mouse lung fibrosis model was generated using tracheal injections of bleomycin, followed by intraperitoneal injection of different concentrations of protodioscin, and the levels of oxidative stress and fibrosis were detected in the lungs. Multiple fibroblasts were treated with TGF-ß to induce their transition to myofibroblasts. It was attempted to quantify myofibroblast markers' expression levels and reactive oxygen species levels as well as Nrf2 activation after co-incubation of TGF-ß with fibroblasts and different concentrations of protodioscin. The influence of protodioscin on the expression and phosphorylation of p62, which is associated with Nrf2 activation, were detected, and p62 related genes were predicted by STRING database. The effects of Nrf2 inhibitor or silencing of the Nrf2, p62 and NBR1 genes, respectively, on the activation of Nrf2 by protodioscin were examined. The associations between p62, NBR1, and Keap1 in the activation of Nrf2 by protodioscin was demonstrated using a co-IP assay. Nrf2 inhibitor were used when protodioscin was treated in mice with pulmonary fibrosis and lung tissue fibrosis and oxidative stress levels were detected. RESULTS: In vivo, protodioscin decreased the levels of fibrosis markers and oxidative stress markers and activated Nrf2 in mice with pulmonary fibrosis, and these effects were inhibited by Nrf2 inhibitor. In vitro, protodioscin decreased the levels of myofibroblast markers and oxidative stress markers during myofibroblast transition and promoted Nrf2 downstream gene expression, with reversal of these effects after Nrf2, p62 and NBR1 genes were silenced or Nrf2 inhibitors were used, respectively. Protodioscin promoted the binding of NBR1 to p62 and Keap1, thereby reducing Keap1-Nrf2 binding. CONCLUSION: The NBR1-p62-Nrf2 axis is targeted by protodioscin to reduce oxidative stress and inhibit pulmonary fibrosis.

7.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675697

RESUMO

The allelopathic autotoxicity of ginsenosides is an important cause of continuous cropping obstacles in ginseng planting. There is no report on the potential molecular mechanism of the correlation between polarity of ginsenoside components and their allelopathic autotoxicity. This study applied a combination of metabolomics and transcriptomics analysis techniques, combined with apparent morphology, physiological indexes, and cell vitality detection of the ginseng hairy roots, through which the molecular mechanism of correlation between polarity and allelopathic autotoxicity of ginsenosides were comprehensively studied. The hairy roots of ginseng presented more severe cell apoptosis under the stress of low-polarity ginsenoside components (ZG70). ZG70 exerted allelopathic autotoxicity by regulating the key enzyme genes of cis-zeatin (cZ) synthesis pathway, indole-3-acetic acid (IAA) synthesis pathway, and jasmonates (JAs) signaling transduction pathway. The common pathway for high-polarity ginsenoside components (ZG50) and ZG70 to induce the development of allelopathic autotoxicity was through the expression of key enzymes in the gibberellin (GA) signal transduction pathway, thereby inhibiting the growth of ginseng hairy roots. cZ, indole-3-acetamid (IAM), gibberellin A1 (GA1), and jasmonoyl-L-isoleucine (JA-ILE) were the key response factors in this process. It could be concluded that the polarity of ginsenoside components were negatively correlated with their allelopathic autotoxicity.


Assuntos
Regulação da Expressão Gênica de Plantas , Ginsenosídeos , Panax , Reguladores de Crescimento de Plantas , Raízes de Plantas , Transcriptoma , Panax/metabolismo , Panax/genética , Panax/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Perfilação da Expressão Gênica , Alelopatia , Transdução de Sinais/efeitos dos fármacos , Metabolômica/métodos
8.
Sci Total Environ ; 928: 172459, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615780

RESUMO

Liquid crystal monomers (LCMs) comprise a class of organic pollutants that have garnered considerable attention because of their dioxin-like toxicity (i.e., modulation of genes) and presence in various environments. However, limited information about the identities, occurrence, and distribution of LCMs has highlighted an urgent need for a high-throughput and sensitive analytical method. In this study, we developed and validated a rapid, simple, sensitive method that involves minimal solvent consumption. The method was applied for the simultaneous detection and identification of 78 LCMs in atmospheric total suspended particulate samples (dae < 100 µm) using gas chromatography coupled with triple quadrupole mass spectrometry. The results showed high degrees of linearity with correlation coefficients >0.995 in the concentration range of 5.0-500 ng/mL. The instrumental detection limits ranged from 0.7 to 5.3 pg, and the method detection limits ranged from 0.1 to 0.9 pg/m3. The accuracy of the method was between 70 % and 130 % for most analytes, and the relative standard deviations of six replicates were <15 % at three levels of spiking (10, 50, and 200 ng/mL). The developed analytical method was applied to analyze real air particulate samples from Beijing, China. Overall, 45 LCMs ranged from 65.5 to 145.7 pg/m3, with a mean concentration of 92.5 pg/m3. Among them, (trans,trans)-4-propyl-4'-ethenyl-1,1'-bicyclohexane (PVB) was the most abundant, with an average concentration of 33.6 pg/m3. The total estimated daily intakes of LCMs for adults and children were 15.6 and 46.6 pg/kg bw/day, respectively. Accordingly, the method described herein is suitable for quantifying LCMs in atmospheric particulate samples. This study will be valuable for investigating LCM environmental occurrence, behaviors, and risk assessments.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Cristais Líquidos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pequim , Material Particulado/análise
9.
Support Care Cancer ; 32(5): 314, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683417

RESUMO

PURPOSE: This study aimed to assess the different needs of patients with breast cancer and their families in online health communities at different treatment phases using a Latent Dirichlet Allocation (LDA) model. METHODS: Using Python, breast cancer-related posts were collected from two online health communities: patient-to-patient and patient-to-doctor. After data cleaning, eligible posts were categorized based on the treatment phase. Subsequently, an LDA model identifying the distinct need-related topics for each phase of treatment, including data preprocessing and LDA topic modeling, was established. Additionally, the demographic and interactive features of the posts were manually analyzed. RESULTS: We collected 84,043 posts, of which 9504 posts were included after data cleaning. Early diagnosis and rehabilitation treatment phases had the highest and lowest number of posts, respectively. LDA identified 11 topics: three in the initial diagnosis phase and two in each of the remaining treatment phases. The topics included disease outcomes, diagnosis analysis, treatment information, and emotional support in the initial diagnosis phase; surgical options and outcomes, postoperative care, and treatment planning in the perioperative treatment phase; treatment options and costs, side effects management, and disease prognosis assessment in the non-operative treatment phase; diagnosis and treatment options, disease prognosis, and emotional support in the relapse and metastasis treatment phase; and follow-up and recurrence concerns, physical symptoms, and lifestyle adjustments in the rehabilitation treatment phase. CONCLUSION: The needs of patients with breast cancer and their families differ across various phases of cancer therapy. Therefore, specific information or emotional assistance should be tailored to each phase of treatment based on the unique needs of patients and their families.


Assuntos
Neoplasias da Mama , Mineração de Dados , Humanos , Neoplasias da Mama/psicologia , Neoplasias da Mama/terapia , Neoplasias da Mama/reabilitação , Feminino , Mineração de Dados/métodos , Avaliação das Necessidades , Internet
11.
Clin Epigenetics ; 16(1): 39, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461320

RESUMO

Alzheimer's disease (AD) has a complex pathogenesis, and multiple studies have indicated that histone post-translational modifications, especially acetylation, play a significant role in it. With the development of mass spectrometry and proteomics, an increasing number of novel HPTMs, including lactoylation, crotonylation, ß-hydroxybutyrylation, 2-hydroxyisobutyrylation, succinylation, and malonylation, have been identified. These novel HPTMs closely link substance metabolism to gene regulation, and an increasing number of relevant studies on the relationship between novel HPTMs and AD have become available. This review summarizes the current advances and implications of novel HPTMs in AD, providing insight into the deeper pathogenesis of AD and the development of novel drugs.


Assuntos
Doença de Alzheimer , Histonas , Humanos , Histonas/metabolismo , Doença de Alzheimer/genética , Metilação de DNA , Processamento de Proteína Pós-Traducional , Acetilação
12.
Nanomaterials (Basel) ; 14(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38535633

RESUMO

CeO2 is an outstanding support commonly used for the CuO-based CO oxidation catalysts due to its excellent redox property and oxygen storage-release property. However, the inherently small specific surface area of CeO2 support restricts the further enhancement of its catalytic performance. In this work, the novel mesoporous CeO2 nanosphere with a large specific surface area (~190.4 m2/g) was facilely synthesized by the improved hydrothermal method. The large specific surface area of mesoporous CeO2 nanosphere could be successfully maintained even at high temperatures up to 500 °C, exhibiting excellent thermal stability. Then, a series of CuO-based CO oxidation catalysts were prepared with the mesoporous CeO2 nanosphere as the support. The large surface area of the mesoporous CeO2 nanosphere support could greatly promote the dispersion of CuO active sites. The effects of the CuO loading amount, the calcination temperature, mesostructure, and redox property on the performances of CO oxidation were systematically investigated. It was found that high Cu+ concentration and lattice oxygen content in mesoporous CuO/CeO2 nanosphere catalysts greatly contributed to enhancing the performances of CO oxidation. Therefore, the present mesoporous CeO2 nanosphere with its large specific surface area was considered a promising support for advanced CO oxidation and even other industrial catalysts.

13.
Org Biomol Chem ; 22(15): 3019-3024, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38530279

RESUMO

An unusual pyridine-containing sesterterpenoid, leucosceptrodine (1), and five new nor-leucosceptrane sesterterpenoids, including bisnor- (C23, 2), tetranor- (C21, 3) and pentanor- (C20, 4-6) skeletons, were isolated from the leaves of Tibetan Leucosceptrum canum. Their structures including their absolute configurations were determined by extensive spectroscopic analyses and quantum chemical calculations. A single crystal of one epimer (5) was crystallized from a pair of inseparable epimers, and its structure including its absolute configuration was determined by X-ray crystallographic analysis. The immunosuppressive activities of compounds 1-4 with different potencies were evaluated by inhibiting the secretion of cytokines TNF-α and IL-6 in LPS-induced RAW264.7 macrophages.


Assuntos
Lamiaceae , Sesterterpenos , Sesterterpenos/química , Tibet , Lamiaceae/química , Cristalografia por Raios X , Piridinas/farmacologia , Estrutura Molecular
14.
Eur J Pharmacol ; 971: 176496, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508437

RESUMO

Patients with myocardial infarction have a much worse prognosis when they have myocardial ischemia-reperfusion (I/R) injury. Further research into the molecular basis of myocardial I/R injury is therefore urgently needed, as well as the identification of novel therapeutic targets and linkages to interventions. Three cysteine residues are present in DJ-1 at amino acids 46, 53, and 106 sites, with the cysteine at position 106 being the most oxidation-prone. This study sought to understand how oxidized DJ-1(C106) contributes to myocardial I/R damage. Rats' left anterior descending branches were tied off to establish a myocardial I/R model in vivo. A myocardial I/R model in vitro was established via anoxia/reoxygenation (A/R) of H9c2 cells. The results showed that autophagy increased after I/R, accompanied by the increased expression of oxidized DJ-1 (ox-DJ-1). In contrast, after pretreatment with NAC (N-acetylcysteine, a ROS scavenger) or Comp-23 (Compound-23, a specific antioxidant binding to the C106 site of DJ-1), the levels of ox-DJ-1, autophagy and LDH release decreased, and cell survival rate increased. Furthermore, the inhibition of interaction between ox-DJ-1 and PTEN could increase PTEN phosphatase activity, inhibit the p-IKK/NF-κB/Beclin1 pathway, reduce injurious autophagy, and alleviate A/R injury. However, BA (Betulinic acid, a NF-κB agonist) was able to reverse the protective effects produced by Comp-23 pretreatment. In conclusion, ox-DJ-1 could activate detrimental autophagy through the PTEN/p-IKK/NF-κB/Beclin1 pathway and exacerbate myocardial I/R injury.


Assuntos
Traumatismo por Reperfusão Miocárdica , NF-kappa B , Animais , Humanos , Ratos , Autofagia , Proteína Beclina-1 , Cisteína/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , NF-kappa B/metabolismo , PTEN Fosfo-Hidrolase , Ratos Sprague-Dawley
15.
Plant J ; 118(4): 1174-1193, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430515

RESUMO

Host-induced gene silencing (HIGS) is an inherent mechanism of plant resistance to fungal pathogens, resulting from cross-kingdom RNA interference (RNAi) mediated by small RNAs (sRNAs) delivered from plants into invading fungi. Introducing artificial sRNA precursors into crops can trigger HIGS of selected fungal genes, and thus has potential applications in agricultural disease control. To investigate the HIGS of apple (Malus sp.) during the interaction with Botryosphaeria dothidea, the pathogenic fungus causing apple ring rot disease, we evaluated whether apple miRNAs can be transported into and target genes in B. dothidea. Indeed, miR159a from Malus hupehensis, a wild apple germplasm with B. dothidea resistance, silenced the fungal sugar transporter gene BdSTP. The accumulation of miR159a in extracellular vesicles (EVs) of both infected M. hupehensis and invading B. dothidea suggests that this miRNA of the host is transported into the fungus via the EV pathway. Knockout of BdSTP caused defects in fungal growth and proliferation, whereas knockin of a miR159a-insensitive version of BdSTP resulted in increased pathogenicity. Inhibition of miR159a in M. hupehensis substantially enhanced plant sensitivity to B. dothidea, indicating miR159a-mediated HIGS against BdSTP being integral to apple immunity. Introducing artificial sRNA precursors targeting BdSTP and BdALS, an acetolactate synthase gene, into M. hupehensis revealed that double-stranded RNAs were more potent than engineered MIRNAs in triggering HIGS alternative to those natural of apple and inhibiting infection. These results provide preliminary evidence for cross-kingdom RNAi in the apple-B. dothidea interaction and establish HIGS as a potential disease control strategy in apple.


Assuntos
Ascomicetos , Resistência à Doença , Inativação Gênica , Malus , MicroRNAs , Doenças das Plantas , Malus/microbiologia , Malus/genética , Malus/imunologia , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , MicroRNAs/genética , Interações Hospedeiro-Patógeno , Interferência de RNA
16.
Phytomedicine ; 128: 155507, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552430

RESUMO

BACKGROUND: Abnormal activation of astrocytes in the amygdala contributes to anxiety after hemorrhagic shock and resuscitation (HSR). Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)-associated epigenetic reprogramming of astrocytic activation is crucial to anxiety. A bioactive monomer derived from Epimedium icariin (ICA) has been reported to modulate NF-κB signaling and astrocytic activation. PURPOSE: The present study aimed to investigate the effects of ICA on post-HSR anxiety disorders and its potential mechanism of action. METHODS: We first induced HSR in mice through a bleeding and re-transfusion model and selectively inhibited and activated astrocytes in the amygdala using chemogenetics. Then, ICA (40 mg/kg) was administered by oral gavage once daily for 21 days. Behavioral, electrophysiological, and pathological changes were assessed after HSR using the light-dark transition test, elevated plus maze, recording of local field potential (LFP), and immunofluorescence assays. RESULTS: Exposure to HSR reduced the duration of the light chamber and attenuated open-arm entries. Moreover, HSR exposure increased the theta oscillation power in the amygdala and upregulated NF-κB p65, H3K27ac, and H3K4me3 expression. Contrarily, chemogenetic inhibition of astrocytes significantly reversed these changes. Chemogenetic inhibition in astrocytes was simulated by ICA, but chemogenetic activation of astrocytes blocked the neuroprotective effects of ICA. CONCLUSION: ICA mitigated anxiety-like behaviors induced by HSR in mice via inhibiting astrocytic activation, which is possibly associated with NF-κB-induced epigenetic reprogramming.


Assuntos
Ansiedade , Astrócitos , Flavonoides , Choque Hemorrágico , Animais , Astrócitos/efeitos dos fármacos , Flavonoides/farmacologia , Choque Hemorrágico/tratamento farmacológico , Camundongos , Ansiedade/tratamento farmacológico , Masculino , Ressuscitação/métodos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Comportamento Animal/efeitos dos fármacos , Tonsila do Cerebelo/efeitos dos fármacos , Epimedium/química
17.
Exp Neurol ; 376: 114758, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513970

RESUMO

Impaired long-term memory, a complication of traumatic stress including hemorrhage shock and resuscitation (HSR), has been reported to be associated with multiple neurodegenerations. The ventral tegmental area (VTA) participates in both learned appetitive and aversive behaviors. In addition to being prospective targets for the therapy of addiction, depression, and other stress-related diseases, VTA glutamatergic neurons are becoming more widely acknowledged as powerful regulators of reward and aversion. This study revealed that HSR exposure induces memory impairments and decreases the activation in glutamatergic neurons, and decreased ß power in the VTA. We also found that optogenetic activation of glutamatergic neurons in the VTA mitigated HSR-induced memory impairments, and restored ß power. Moreover, hydrogen sulfide (H2S), a gasotransmitter with pleiotropic roles, has neuroprotective functions at physiological concentrations. In vivo, H2S administration improved HSR-induced memory deficits, elevated c-fos-positive vesicular glutamate transporters (Vglut2) neurons, increased ß power, and restored the balance of γ-aminobutyric acid (GABA) and glutamate in the VTA. This work suggests that glutamatergic neuron stimulation via optogenetic assay and exogenous H2S may be useful therapeutic approaches for improving memory deficits following HSR.


Assuntos
Modelos Animais de Doenças , Ácido Glutâmico , Sulfeto de Hidrogênio , Transtornos da Memória , Camundongos Endogâmicos C57BL , Neurônios , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Camundongos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/terapia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ácido Glutâmico/metabolismo , Ácido Glutâmico/toxicidade , Choque Hemorrágico , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Optogenética/métodos
18.
MedComm (2020) ; 5(3): e483, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463398

RESUMO

Epidermal growth factor receptor-targeted (EGFR-targeted) therapies show promise for non-small cell lung cancer (NSCLC), but they are ineffective in a third of patients who lack EGFR mutations. This underlines the need for personalized treatments for patients with EGFR wild-type NSCLC. A genome-wide CRISPR/Cas9 screen has identified the enzyme phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), which is vital in de novo purine biosynthesis and tumor development, as a potential drug target for EGFR wild-type NSCLC. We have further confirmed that PAICS expression is significantly increased in NSCLC tissues and correlates with poor patient prognosis. Knockdown of PAICS resulted in a marked reduction in both in vitro and in vivo proliferation of EGFR wild-type NSCLC cells. Additionally, PAICS silencing led to cell-cycle arrest in these cells, with genes involved in the cell cycle pathway being differentially expressed. Consistently, an increase in cell proliferation ability and colony number was observed in cells with upregulated PAICS in EGFR wild-type NSCLC. PAICS silencing also caused DNA damage and cell-cycle arrest by interacting with DNA repair genes. Moreover, decreased IMPDH2 activity and activated PI3K-AKT signaling were observed in NSCLC cells with EGFR mutations, which may compromise the effectiveness of PAICS knockdown. Therefore, PAICS plays an oncogenic role in EGFR wild-type NSCLC and represents a potential therapeutic target for this disease.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38468152

RESUMO

BACKGROUND: Systemic inflammation and frailty have been implicated in osteoporosis (OP) and fracture risks; however, existing evidence remains limited and inconclusive. This study aimed to assess the associations of systemic inflammation and frailty phenotype with incident OP and fracture and to evaluate the mediating role of frailty phenotype. METHODS: The present study analysed data from the UK Biobank, a comprehensive and representative dataset encompassing over 500 000 individuals from the general population. Baseline peripheral blood cell counts were employed to calculate the systemic inflammation markers, including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and systemic immune-inflammation index (SII). Frailty phenotype was assessed using five criteria, defined as frail (≥3 items met), pre-frail (1-2 items met) and non-frail (0 items met). OP and fracture events were confirmed through participants' health-related records. Multivariable linear and Cox regression models were utilized, along with mediation analysis. RESULTS: Increased systemic inflammation was associated with increased risks of OP and fracture. The corresponding hazard ratios and 95% confidence intervals (CIs) for OP risk per standard deviation increase in the log-transformed NLR, PLR and SII were 1.113 (1.093-1.132), 1.098 (1.079-1.118) and 1.092 (1.073-1.111), and for fracture risk, they were 1.066 (1.051-1.082), 1.059 (1.044-1.075) and 1.073 (1.058-1.089), respectively. Compared with the non-frail individuals, the pre-frail and frail ones showed an elevated OP risk by 21.2% (95% CI: 16.5-26.2%) and 111.0% (95% CI: 98.1-124.8%), respectively, and an elevated fracture risk by 6.1% (95% CI: 2.8-9.5%) and 38.2% (95% CI: 30.7-46.2%), respectively. The systemic inflammation level demonstrated a positive association with frailty, with ß (95% CI) of 0.034 (0.031-0.037), 0.026 (0.023-0.029) and 0.008 (0.005-0.011) in response to per standard deviation increment in log-transformed SII, NLR and PLR, respectively. The frailty phenotype mediated the association between systemic inflammation and OP/fracture risk. Subgroup and sensitivity analyses confirmed the robustness of these findings. CONCLUSIONS: Systemic inflammation and frailty phenotype are independently linked to increased risks of OP and fracture. The frailty phenotype partially mediates the association between systemic inflammation and osteoporotic traits. These results highlight the significance of interventions targeting systemic inflammation and frailty in OP and fracture prevention and management.

20.
Front Bioeng Biotechnol ; 12: 1365229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515624

RESUMO

Continuous cropping obstacles seriously constrained the sustainable development of the ginseng industry. The allelopathic autotoxicity of ginsenosides is the key "trigger" of continuous cropping obstacles in ginseng. During harvest, the ginseng plants could be broken and remain in the soil. The decomposition of ginseng residue in soil is one of the important release ways of ginsenosides. Therefore, the allelopathic mechanism of ginsenosides through the decomposed release pathway needs an in-depth study. To investigate this allelopathic regulation mechanism, the integrated analysis of transcriptomics and metabolomics was applied. The prototype ginsenosides in ginseng were detected converse to rare ginsenosides during decomposition. The rare ginsenosides caused more serious damage to ginseng hairy root cells and inhibited the growth of ginseng hairy roots more significantly. By high-throughput RNA sequencing gene transcriptomics study, the significantly differential expressed genes (DEGs) were obtained under prototype and rare ginsenoside interventions. These DEGs were mainly enriched in the biosynthesis of secondary metabolites and metabolic pathways, phytohormone signal transduction, and protein processing in endoplasmic reticulum pathways. Based on the functional enrichment of DEGs, the targeted metabolomics analysis based on UPLC-MS/MS determination was applied to screen endogenous differential metabolized phytohormones (DMPs). The influence of prototype and rare ginsenosides on the accumulation of endogenous phytohormones was studied. These were mainly involved in the biosynthesis of diterpenoid, zeatin, and secondary metabolites, phytohormone signal transduction, and metabolic pathways. After integrating the transcriptomics and metabolomics analysis, ginsenosides could regulate the genes in phytohormone signaling pathways to influence the accumulation of JA, ABA, and SA. The conclusion was that the prototype ginsenosides were converted into rare ginsenosides by ginseng decomposition and released into the soil, which aggravated its allelopathic autotoxicity. The allelopathic mechanism was to intervene in the response regulation of genes related to the metabolic accumulation of endogenous phytohormones in ginseng. This result provides a reference for the in-depth study of continuous cropping obstacles of ginseng.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA