Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell Oncol (Dordr) ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753155

RESUMO

T lymphocytes are indispensable for the host systems of defense against pathogens, tumors, and environmental threats. The therapeutic potential of harnessing the cytotoxic properties of T lymphocytes for antigen-specific cell elimination is both evident and efficacious. Genetically engineered T-cells, such as those employed in CAR-T and TCR-T cell therapies, have demonstrated significant clinical benefits in treating cancer and autoimmune disorders. However, the current landscape of T-cell genetic engineering is dominated by strategies that necessitate in vitro T-cell isolation and modification, which introduce complexity and prolong the development timeline of T-cell based immunotherapies. This review explores the complexities of gene delivery systems designed for T cells, covering both viral and nonviral vectors. Viral vectors are known for their high transduction efficiency, yet they face significant limitations, such as potential immunogenicity and the complexities involved in large-scale production. Nonviral vectors, conversely, offer a safer profile and the potential for scalable manufacturing, yet they often struggle with lower transduction efficiency. The pursuit of gene delivery systems that can achieve targeted gene transfer to T cell without the need for isolation represents a significant advancement in the field. This review assesses the design principles and current research progress of such systems, highlighting the potential for in vivo gene modification therapies that could revolutionize T-cell based treatments. By providing a comprehensive analysis of these systems, we aim to contribute valuable insights into the future development of T-cell immunotherapy.

2.
Biotechnol Bioeng ; 121(3): 835-852, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38151887

RESUMO

Animal models are routinely employed to assess the treatments for human cancer. However, due to significant differences in genetic backgrounds, traditional animal models are unable to meet bioresearch needs. To overcome this restriction, researchers have generated and optimized immunodeficient mice, and then engrafted human genes, cells, tissues, or organs in mice so that the responses in the model mice could provide a more reliable reference for treatments. As a bridge connecting clinical application and basic research, humanized mice are increasingly used in the preclinical evaluation of cancer treatments, particularly after gene interleukin 2 receptor gamma mutant mice were generated. Human cancer models established in humanized mice support exploration of the mechanism of cancer occurrence and provide an efficient platform for drug screening. However, it is undeniable that the further application of humanized mice still faces multiple challenges. This review summarizes the construction approaches for humanized mice and their existing limitations. We also report the latest applications of humanized mice in preclinical evaluation for the treatment of cancer and point out directions for future optimization of these models.


Assuntos
Neoplasias , Camundongos , Humanos , Animais , Modelos Animais de Doenças , Neoplasias/terapia
3.
Sci Adv ; 9(48): eadg9721, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039357

RESUMO

The efficacy of CAR-T cells for solid tumors is unsatisfactory. EpCAM is a biomarker of epithelial tumors, but the clinical feasibility of CAR-T therapy targeting EpCAM is lacking. Here, we report pre- and clinical investigations of EpCAM-CAR-T cells for solid tumors. We demonstrated that EpCAM-CAR-T cells costimulated by Dectin-1 exhibited robust antitumor activity without adverse effects in xenograft mouse models and EpCAM-humanized mice. Notably, in clinical trials for epithelial tumors (NCT02915445), 6 (50%) of the 12 enrolled patients experienced self-remitted grade 1/2 toxicities, 1 patient (8.3%) experienced reversible grade 3 leukopenia, and no higher-grade toxicity reported. Efficacy analysis determined two patients as partial response. Three patients showed >23 months of progression-free survival, among whom one patient experienced 2-year progress-free survival with detectable CAR-T cells 200 days after infusion. These data demonstrate the feasibility and tolerability of EpCAM-CAR-T therapy.


Assuntos
Neoplasias Epiteliais e Glandulares , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Molécula de Adesão da Célula Epitelial , Linfócitos T , Imunoterapia/efeitos adversos , Neoplasias Epiteliais e Glandulares/tratamento farmacológico
4.
Hum Gene Ther ; 34(23-24): 1248-1256, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37917093

RESUMO

Distant metastasis and primary tumor relapse are the two main hurdles to the success of surgical treatment for cancer patients. Circulating tumor cells (CTCs) and incomplete surgical resection are the primary cause of distant metastasis and local recurrence of tumors, respectively. Chimeric antigen receptor (CAR)-modified T cells target residual carcinomas and CTCs hold the potential to inhibit primary recurrence and reduce tumor metastasis, but the experimental evidence is lacking. Here, we developed a surgery-induced tumor metastasis model in immunocompetent mice to investigate the efficacy of CAR-T cells therapy in preventing metastasis and local recurrence. We observed that subcutaneous tumor resection has induced a large number of CTCs intravasated into circulation. EpCAM-specific CAR-T was effective in clearing CTCs following surgical removal of the tumor. This resulted in less pulmonary metastasis and longer survival in mice when compared to mice treated with surgery followed by Mock-T cells infusion. In addition, the local relapse was obviously inhibited at the surgical site followed by EpCAM-CAR-T cell treatment. This study demonstrated that CAR-T cell therapy can be an adjuvant treatment following surgery to prevent tumor metastasis and inhibit primary tumor relapse for cancer patients.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Receptores de Antígenos Quiméricos/genética , Molécula de Adesão da Célula Epitelial/genética , Recidiva Local de Neoplasia/prevenção & controle , Recidiva Local de Neoplasia/patologia , Imunoterapia Adotiva/métodos , Recidiva , Terapia Baseada em Transplante de Células e Tecidos
5.
Exp Hematol Oncol ; 12(1): 70, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563648

RESUMO

Natural killer (NK) cells, a unique component of the innate immune system, are inherent killers of stressed and transformed cells. Based on their potent capacity to kill cancer cells and good tolerance of healthy cells, NK cells have been successfully employed in adoptive cell therapy to treat cancer patients. In recent years, the clinical success of chimeric antigen receptor (CAR)-T cells has proven the vast potential of gene-manipulated immune cells as the main force to fight cancer. Following the lessons learned from mature gene-transfer technologies and advanced strategies in CAR-T therapy, NK cells have been rapidly explored as a promising candidate for CAR-based therapy. An exponentially growing number of studies have employed multiple sources of CAR-NK cells to target a wide range of cancer-related antigens, showing remarkable outcomes and encouraging safety profiles. Clinical trials of CAR-NK cells have also shown their impressive therapeutic efficacy in the treatment of hematological tumors, but CAR-NK cell therapy for solid tumors is still in the initial stages. In this review, we present the favorable profile of NK cells as a potential platform for CAR-based engineering and then summarize the outcomes and strategies of CAR-NK therapies in up-to-date preclinical and clinical investigations. Finally, we evaluate the challenges remaining in CAR-NK therapy and describe existing strategies that can assist us in devising future prospective solutions.

6.
Cancer Lett ; 568: 216287, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392990

RESUMO

Chimeric antigen receptor-modified T (CAR-T) cell therapy has shown curable efficacy for treating hematological malignancies, while in solid tumors, the immunosuppressive microenvironment causes poor activation, expansion and survival of CAR-T cells, accounting mainly for the unsatisfactory efficacy. The artificial antigen-presenting cells (aAPCs) have been used for ex vivo expansion and manufacturing of CAR-T cells. Here, we constructed a K562 cell-based aAPCs expressing human epithelial cell adhesion molecule (EpCAM), chemokines (CCL19 and CCL21) and co-stimulatory molecular ligands (CD80 and 4-1BBL). Our data demonstrated that the novel aAPCs enhanced the expansion, and increased the immune memory phenotype and cytotoxicity of CAR-T cells recognizing EpCAM, in vitro. Of note, co-infusion CAR-T and aAPC enhances the infiltration of CAR-T cells in solid tumors, which has certain potential for the treatment of solid tumors Moreover, IL-2-9-21, a cytokine cocktail, prevents CAR-T cells from entering the state of exhaustion prematurely after continuous antigen engagement and boosts the anti-tumor activity of CAR-T cells co-infused with aAPCs. These data provide a new strategy to enhance the therapeutic potential of CAR-T cell therapy for the treatment of solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Animais , Camundongos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Ligantes , Células Apresentadoras de Antígenos , Neoplasias/metabolismo , Imunoterapia Adotiva , Quimiocinas/metabolismo , Linfócitos T , Microambiente Tumoral
7.
Cancer Lett ; 553: 215949, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36216149

RESUMO

Multiple myeloma (MM) remains an incurable hematologic malignancy, despite the development of numerous innovative therapies during the past two decades. Immunotherapies are changing the treatment paradigm of MM and have improved the overall response and survival of patients with relapsed/refractory (RR) MM. B cell maturation antigen (BCMA), selectively expressed in normal and malignant plasma cells, has been targeted by several immunotherapeutic modalities. Chimeric antigen receptor (CAR) T cells, the breakthrough in cancer immunotherapy, have revolutionized the treatment of B cell malignancies and remarkably improved the prognosis of RRMM. BCMA-targeting CAR T cell therapy is the most developed CAR T cell therapy for MM, and the US Food and Drug Administration has already approved idecabtagene vicleucel (Ide-cel) and ciltacabtagene autoleucel (Cilta-cel) for MM. However, the development of novel BCMA-targeting CAR T cell therapies remains in progress. This review focuses on BCMA-targeting CAR T cell therapy, covering all stages of investigational progress, including the innovative preclinical studies, the initial phase I clinical trials, and the more developed phase II clinical trials. It also discusses possible measures to improve the efficacy and safety of this therapy.


Assuntos
Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Antígeno de Maturação de Linfócitos B , Terapia Baseada em Transplante de Células e Tecidos , Mieloma Múltiplo/terapia , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Estados Unidos
8.
Gene Ther ; 30(5): 411-420, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953316

RESUMO

Chimeric antigen receptor T (CAR-T) cell therapy has demonstrated remarkable efficacies in treating hematopoietic malignancies, but not in the solid tumors. Incorporating costimulatory signaling domains, such as ICOS or 4-1BB, can positively influence CAR-T cell functions and then the immune responses. These CAR-engineered T cells have showed their enhanced persistence and effector functions with improved antitumor activities, and provided a new approach for the treatment of solid tumors. Here, we designed novel 2nd generation CARs with a costimulatory signaling molecule, dectin-1. The impacts of dectin-1 signaling domain on CAR-T cells were evaluated in vitro and in vivo. Our data show that in vitro cytokine secretions by HER2 or CD19 specific CAR-T cells increase significantly via incorporating this dectin-1 signaling domain. Additional properties of these novel CAR-T cells are affected by this costimulatory domain. Compared with a popular reference (i.e., anti-HER2 CAR-T cells with 4-1BB), in vitro T cell functions and in vivo antitumor activity of the dectin-1 engineered CAR-T cells are similar to the 4-1BB based, and both are discrete to the mock T cells. Furthermore, we found that the CAR-T cells with dectin-1 show distinct phenotype and exhaustion marker expression. These collective results suggest that the incorporation of this new signaling domain, dectin-1, into the CARs may provide the clinical potential of the CAR-T cells through this signaling domain in treating solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Antígenos CD28/genética , Antígenos CD28/metabolismo , Receptores de Antígenos de Linfócitos T , Linfócitos T , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Biomaterials ; 291: 121872, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36323072

RESUMO

The chimeric antigen receptor-T cells (CAR-T) therapy, as a novel personalized immunotherapy, has shown prominent clinical efficacy in the treatment of B-cell malignancies. However, the progress in solid tumors was hindered by multiple elements in the tumor immunosuppressive microenvironment. In this study, an injectable and photocurable Gelatin Methacryloyl (GelMA) hydrogel was applied to be a depot of CAR-T cells, thus forming an injectable CAR-T Gelatin Methacryloyl hydrogels Delivery (i-GMD) system. According to our results, CAR-T cells in this system could be normally amplified, sustained released, and play an anti-tumor role in vitro. When compared with local or intravenously injection of CAR-T solution, injection of i-GMD matrix around tumor demonstrated enhanced anti-tumor effect and markedly extended survival of mice. Our research outcomes indicated that this therapeutic strategy might hopefully provide a treatment for patients with unresectable tumors.


Assuntos
Melanoma , Neoplasias , Receptores de Antígenos Quiméricos , Camundongos , Animais , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Melanoma/terapia , Microambiente Tumoral , Hidrogéis , Linfócitos T
10.
MedComm (2020) ; 3(3): e155, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35845351

RESUMO

The expanding genome editing toolbox has revolutionized life science research ranging from the bench to the bedside. These "molecular scissors" have offered us unprecedented abilities to manipulate nucleic acid sequences precisely in living cells from diverse species. Continued advances in genome editing exponentially broaden our knowledge of human genetics, epigenetics, molecular biology, and pathology. Currently, gene editing-mediated therapies have led to impressive responses in patients with hematological diseases, including sickle cell disease and thalassemia. With the discovery of more efficient, precise and sophisticated gene-editing tools, more therapeutic gene-editing approaches will enter the clinic to treat various diseases, such as acquired immunodeficiency sydrome (AIDS), hematologic malignancies, and even severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These initial successes have spurred the further innovation and development of gene-editing technology. In this review, we will introduce the architecture and mechanism of the current gene-editing tools, including clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease-based tools and other protein-based DNA targeting systems, and we summarize the meaningful applications of diverse technologies in preclinical studies, focusing on the establishment of disease models and diagnostic techniques. Finally, we provide a comprehensive overview of clinical information using gene-editing therapeutics for treating various human diseases and emphasize the opportunities and challenges.

11.
Med Res Rev ; 42(4): 1492-1517, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35235212

RESUMO

Vaccines can stimulate the immune system to protect individuals from infectious diseases. Moreover, vaccines have also been applied to the prevention and treatment of cancers. Due to advances in genetic engineering technology, cancer vaccines could be genetically modified to increase antitumor efficacy. Various genes could be inserted into cells to boost the immune response, such as cytokines, T cell costimulatory molecules, tumor-associated antigens, and tumor-specific antigens. Genetically modified cancer vaccines utilize innate and adaptive immune responses to induce durable antineoplastic capacity and prevent the recurrence. This review will discuss the major approaches used to develop genetically modified cancer vaccines and explore recent advances to increase the understanding of engineered cancer vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Antígenos de Neoplasias , Citocinas , Humanos , Sistema Imunitário , Neoplasias/genética , Neoplasias/prevenção & controle
12.
Sensors (Basel) ; 22(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214570

RESUMO

Based on the coupling effect of contact electrification and electrostatic induction, the triboelectric nanogenerator (TENG) as an emerging energy technology can effectively harvest mechanical energy from the ambient environment. However, due to its inherent property of large impedance, the TENG shows high voltage, low current and limited output power, which cannot satisfy the stable power supply requirements of conventional electronics. As the interface unit between the TENG and load devices, the power management circuit can perform significant functions of voltage and impedance conversion for efficient energy supply and storage. Here, a review of the recent progress of switching power management for TENGs is introduced. Firstly, the fundamentals of the TENG are briefly introduced. Secondly, according to the switch types, the existing power management methods are summarized and divided into four categories: travel switch, voltage trigger switch, transistor switch of discrete components and integrated circuit switch. The switch structure and power management principle of each type are reviewed in detail. Finally, the advantages and drawbacks of various switching power management circuits for TENGs are systematically summarized, and the challenges and development of further research are prospected.

13.
J Control Release ; 344: 97-112, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189260

RESUMO

Drug-controlled release is recognized as effective for improving compliance with treatment and obtaining better therapeutic efficacy with less toxicity in cancer treatment. However, few reports in this area are involved in nucleic acids delivery, especially in RNA therapeutics delivery. In this study, an injectable hydrogel Methacrylated gelatin (GM) scaffold was introduced into a dual-RNA hybrid delivery complex hybrid lipid particle (HLP) to form a G-HLP/RNAs system. This system can control the release of both siRNA and mRNA and was found to be efficient for protecting these RNAs from biodegradation and retaining their therapeutic effect over 7 days. Further, a tumor environment (TME)-activation function after peritumoral injection of mocked GM scaffold was observed. Then, matured DC cells and activated T-cells were detected by the addition of HLP/RNAs complex, thus verifying the immunoactivation function of GM scaffold and its ability to reserve immune cells and antigens. Finally, two doses of G-HLP/RNAs treatment efficiently suppressed C26 tumor growth in mice with a tumor weight inhibition rate of 71.9%. Owing to its ability to achieve RNA drug-controlled release, alter TME, and induce tumor apoptosis, the G-HLP/RNAs system may become a valuable tool for cancer gene therapy.


Assuntos
Neoplasias , Animais , Apoptose , Liberação Controlada de Fármacos , Hidrogéis , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA Interferente Pequeno/uso terapêutico
16.
Acta Pharm Sin B ; 10(10): 1943-1953, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33163345

RESUMO

Cancer immunotherapy is revolutionizing oncology and has emerged as a promising strategy for the treatment of multiple cancers. Indoleamine 2,3-dioxygenase 1 (IDO1), an immune checkpoint, plays an important role in tumor immune escape through the regulation of multiple immune cells and has been regarded as an attractive target for cancer immunotherapy. Proteolysis Targeting Chimeras (PROTAC) technology has emerged as a new model for drug research and development for its advantageous mechanism. Herein, we reported the application of PROTAC technology in targeted degradation of IDO1, leading to the discovery of the first IDO1 PROTAC degrader 2c, which induced significant and persistent degradation of IDO1 with maximum degradation (d max) of 93% in HeLa cells. Western-blot based mechanistic studies indicated that IDO1 was degraded by 2c through the ubiquitin proteasome system (UPS). Label-free real-time cell analysis (RTCA) indicated that 2c moderately improved tumor-killing activity of chimeric antigen receptor-modified T (CAR-T) cells. Collectively, these data provide a new insight for the application of PROTAC technology in tumor immune-related proteins and a promising tool to study the function of IDO1.

17.
FASEB J ; 34(1): 1768-1782, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914650

RESUMO

Interleukin-18 (IL-18) has been demonstrated to augment the antitumor capacity of chimeric antigen receptor-T cells (CAR-T) but the underlying mechanisms are largely unknown. Here we explored the effects and mechanisms of exogenous IL-18 on the antitumor response of CAR-T cells. IL-18 boosted the cytotoxicity of human epidermal growth factor receptor-2 (HER2)-specific CAR-T cells ex vivo and enhanced the antitumor efficacy of the CAR-T cells in immunodeficient mice, moreover, IL-18 improved the antitumor capacity of OVA-specific T cells in immunocompetent mice, indicating the universal enhancing function of IL-18 for adoptive cell therapy. To address the roles of IL-18 receptor (IL-18R) in the enhancing function, we evaluated the effects of IL-18R knockout (IL-18R-/-) condition in immunocompetent host and CAR-T cells on the IL-18-enhanced antitumor activities. Interestingly, IL-18 persisted to improve the antitumor ability of IL-18R intact CAR-T cells in IL-18R-/- mice. For IL-18R-/- CAR-T cells, however, IL-18 still holds the enhancing ability to boost the antitumor efficacy in IL-18R-/- mice, albeit the ex vivo tumor-killing ability was lower than that of IL-18R intact CAR-T cells, indicating that IL-18R-independent pathway is involved in the enhancement. Furthermore, tagged IL-18 binded to the membrane of IL-18R-/- splenic and lymph node cells and IL-18R intact and IL-18R-/- CAR-T cells showed distinct transcriptomic profiles when stimulated by IL-18. These data demonstrate that IL-18R-independent pathways contribute to functions of IL-18.


Assuntos
Antineoplásicos/metabolismo , Interleucina-18/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Interleucina-18/metabolismo , Transdução de Sinais/fisiologia , Linfócitos T/metabolismo , Animais , Linhagem Celular , Feminino , Células HEK293 , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
18.
Artigo em Inglês | MEDLINE | ID: mdl-31637014

RESUMO

T cells in the immune system protect the human body from infection by pathogens and clear mutant cells through specific recognition by T cell receptors (TCRs). Cancer immunotherapy, by relying on this basic recognition method, boosts the antitumor efficacy of T cells by unleashing the inhibition of immune checkpoints and expands adaptive immunity by facilitating the adoptive transfer of genetically engineered T cells. T cells genetically equipped with chimeric antigen receptors (CARs) or TCRs have shown remarkable effectiveness in treating some hematological malignancies, although the efficacy of engineered T cells in treating solid tumors is far from satisfactory. In this review, we summarize the development of genetically engineered T cells, outline the most recent studies investigating genetically engineered T cells for cancer immunotherapy, and discuss strategies for improving the performance of these T cells in fighting cancers.

19.
Am J Epidemiol ; 187(11): 2415-2422, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30099475

RESUMO

Accurate interpretations and comparisons of record linkage results across jurisdictions require valid and reliable matching methods. We compared existing matching methods used by 6 US state and local health departments (Houston, Texas; Louisiana; Michigan; New York, New York; North Dakota; and Wisconsin) to link human immunodeficiency virus and viral hepatitis surveillance data with a 14-key automated, hierarchical deterministic matching method. Applicable years of study varied by disease and jurisdiction, ranging from 1979 to 2016. We calculated percentage agreement and Cohen's κ coefficient to compare the matching methods used within each jurisdiction. We calculated sensitivity, specificity, and positive predictive value for each matching method, as compared with a new standard that included manual review of discrepant cases. Agreement between the existing matching method and the deterministic matching method was 99.6% or higher in all jurisdictions; Cohen's κ values ranged from 0.87 to 0.98. The sensitivity of the deterministic matching method ranged from 97.4% to 100% in the 6 jurisdictions; specificity ranged from 99.7% to 100%; and positive predictive value ranged from 97.4% to 100%. Although no gold standard exists, prior assessments of existing methods and review of discrepant classifications suggest good accuracy and reliability of our deterministic matching method, with the advantage that our method reduces the need for manual review and allows for standard comparisons across jurisdictions when linking human immunodeficiency virus and viral hepatitis data.


Assuntos
Algoritmos , Infecções por HIV/epidemiologia , Hepatite B/epidemiologia , Hepatite C/epidemiologia , Registro Médico Coordenado/métodos , Vigilância em Saúde Pública/métodos , Humanos , Registro Médico Coordenado/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos/epidemiologia
20.
Zhongguo Zhen Jiu ; 37(7): 768-772, 2017 Jul 12.
Artigo em Chinês | MEDLINE | ID: mdl-29231553

RESUMO

OBJECTIVE: To construct a knowledge platform of acupuncture ancient books based on data mining technology, and to provide retrieval service for users. METHODS: The Oracle 10 g database was applied and JAVA was selected as development language; based on the standard library and ancient books database established by manual entry, a variety of data mining technologies, including word segmentation, speech tagging, dependency analysis, rule extraction, similarity calculation, ambiguity analysis, supervised classification technology were applied to achieve text automatic extraction of ancient books; in the last, through association mining and decision analysis, the comprehensive and intelligent analysis of disease and symptom, meridians, acupoints, rules of acupuncture and moxibustion in acupuncture ancient books were realized, and retrieval service was provided for users through structure of browser/server (B/S). RESULTS: The platform realized full-text retrieval, word frequency analysis and association analysis; when diseases or acupoints were searched, the frequencies of meridian, acupoints (diseases) and techniques were presented from high to low, meanwhile the support degree and confidence coefficient between disease and acupoints (special acupoint), acupoints and acupoints in prescription, disease or acupoints and technique were presented. CONCLUSIONS: The experience platform of acupuncture ancient books based on data mining technology could be used as a reference for selection of disease, meridian and acupoint in clinical treatment and education of acupuncture and moxibustion.


Assuntos
Terapia por Acupuntura , Livros , Mineração de Dados , Pontos de Acupuntura , Meridianos , Moxibustão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA