Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 243, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585490

RESUMO

BACKGROUND: Cinnamomum longepaniculatum (Gamble) N. Chao ex H. W. Li, whose leaves produce essential oils, is a traditional Chinese medicine and economically important tree species. In our study, two C. longepaniculatum varieties that have significantly different essential oil contents and leaf phenotypes were selected as the materials to investigate secondary metabolism. RESULT: The essential oil content and leaf phenotypes were different between the two varieties. When the results of both transcriptome and metabolomic analyses were combined, it was found that the differences were related to phenylalanine metabolic pathways, particularly the metabolism of flavonoids and terpenoids. The transcriptome results based on KEGG pathway enrichment analysis showed that pathways involving phenylpropanoids, tryptophan biosynthesis and terpenoids significantly differed between the two varieties; 11 DEGs (2 upregulated and 9 downregulated) were associated with the biosynthesis of other secondary metabolites, and 12 DEGs (2 upregulated and 10 downregulated) were related to the metabolism of terpenoids and polyketides. Through further analysis of the leaves, we detected 196 metabolites in C. longepaniculatum. The abundance of 49 (26 downregulated and 23 upregulated) metabolites differed between the two varieties, which is likely related to the differences in the accumulation of these metabolites. We identified 12 flavonoids, 8 terpenoids and 8 alkaloids and identified 4 kinds of PMFs from the leaves of C. longepaniculatum. CONCLUSIONS: The combined results of transcriptome and metabolomic analyses revealed a strong correlation between metabolite contents and gene expression. We speculate that light leads to differences in the secondary metabolism and phenotypes of leaves of different varieties of C. longepaniculatum. This research provides data for secondary metabolite studies and lays a solid foundation for breeding ideal C. longepaniculatum plants.


Assuntos
Cinnamomum , Óleos Voláteis , Cinnamomum/genética , Cinnamomum/metabolismo , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Óleos Voláteis/metabolismo , Melhoramento Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Terpenos/metabolismo , Transcriptoma
2.
Int J Clin Exp Med ; 8(12): 22328-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26885210

RESUMO

Morus nigra has a long history of medicinal use in Chinese medicine, but the study on it is limited, the flavonoids are one of the main biological active substances. In this study, the Morus nigra flavonoids were extracted by ultrasonic and antioxidant activities both in vitro and in vivo were measured. The results showed that hydroxyl radicals clearance rate and superoxide radical anion clearance rate in vitro increased with the concentration of the total flavonoids in the range of 0-1.05 mg/mL and the maximum clearance rate was 80.33% and 87.69%, respectively. After mice were treated with flavonoids, the content of malonaldehyde (MDA) in serum and liver decreased; the activities of superoxide dismutase (SOD) in serum and liver, catalase (CAT) in liver and glutathione peroxidase (GSH-PX) in blood and liver increased; Langhans cells increased in spleen. These results revealed that the Morus nigra flavonoids possessed strong antioxidant activity.

3.
Ying Yong Sheng Tai Xue Bao ; 23(11): 3003-8, 2012 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-23431782

RESUMO

In order to explore the regulation approaches for improving the salt-tolerance of alfalfa, the seedlings of Medicago sativa L. cv. Gannong No. 4 were taken to study their growth and nitrogen metabolism under salt stress as affected by NO-donor SNP, NO-scavenger c-PTIO, and sodium ferrocyanide (a SNP analogue with NO not released). Exogenous NO could obviously alleviate the inhibition effects of salt stress on the seedling growth and photosynthesis via increasing plant dry matter and leaf chlorophyll content, net photosynthesis rate, transpiration rate, and soluble protein content. Exogenous NO enhanced the activities of leaf nitrate reductase, glutamine synthetase, and glutamate-oxoglutarate aminotransferase, restrained the activities of protease and glutamate dehydrogenase, decreased the free amino acid content, and improved the nitrate content and ammonium assimilation under salt stress. Applying sodium ferrocyanide did not show any alleviation effect on the seedling growth and nitrogen metabolism under salt stress. As a NO-scavenger, c-PTIO inhibited the growth and nitrogen metabolism under salt stress, but the inhibition effect could be mitigated by supplementing SNP. It was suggested that exogenous and endogenous NO were involved in the regulation of alfalfa nitrogen metabolism under salt stress.


Assuntos
Medicago sativa/crescimento & desenvolvimento , Óxido Nítrico/farmacologia , Nitrogênio/metabolismo , Sais/toxicidade , Plântula/crescimento & desenvolvimento , Medicago sativa/metabolismo , Medicago sativa/fisiologia , Plântula/metabolismo , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA