Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Environ Pollut ; 360: 124682, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111530

RESUMO

Photocatalyst-activated peroxymonosulfate (PMS) degradation of pollutants is already widely used for wastewater treatment under visible light. Polyethylene terephthalate (PET) is widely used in daily life, but waste plastics have an irreversible negative impact on the environment. In this paper, the ZIF-67/g-C3N4 S-scheme heterojunction catalyst was synthesized as a photocatalyst to achieve a good effect on PET degradation in coordination with PMS. The results indicated that PET could be degraded up to 60.63 ± 2.12 % under the combined effect of catalyst, PMS, and light. In this experiment, the influence of catalyst-to-plastic ratio, PMS concentration, aqueous pH, and inorganic anions on plastic degradation by the photocatalytic synergistic PMS system was discussed, and the excellent performance of this system for degrading PET was highlighted through a comparative test. Electron spin resonance (ESR) and free radical quenching experiments demonstrated that SO4•- contributes the largest amount to the PET degradation performance. Furthermore, results from gas chromatography and liquid chromatography-mass spectrometry (LC-MS) indicated that the plastic degradation products include CO, CH4, and organic small-molecule liquid fuels. Finally, a possible mechanism for the light/PMS system to degrade PET in water was suggested. This paper provides a feasible solution to treat waste microplastics in water.

2.
Chem Commun (Camb) ; 60(68): 9054-9057, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39099543

RESUMO

Supramolecular assemblies with chirality inversion were developed using a co-assembly system comprising solvent monomers and a pyridine-cholesterol gelator. The polarity-dependent chiralities were captured in situ through photopolymerization, enabling the formation of multi-color circularly polarized luminescence films.

3.
Langmuir ; 40(29): 14749-14765, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38989975

RESUMO

Motivated by the remarkable innate characteristics of cells in living organisms, we have found that hybrid materials that combine bioorganisms with nanomaterials have significantly propelled advancements in industrial applications. However, the practical deployment of unmodified living entities is inherently limited due to their sensitivity to environmental fluctuations. To surmount these challenges, an efficacious strategy for the biomimetic mineralization of living organisms with nanomaterials has emerged, demonstrating extraordinary potential in biotechnology. Among them, innovative composites have been engineered by enveloping bioorganisms with a metal-organic framework (MOF) coating. This review systematically summarizes the latest developments in living cells/MOF-based composites, detailing the methodologies employed in structure fabrication and their diverse applications, such as bioentity preservation, sensing, catalysis, photoluminescence, and drug delivery. Moreover, the synergistic benefits arising from the individual compounds are elucidated. This review aspires to illuminate new prospects for fabricating living cells/MOF composites and concludes with a perspective on the prevailing challenges and impending opportunities for future research in this field.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Humanos , Animais
4.
Cell Rep ; 43(5): 114174, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38700982

RESUMO

Activating mutations in PIK3CA are frequently found in estrogen-receptor-positive (ER+) breast cancer, and the combination of the phosphatidylinositol 3-kinase (PI3K) inhibitor alpelisib with anti-ER inhibitors is approved for therapy. We have previously demonstrated that the PI3K pathway regulates ER activity through phosphorylation of the chromatin modifier KMT2D. Here, we discovered a methylation site on KMT2D, at K1330 directly adjacent to S1331, catalyzed by the lysine methyltransferase SMYD2. SMYD2 loss attenuates alpelisib-induced KMT2D chromatin binding and alpelisib-mediated changes in gene expression, including ER-dependent transcription. Knockdown or pharmacological inhibition of SMYD2 sensitizes breast cancer cells, patient-derived organoids, and tumors to PI3K/AKT inhibition and endocrine therapy in part through KMT2D K1330 methylation. Together, our findings uncover a regulatory crosstalk between post-translational modifications that fine-tunes KMT2D function at the chromatin. This provides a rationale for the use of SMYD2 inhibitors in combination with PI3Kα/AKT inhibitors in the treatment of ER+/PIK3CA mutant breast cancer.


Assuntos
Neoplasias da Mama , Cromatina , Histona-Lisina N-Metiltransferase , Humanos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Metilação/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Receptores de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
5.
J Colloid Interface Sci ; 668: 471-483, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691957

RESUMO

Three-dimensional (3D) macroscopic aerogels have emerged as a critical component in the realm of photocatalysis. Maximizing the integration of materials can result in enhanced efficiency and selectivity in photocatalytic processes. In this investigation, we fabricated MOF-808/reduced graphene oxide (RGO) 3D macroscopic aerogel composite materials employing the techniques of hydrothermal synthesis and freeze-drying. The results revealed that the macroscopic aerogel material exhibited the highest performance in CO2 reduction to CO, particularly when the concentration of RGO was maintained at 5 mg mL-1. In addition, we synthesized powder materials of MR-5 composite photocatalysts and conducted a comparative analysis in terms of photocatalytic CO2 reduction performance and electron transfer efficiency. The results showthat the macroscopic aerogel material boasts a high specific surface area, an abundant internal pore structure, and increased active sites. These attributes collectively enhance light energy utilization, and electron transfer rates, thereby, improving photothermal and photoelectric conversion efficiencies. Furthermore, we conducted in-situ FT-IR measurements and found that the M/R-5 aerogel exhibited the best CO2 adsorption capacity under a CO2 flow rate of 10 mL min-1. The density functional theory results demonstrate the correlation between the formation pathway of the product and the charge transfer pathway. This study provides useful ideas for realizing photocatalytic CO2 reduction of macroscopic aerogel materials in gas-solid reaction mode.

6.
Chemphyschem ; 25(14): e202400103, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38606697

RESUMO

Conducting polymers (CPs), a significant class of electrochemical capacitor electrode materials, exhibit exceptional capacitive energy storage performance in aqueous electrolytes. Current research primarily concentrates on enhancing the electrical conductivity and capacitive performance of CPs via molecular design and structural control. However, the absence of a comprehensive understanding of the impact of molecular chain spatial order on ion/electron transport and capacitive performance impedes the development and optimization of advanced electrode materials. Here, a solvent treatment strategy is employed to modulate the molecular chain spatial order of PEDOT : PSS films. The results of electrochemical performance tests and Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) show that Poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonic acid) (PEDOT : PSS) films with both face-on and edge-on orientations exhibit exceptional electronic conductivity and ion diffusion efficiency, with capacitive performance 1.33 times higher than that of PEDOT : PSS films with only edge-on orientation. Consequently, molecular chain orientations conducive to charge transport not only enhance inter-chain coupling, but also effectively reduce ion transport resistance, enabling efficient capacitive energy storage. This research provides novel insights for the design and development of higher performance CPs-based electrode materials.

7.
World J Microbiol Biotechnol ; 40(6): 169, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630389

RESUMO

Mannan is a predominant constituent of cork hemicellulose and is widely distributed in various plant tissues. ß-Mannanase is the principal mannan-degrading enzyme, which breaks down the ß-1,4-linked mannosidic bonds in mannans in an endo-acting manner. Microorganisms are a valuable source of ß-mannanase, which exhibits catalytic activity in a wide range of pH and temperature, making it highly versatile and applicable in pharmaceuticals, feed, paper pulping, biorefinery, and other industries. Here, the origin, classification, enzymatic properties, molecular modification, immobilization, and practical applications of microbial ß-mannanases are reviewed, the future research directions for microbial ß-mannanases are also outlined.


Assuntos
Mananas , beta-Manosidase , beta-Manosidase/genética , Temperatura
8.
Artigo em Inglês | MEDLINE | ID: mdl-38632039

RESUMO

The mutant strain Halomonas bluephagenesis (TDH4A1B5P) was found to produce PHA under low-salt, non-sterile conditions, but the yield was low. To improve the yield, different nitrogen sources were tested. It was discovered that urea was the most effective nitrogen source for promoting growth during the stable stage, while ammonium sulfate was used during the logarithmic stage. The growth time of H. bluephagenesis (TDH4A1B5P) and its PHA content were significantly prolonged by the presence of sulfate ions. After 64 hr in a 5-L bioreactor supplemented with sulfate ions, the dry cell weight (DCW) of H. bluephagenesis weighed 132 g/L and had a PHA content of 82%. To promote the growth and PHA accumulation of H. bluephagenesis (TDH4A1B5P), a feeding regimen supplemented with nitrogen sources and sulfate ions with ammonium sodium sulfate was established in this study. The DCW was 124 g/L, and the PHA content accounted for 82.3% (w/w) of the DCW, resulting in a PHA yield of 101 g/L in a 30-L bioreactor using the optimized culture strategy. In conclusion, stimulating H. bluephagenesis (TDH4A1B5P) to produce PHA is a feasible and suitable strategy for all H. bluephagenesis.


Assuntos
Reatores Biológicos , Meios de Cultura , Halomonas , Nitrogênio , Poli-Hidroxialcanoatos , Sulfatos , Halomonas/metabolismo , Halomonas/crescimento & desenvolvimento , Halomonas/genética , Sulfatos/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Meios de Cultura/química , Nitrogênio/metabolismo , Sulfato de Amônio/metabolismo , Ureia/metabolismo , Fermentação
9.
Chem Commun (Camb) ; 60(31): 4186-4189, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38530669

RESUMO

Adherent bubbles at electrodes are generally treated as reaction penalties. Herein, in situ hydroxylation of indium tin oxide surfaces can be easily achieved by applying a constant potential of +1.0 V in the presence of bubbles. Its successful hydroxylation is further demonstrated by preparing a ferrocene-terminated film, which is confirmed by cyclic voltammetry and X-ray photoelectron spectroscopy.

10.
J Colloid Interface Sci ; 664: 868-881, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493652

RESUMO

Conversion of CO2 into high value-added fuels through the photothermal effect is an effective approach for utilizing solar energy. In this study, we prepared the CN-based photocatalyst Py-CTN-Au with both donor-acceptor (D-A) system and dual photothermal effects using a simple two-step method involving calcination and photo-deposition. Real-time monitoring with a thermal imaging camera revealed that Py-CTN-Au0.5 achieved a maximum stable temperature of 180 °C, which was approximately 1.2 times higher than that of Py-CTN (155 °C) and 1.9 times higher than that of g-CN (95 °C) under the same reaction conditions. Under the optimized reaction conditions, Py-CTN-Au0.5 exhibited a CO release rate of 30.59 umol g-1 after 4 h of reaction, which was 7.3 times higher than that of pure g-CN (4.18 umol g-1). The D-A system not only facilitated the separation and transformation of charge carriers but also induced a photothermal effect to accelerate the photoreduction of CO2. Additionally, the cocatalyst Au nanoparticles (Au NPs) further enhanced the charge carrier dynamics and photothermal effect by increasing the built-in electric field intensity and localized surface plasmon resonance (LSPR) effect, respectively. The dual photothermal effects resulting from the non-radiative photon conversion of the D-A structure and the Au NPs LSPR effect, along with the enhanced charge carrier dynamics, catalyzed the efficient photoreduction of CO2. DFT simulations were used to confirm the effect of D-A system and Au NPs. In-situ FTIR results demonstrated that the synergistic photothermal effect promoted the formation of the key intermediate species COOH*, which is beneficial for the photocatalytic reduction of CO2. This study provides valuable insights into the multiple photothermal synergistic effects in photocatalytic reactions.

11.
Inorg Chem ; 63(12): 5520-5529, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38488014

RESUMO

The rational design of nonnoble-metal-based catalysts with high electroactivity and long-term stability, featuring controllable active sites, remains a significant challenge for achieving effective water electrolysis. Herein, a heterogeneous catalyst with a FeCo-S and Ni2P heterostructure (denoted FeCo-S/Ni2P/NF) grown on nickel foam (NF) was synthesized by a solvothermal method and low-temperature phosphorization. The FeCo-S/Ni2P/NF catalyst shows excellent electrocatalytic performance and stability in alkaline solution. The FeCo-S/Ni2P/NF catalyst demonstrates low overpotentials (η) for both the hydrogen evolution reaction (HER) (49 mV@10 mA cm-2) and the oxygen evolution reaction (OER) (279 mV@100 mA cm-2). Assembling the FeCo-S/Ni2P/NF catalyst as both cathode and anode in an electrolytic cell for overall water splitting (OWS) needs an ultralow cell voltage of 1.57 V to attain a current density (CD) of 300 mA cm-2. Furthermore, it demonstrates excellent durability, significantly outperforming the commercial Pt/C∥IrO2 system. The results of experiments indicate that the heterostructure and synergistic effect of FeCo-S and Ni2P can significantly enhance conductivity, facilitate mass/ion transport and gas evolution, and expose more active sites, thereby improving the catalytic activity of the electrocatalyst for the OWS. This study provides a rational approach for the development of commercially promising dual-functional electrocatalysts.

12.
Inorg Chem ; 63(14): 6324-6334, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38530282

RESUMO

The bottleneck in the preparation of supercapacitors is how to develop high-energy and high-power-density devices by using appropriate materials. Herein, a novel NixCo3-x-B/GO heterostructure material was synthesized through a simple ultrasonic and precipitation method. The prepared NixCo3-x-B/GO heterostructure exhibits significant improvements in supercapacitor performance than NixCo3-x-B. The presence of GO effectively suppresses the excessive growth and accumulation of NixCo3-x-B; therefore, Ni2.7Co0.3-B/GO exhibits the best performance as an electrode material for supercapacitors: a high specific capacitance (Cm, 1789.72 F g-1@1 A g-1) and excellent rate performance. The asymmetric supercapacitor (ASC) device of Ni2.7Co0.3-B/GO//AC exhibits a Cm of 76.6 F g-1@1 A g-1, a large voltage window of 1.6 V, and a high energy density (ED) of 98.0 Wh kg-1. Furthermore, a flexible, all-solid-state supercapacitor assembled with Ni2.7Co0.3-B/GO as both the positive and negative electrodes demonstrates a Cm of 46.9 F g-1@1 A g-1. Even after multiple folding and bending at various angles, the device maintains excellent performance, showcasing remarkable stability. With a power density (PD) of 479.7 W kg-1, the device achieves a high ED of 60.0 Wh kg-1. This work provides valuable insights into the synergistic effects in electrochemical processes based on heterostructure materials.

13.
J Infect Dis ; 230(2): e305-e317, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38299308

RESUMO

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a hyperinflammatory condition caused by recent infection with severe acute respiratory syndrome coronavirus 2, but the underlying immunological mechanisms driving this distinct syndrome are unknown. METHODS: We utilized high-dimensional flow cytometry, cell-free (cf) DNA, and cytokine and chemokine profiling to identify mechanisms of critical illness distinguishing MIS-C from severe acute coronavirus disease 2019 (SAC). RESULTS: Compared to SAC, MIS-C patients demonstrated profound innate immune cell death and features of emergency myelopoiesis (EM), an understudied phenomenon observed in severe inflammation. EM signatures were characterized by fewer mature myeloid cells in the periphery and decreased expression of HLA-DR and CD86 on antigen-presenting cells. Interleukin 27 (IL-27), a cytokine known to drive hematopoietic stem cells toward EM, was increased in MIS-C, and correlated with immature cell signatures in MIS-C. Upon recovery, EM signatures decreased and IL-27 plasma levels returned to normal levels. Despite profound lymphopenia, we report a lack of cfDNA released by adaptive immune cells and increased CCR7 expression on T cells indicative of egress out of peripheral blood. CONCLUSIONS: Immune cell signatures of EM combined with elevated innate immune cell-derived cfDNA levels distinguish MIS-C from SAC in children and provide mechanistic insight into dysregulated immunity contributing toward MIS-C, offering potential diagnostic and therapeutic targets.


Assuntos
COVID-19 , Mielopoese , Síndrome de Resposta Inflamatória Sistêmica , Humanos , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/complicações , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Criança , Feminino , Masculino , Pré-Escolar , SARS-CoV-2/imunologia , Citocinas/sangue , Adolescente , Lactente , Imunidade Inata , Citometria de Fluxo
15.
Crit Rev Anal Chem ; : 1-22, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252119

RESUMO

Monitoring food safety is crucial and significantly impacts the ecosystem and human health. To adequately address food safety problems, a collaborative effort needed from government, industry, and consumers. Modern sensing technologies with outstanding performance are needed to meet the growing demands for quick and accurate food safety monitoring. Recently, emerging sensors for regulating food safety have been extensively explored. Along with the development in sensing technology, the metal-organic frameworks (MOF)-based sensors gained more attention due to their excellent sensing, catalytic, and adsorption properties. This review summarizes the current advancements and applications of MOFs-based sensors, including colorimetric, electrochemical, luminescent, surface-enhanced Raman scattering, and electrochemiluminescent sensors. and also focused on the applications of MOF-based sensors for the monitoring of toxins such as heavy metals, pesticide residues, mycotoxins, pathogens, and illegal food additives from food samples. Future trends, as well as current developments in MOF-based materials.

17.
Chem Biol Drug Des ; 103(1): e14366, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776270

RESUMO

Epigenetic regulation of genes through posttranslational regulation of proteins is a well-explored approach for disease treatment, particularly in cancer chemotherapy. Histone deacetylases have shown significant potential as effective drug targets in therapeutic studies aiming to restore epigenetic normality in oncology. Besides their role in modifying histones, histone deacetylases can also catalyze the deacetylation of various nonhistone proteins and participate in the regulation of multiple biological processes. This paper provides a review of the classification, structure, and functional characteristics of the four classes of human histone deacetylases. The increasing abundance of structural information on HDACs has led to the gradual elucidation of structural differences among subgroups and subtypes. This has provided a reasonable explanation for the selectivity of certain HDAC inhibitors. Currently, the US FDA has approved a total of six HDAC inhibitors for marketing, primarily for the treatment of various hematological tumors and a few solid tumors. These inhibitors all have a common pharmacodynamic moiety consisting of three parts: CAP, ZBG, and Linker. In this paper, the structure-effect relationship of HDAC inhibitors is explored by classifying the six HDAC inhibitors into three main groups: isohydroxamic acids, benzamides, and cyclic peptides, based on the type of inhibitor ZBG. However, there are still many questions that need to be answered in this field. In this paper, the structure-functional characteristics of HDACs and the structural information of the pharmacophore model and enzyme active region of HDAC is are considered, which can help to understand the inhibition mechanism of the compounds as well as the rational design of HDACs. This paper integrates the structural-functional characteristics of HDACs as well as the pharmacophore model of HDAC is and the structural information of the enzymatic active region, which not only contributes to the understanding of the inhibition mechanism of the compounds, but also provides a basis for the rational design of HDAC inhibitors.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias , Humanos , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Epigênese Genética , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Histonas/metabolismo
18.
Mol Neurobiol ; 61(3): 1845-1859, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37792259

RESUMO

Chronic pain is a significant public health issue that is often refractory to existing therapies. Here we use a multiomic approach to identify cis-regulatory elements that show differential chromatin accessibility and reveal transcription factor (TF) binding motifs with functional regulation in the rat dorsal root ganglion (DRG), which contain cell bodies of primary sensory neurons, after nerve injury. We integrated RNA-seq to understand how differential chromatin accessibility after nerve injury may influence gene expression. Using TF protein arrays and chromatin immunoprecipitation-qPCR, we confirmed C/EBPγ binding to a differentially accessible sequence and used RNA-seq to identify processes in which C/EBPγ plays an important role. Our findings offer insights into TF motifs that are associated with chronic pain. These data show how interactions between chromatin landscapes and TF expression patterns may work together to determine gene expression programs in rat DRG neurons after nerve injury.


Assuntos
Dor Crônica , Neuralgia , Ratos , Animais , Ratos Sprague-Dawley , Dor Crônica/metabolismo , Neuralgia/metabolismo , Células Receptoras Sensoriais/metabolismo , Cromatina/metabolismo , Gânglios Espinais/metabolismo
19.
Nucleic Acids Res ; 52(2): 724-737, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38050973

RESUMO

This study aims to explore whether and how positive and negative supercoiling contribute to the three-dimensional (3D) organization of the bacterial genome. We used recently published Escherichia coli GapR ChIP-seq and TopoI ChIP-seq (also called EcTopoI-seq) data, which marks positive and negative supercoiling sites, respectively, to study how supercoiling correlates with the spatial contact maps obtained from chromosome conformation capture sequencing (Hi-C and 5C). We find that supercoiled chromosomal loci have overall higher Hi-C contact frequencies than sites that are not supercoiled. Surprisingly, positive supercoiling corresponds to higher spatial contact than negative supercoiling. Additionally, positive, but not negative, supercoiling could be identified from Hi-C data with high accuracy. We further find that the majority of positive and negative supercoils coincide with highly active transcription units, with a minor group likely associated with replication and other genomic processes. Our results show that both positive and negative supercoiling enhance spatial contact, with positive supercoiling playing a larger role in bringing genomic loci closer in space. Based on our results, we propose new physical models of how the E. coli chromosome is organized by positive and negative supercoils.


Assuntos
DNA Bacteriano , DNA Super-Helicoidal , Escherichia coli , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano
20.
Front Public Health ; 11: 1243582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074756

RESUMO

Background: Modern medical research shows that a rationally planned landscape environment helps patients recover. With the growing number of hospital patients and the tightening of per capita medical landscape land, the use of limited landscape resources to serve patients has become challenging. Methods: This study focused on the landscape environment of 10 hospitals in Guangdong Province, China. Based on the KANO theoretical model, a survey questionnaire was designed and administered to 410 participants. The data were analyzed based on demand attributes, importance, sensitivity, and group differences. Results: The maintenance requirements were the most important item in the sensitivity ranking. Furthermore, the analysis revealed that the users need a safe, quiet, and private environment, owing to their higher requirements, including visual healing, rehabilitation activities, shading and heat preservation, and medical escort. Moreover, adolescents and older adult patients have common and contradictory environmental needs. For example, the landscape environment should provide both an active space and a quiet rehabilitation environment. Conclusion: This study evaluates how landscape resources can be better utilized from the perspective of the user and expands the theory of healing landscapes, which has practical implications for hospital renovation and landscape environment strategies.


Assuntos
Hospitais , Modelos Teóricos , Adolescente , Humanos , Idoso , Nigéria , Inquéritos e Questionários , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA