Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 500
Filtrar
1.
BMC Cancer ; 24(1): 611, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773399

RESUMO

RNA interactomes and their diversified functionalities have recently benefited from critical methodological advances leading to a paradigm shift from a conventional conception on the regulatory roles of RNA in pathogenesis. However, the dynamic RNA interactomes in adenoma-carcinoma sequence of human CRC remain unexplored. The coexistence of adenoma, cancer, and normal tissues in colorectal cancer (CRC) patients provides an appropriate model to address this issue. Here, we adopted an RNA in situ conformation sequencing technology for mapping RNA-RNA interactions in CRC patients. We observed large-scale paired RNA counts and identified some unique RNA complexes including multiple partners RNAs, single partner RNAs, non-overlapping single partner RNAs. We focused on the antisense RNA OIP5-AS1 and found that OIP5-AS1 could sponge different miRNA to regulate the production of metabolites including pyruvate, alanine and lactic acid. Our findings provide novel perspectives in CRC pathogenesis and suggest metabolic reprogramming of pyruvate for the early diagnosis and treatment of CRC.


Assuntos
Adenoma , Neoplasias Colorretais , MicroRNAs , Ácido Pirúvico , RNA Longo não Codificante , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Ácido Pirúvico/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão Gênica , Reprogramação Metabólica
2.
Bioact Mater ; 37: 424-438, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38689661

RESUMO

Bone nonunion poses an urgent clinical challenge that needs to be addressed. Recent studies have revealed that the metabolic microenvironment plays a vital role in fracture healing. Macrophages and bone marrow-derived mesenchymal stromal cells (BMSCs) are important targets for therapeutic interventions in bone fractures. Itaconate is a TCA cycle metabolite that has emerged as a potent macrophage immunomodulator that limits the inflammatory response. During osteogenic differentiation, BMSCs tend to undergo aerobic glycolysis and metabolize glucose to lactate. Copper ion (Cu2+) is an essential trace element that participates in glucose metabolism and may stimulate glycolysis in BMSCs and promote osteogenesis. In this study, we develop a 4-octyl itaconate (4-OI)@Cu@Gel nanocomposite hydrogel that can effectively deliver and release 4-OI and Cu2+ to modulate the metabolic microenvironment and improve the functions of cells involved in the fracture healing process. The findings reveal that burst release of 4-OI reduces the inflammatory response, promotes M2 macrophage polarization, and alleviates oxidative stress, while sustained release of Cu2+ stimulates BMSC glycolysis and osteogenic differentiation and enhances endothelial cell angiogenesis. Consequently, the 4-OI@Cu@Gel system achieves rapid fracture healing in mice. Thus, this study proposes a promising regenerative strategy to expedite bone fracture healing through metabolic reprogramming of macrophages and BMSCs.

4.
Anticancer Drugs ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728054

RESUMO

Up to 80% of biliary tract cancer (BTC) patients relapse within 3 years after surgery and the efficacy of second-line treatment remains dismal for patients who progressed on gemcitabine and cisplatin chemotherapy. Median overall survival of patients with palliative chemotherapy is less than 1 year. The feasibility and safety of targeted therapies plus immunotherapies remain scanty currently, and patients with recurrent or advanced BTCs often experience a rapid decline in Eastern Cooperative Oncology Group (ECOG) performance status. This case report is the first report suggesting a 17-month progression-free survival (PFS), partial response, and another 11-month PFS after progressive disease of anlotinib plus toripalimab in advanced BTC with high ECOG performance status. We report a 67-year-old Chinese male with BTC. He was observed with progressive disease after surgical resection, adjuvant chemotherapy, palliative chemotherapy, and diagnosed with American Joint Committee on Cancer clinical stage IV (cT3N0M1) extrahepatic BTC. The patient experienced a rapid decline in performance status, and he received oral anlotinib and toripalimab with informed consent. MRI scans showed partial response on 22 June 2022. PET-CT showed that tumor activity has been inhibited on 8 March 2023. He achieved 17 months of PFS. Although the patient developed solitary lung metastasis, he had a continuous survival benefit from treatment of anlotinib plus toripalimab after lung radiotherapy. Until the writing of the case draft, he had achieved another 11 months of PFS. The present case suggests that anlotinib plus toripalimab might be a potential effective treatment for advanced BTCs patients with high ECOG performance status.

5.
BMC Plant Biol ; 24(1): 254, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594633

RESUMO

BACKGROUND: The genus Caragana encompasses multiple plant species that possess medicinal and ecological value. However, some species of Caragana are quite similar in morphology, so identifying species in this genus based on their morphological characteristics is considerably complex. In our research, illumina paired-end sequencing was employed to investigate the genetic organization and structure of Caragana tibetica and Caragana turkestanica, including the previously published chloroplast genome sequence of 7 Caragana plants. RESULTS: The lengths of C. tibetica and C. turkestanica chloroplast genomes were 128,433 bp and 129,453 bp, respectively. The absence of inverted repeat sequences in these two species categorizes them under the inverted repeat loss clade (IRLC). They encode 110 and 111 genes (4 /4 rRNA genes, 30 /31tRNA genes, and 76 /76 protein-coding genes), respectively. Comparison of the chloroplast genomes of C. tibetica and C. turkestanica with 7 other Caragana species revealed a high overall sequence similarity. However, some divergence was observed between certain intergenic regions (matK-rbcL, psbD-psbM, atpA-psbI, and etc.). Nucleotide diversity (π) analysis revealed the detection of five highly likely variable regions, namely rps2-atpI, accD-psaI-ycf4, cemA-petA, psbN-psbH and rpoA-rps11. Phylogenetic analysis revealed that C. tibetica's sister species is Caragana jubata, whereas C. turkestanica's closest relative is Caragana arborescens. CONCLUSIONS: The present study provides worthwhile information about the chloroplast genomes of C. tibetica and C. turkestanica, which aids in the identification and classification of Caragana species.


Assuntos
Caragana , Genoma de Cloroplastos , Filogenia , Caragana/genética , Genoma de Cloroplastos/genética
6.
Adv Mater ; : e2403154, 2024 Apr 17.
Artigo em Holandês | MEDLINE | ID: mdl-38631700

RESUMO

Van der Waals (vdW) ferromagnetic materials have emerged as a promising platform for the development of 2D spintronic devices. However, studies to date are restricted to vdW ferromagnetic materials with low Curie temperature (Tc) and small magnetic anisotropy. Here, a chemical vapor transport method is developed to synthesize a high-quality room-temperature ferromagnet, Fe3GaTe2 (c-Fe3GaTe2), which boasts a high Tc = 356 K and large perpendicular magnetic anisotropy. Due to the planar symmetry breaking, an unconventional room-temperature antisymmetric magnetoresistance (MR) is first observed in c-Fe3GaTe2 devices with step features, manifesting as three distinctive states of high, intermediate, and low resistance with the sweeping magnetic field. Moreover, the modulation of the antisymmetric MR is demonstrated by controlling the height of the surface steps. This work provides new routes to achieve magnetic random storage and logic devices by utilizing the room-temperature thickness-controlled antisymmetric MR and further design room-temperature 2D spintronic devices based on the vdW ferromagnet c-Fe3GaTe2.

7.
Nat Commun ; 15(1): 3515, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664412

RESUMO

Mode-division multiplexing (MDM) in optical fibers enables multichannel capabilities for various applications, including data transmission, quantum networks, imaging, and sensing. However, high-dimensional optical fiber systems, usually necessity bulk-optics approaches for launching different orthogonal fiber modes into the optical fiber, and multiple-input multiple-output digital electronic signal processing at the receiver to undo the arbitrary mode scrambling introduced by coupling and transmission in a multi-mode fiber. Here we show that a high-dimensional optical fiber communication system can be implemented by a reconfigurable integrated photonic processor, featuring kernels of multichannel mode multiplexing transmitter and all-optical descrambling receiver. Effective mode management can be achieved through the configuration of the integrated optical mesh. Inter-chip MDM optical communications involving six spatial- and polarization modes was realized, despite the presence of unknown mode mixing and polarization rotation in the circular-core optical fiber. The proposed photonic integration approach holds promising prospects for future space-division multiplexing applications.

8.
Microsc Microanal ; 30(2): 226-235, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38578297

RESUMO

Modern aberration correctors in the scanning transmission electron microscope (STEM) have dramatically improved the attainable spatial resolution and enabled atomical structure and spectroscopic analysis even at low acceleration voltages (≤80 kV). For a large-angle illumination, achieving successful aberration correction to high angles is challenging with an aberration corrector, which limits further improvements in applications such as super-resolution, three-dimensional atomic depth resolution, or atomic surface morphology analyses. Electron ptychography based on four-dimensional STEM can provide a postprocessing strategy to overcome the current technological limitations. In this work, we have demonstrated that aberration correction for large-angle illumination is feasible by pushing the capabilities of regularized ptychographic iterative engine algorithms to reconstruct 4D data sets acquired using a relatively low-efficiency complementary metal oxide semiconductor camera. We report super resolution (0.71 Å) with large-angle illumination (50-60 mrad) and under 60 kV accelerating voltage.

10.
Nanoscale ; 16(17): 8236-8255, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38584466

RESUMO

Osteoporosis, characterized by a reduction in bone mineral density, represents a prevalent skeletal disorder with substantial global health implications. Conventional therapeutic strategies, exemplified by bisphosphonates and hormone replacement regimens, though effective, encounter inherent limitations and challenges. Recent years have witnessed the surge of cell-membrane-coated nanoparticles (CMNPs) as a promising intervention for osteoporosis, leveraging their distinct attributes including refined biocompatibility, heightened pharmaceutical payload capacity, as well as targeted drug release kinetics. However, a comprehensive review consolidating the application of CMNPs-based therapy for osteoporosis remains absent within the existing literature. In this review, we provide a concise overview of the distinctive pathogenesis associated with osteoporosis, alongside an in-depth exploration of the physicochemical attributes intrinsic to CMNPs derived from varied cellular sources. Subsequently, we explore the potential utility of CMNPs, elucidating emerging trends in their deployment for osteoporosis treatment through multifaceted therapeutic approaches. By linking the notable attributes of CMNPs with their roles in mitigating osteoporosis, this review serves as a catalyst for further advances in the design of advanced CMNPs tailored for osteoporosis management. Ultimately, such progress is promising for enhancing outcomes in anti-bone loss interventions, paving the way for clinical translation in the near future.


Assuntos
Membrana Celular , Nanopartículas , Osteoporose , Humanos , Osteoporose/tratamento farmacológico , Nanopartículas/química , Nanopartículas/uso terapêutico , Membrana Celular/metabolismo , Membrana Celular/química , Sistemas de Liberação de Medicamentos , Animais
11.
Cell Metab ; 36(5): 1144-1163.e7, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38574738

RESUMO

Bone secretory proteins, termed osteokines, regulate bone metabolism and whole-body homeostasis. However, fundamental questions as to what the bona fide osteokines and their cellular sources are and how they are regulated remain unclear. In this study, we analyzed bone and extraskeletal tissues, osteoblast (OB) conditioned media, bone marrow supernatant (BMS), and serum, for basal osteokines and those responsive to aging and mechanical loading/unloading. We identified 375 candidate osteokines and their changes in response to aging and mechanical dynamics by integrating data from RNA-seq, scRNA-seq, and proteomic approaches. Furthermore, we analyzed their cellular sources in the bone and inter-organ communication facilitated by them (bone-brain, liver, and aorta). Notably, we discovered that senescent OBs secrete fatty-acid-binding protein 3 to propagate senescence toward vascular smooth muscle cells (VSMCs). Taken together, we identified previously unknown candidate osteokines and established a dynamic regulatory network among them, thus providing valuable resources to further investigate their systemic roles.


Assuntos
Osteoblastos , Animais , Osteoblastos/metabolismo , Osteoblastos/citologia , Camundongos , Osso e Ossos/metabolismo , Proteômica , Camundongos Endogâmicos C57BL , Masculino , Envelhecimento/metabolismo , Humanos , Senescência Celular , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Multiômica
12.
Front Neurol ; 15: 1356614, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638308

RESUMO

Tmc1 and Tmc2 are essential pore-forming subunits of mechanosensory transduction channels localized to the tips of stereovilli in auditory and vestibular hair cells of the inner ear. To investigate expression and function of Tmc1 and Tmc2 in vestibular organs, we used quantitative polymerase chain reaction (qPCR), fluorescence in situ hybridization - hairpin chain reaction (FISH-HCR), immunostaining, FM1-43 uptake and we measured vestibular evoked potentials (VsEPs) and vestibular ocular reflexes (VORs). We found that Tmc1 and Tmc2 showed dynamic developmental changes, differences in regional expression patterns, and overall expression levels which differed between the utricle and saccule. These underlying changes contributed to unanticipated phenotypic loss of VsEPs and VORs in Tmc1 KO mice. In contrast, Tmc2 KO mice retained VsEPs despite the loss of the calcium buffering protein calretinin, a characteristic biomarker of mature striolar calyx-only afferents. Lastly, we found that neonatal Tmc1 gene replacement therapy is sufficient to restore VsEP in Tmc1 KO mice for up to six months post-injection.

13.
Nat Mater ; 23(3): 304-305, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38438617
14.
Adv Mater ; : e2311652, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502781

RESUMO

The explosive growth of massive-data storage and the demand for ultrafast data processing require innovative memory devices with exceptional performance. 2D materials and their van der Waal heterostructures with atomically sharp interfaces hold great promise for innovations in memory devices. Here, this work presents non-volatile, floating-gate memory devices with all functional layers made of 2D materials, achieving ultrafast programming/erasing speeds (20 ns), high extinction ratios (up to 108), and multi-bit storage capability. These devices also exhibit long-term data retention exceeding 10 years, facilitated by a high gate-coupling ratio (GCR) and atomically sharp interfaces between functional layers. Additionally, this work demonstrates the realization of an "OR" logic gate on a single-device unit by synergistic electrical and optical operations. The present results provide a solid foundation for next-generation ultrahigh-speed, ultralong lifespan, non-volatile memory devices, with a potential for scale-up manufacturing and flexible electronics applications.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38438071

RESUMO

BACKGROUND: Exosomes can penetrate the blood-brain barrier for material exchange between the peripheral and central nervous systems. Differences in exosome contents could explain the susceptibility of different individuals to depression-like behavior after traumatic spinal cord injury (TSCI). METHODS: Hierarchical clustering was used to integrate multiple depression-related behavioral outcomes in sham and TSCI rats and ultimately identify non-depressed and depressed rats. The difference in plasma exosome contents between non-depressed and depressed rats after TSCI was assessed in 15 random subjects by performing plasma exosome transcriptomics, mass spectroscope-based proteomics, and non-targeted metabolomics analyses. RESULTS: The results revealed that about 27.6% of the rats developed depression-like behavior after TSCI. Totally, 10 differential metabolites, 81 differentially expressed proteins (DEPs), 373 differentially expressed genes (DEGs), and 55 differentially expressed miRNAs (DEmiRNAs) were identified between non-depressed TSCI and sham rats. Meanwhile, 37 differential metabolites, 499 DEPs, 1361 DEGs, and 89 DEmiRNAs were identified between depressed and non-depressed TSCI rats. Enrichment analysis showed that the progression of depression-like behavior after TSCI may be related to amino acid metabolism disorder and dysfunction of multiple signaling pathways, including endocytosis, lipid and atherosclerosis, toll-like receptor, TNF, and PI3K-Akt pathway. CONCLUSION: Overall, our study systematically revealed for the first time the differences in plasma exosome contents between non-depressed and depressed rats after TSCI, which will help broaden our understanding of the complex molecular mechanisms involved in brain functional recombination after TSCI.


Assuntos
Exossomos , MicroRNAs , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Depressão/etiologia , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/metabolismo
16.
Angew Chem Int Ed Engl ; 63(22): e202403520, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38446498

RESUMO

The recombination of photogenerated charge carriers severely limits the performance of photoelectrochemical (PEC) H2 production. Here, we demonstrate that this limitation can be overcome by optimizing the charge transfer dynamics at the solid-liquid interface via molecular catalyst design. Specifically, the surface of a p-Si photocathode is modulated using molecular catalysts with different metal atoms and organic ligands to improve H2 production performance. Co(pda-SO3H)2 is identified as an efficient and durable catalyst for H2 production through the rational design of metal centers and first/second coordination spheres. The modulation with Co(pda-SO3H)2, which contains an electron-withdrawing -SO3H group in the second coordination sphere, elevates the flat-band potential of the polished p-Si photocathode and nanoporous p-Si photocathode by 81 mV and 124 mV, respectively, leading to the maximized energy band bending and the minimized interfacial carrier transport resistance. Consequently, both the two photocathodes achieve the Faradaic efficiency of more than 95 % for H2 production, which is well maintained during 18 h and 21 h reaction, respectively. This work highlights that the band-edge engineering by molecular catalysts could be an important design consideration for semiconductor-catalyst hybrids toward PEC H2 production.

17.
BMC Genom Data ; 25(1): 16, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336648

RESUMO

BACKGROUND: Numerous species within the genus Caragana have high ecological and medicinal value. However, species identification based on morphological characteristics is quite complicated in the genus. To address this issue, we analyzed complete plastid genome data for the genus. RESULTS: We obtained chloroplast genomes of two species, Caragana arborescens and Caragana opulens, using Illumina sequencing technology, with lengths of 129,473 bp and 132,815 bp, respectively. The absence of inverted repeat sequences in the two species indicated that they could be assigned to the inverted repeat-lacking clade (IRLC). The genomes included 111 distinct genes (4 rRNA genes, 31 tRNA genes, and 76 protein-coding genes). In addition, 16 genes containing introns were identified in the two genomes, the majority of which contained a single intron. Repeat analyses revealed 129 and 229 repeats in C. arborescens and C. opulens, respectively. C. arborescens and C. opulens genomes contained 277 and 265 simple sequence repeats, respectively. The two Caragana species exhibited similar codon usage patterns. rpl20-clpP, rps19-rpl2, and rpl23-ycf2 showed the highest nucleotide diversity (pi). In an analysis of sequence divergence, certain intergenic regions (matK-rbcL, psbM-petN, atpA-psbI, petA-psbL, psbE-petL, and rps7-rps12) were highly variable. A phylogenetic analysis showed that C. arborescens and C. opulens were related and clustered together with four other Caragana species. The genera Astragalus and Caragana were relatively closely related. CONCLUSIONS: The present study provides valuable information about the chloroplast genomes of C. arborescens and C. opulens and lays a foundation for future phylogenetic research and molecular marker development.


Assuntos
Caragana , Genoma de Cloroplastos , Genomas de Plastídeos , Genoma de Cloroplastos/genética , Filogenia , Íntrons/genética
18.
Environ Sci Pollut Res Int ; 31(11): 16131-16149, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38319418

RESUMO

Landfilling is one of the predominant methods of municipal solid waste (MSW) disposal worldwide, while the generation of leachate, a kind of toxic wastewater, is among the primary factors behind landfill instability and environmental contamination problems. Precise prediction of leachate production is crucial to landfill safety evaluation and design. This paper presents a comprehensive review of methods for predicting leachate production from MSW landfills. Firstly, compositional characteristics of MSW and leachate generation mechanism are analysed. Factors influencing leachate production are summarised based on the generation mechanism, including the components of MSW, climatic conditions, landfill structure, and environmental factors. Then, we classified the existing methods for predicting leachate production into four categories: water balance formula, water balance model, empirical formula, and artificial intelligence model methods. Advantages, disadvantages, and applicability of different leachate production prediction methods are compared and analysed. Furthermore, limitations in the existing leachate production prediction methods for MSW landfills and scope for future research are discussed.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Resíduos Sólidos/análise , Inteligência Artificial , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos , Água , Poluentes Químicos da Água/análise
19.
Bioact Mater ; 34: 366-380, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38269308

RESUMO

Oxidative stress, infection, and vasculopathy caused by hyperglycemia are the main barriers for the rapid repair of foot ulcers in patients with diabetes mellitus (DM). In recent times, the discovery of neddylation, a new type of post-translational modification, has been found to regulate various crucial biological processes including cell metabolism and the cell cycle. Nevertheless, its capacity to control the healing of wounds in diabetic patients remains unknown. This study shows that MLN49224, a compound that inhibits neddylation at low concentrations, enhances the healing of diabetic wounds by inhibiting the polarization of M1 macrophages and reducing the secretion of inflammatory factors. Moreover, it concurrently stimulates the growth, movement, and formation of blood vessel endothelial cells, leading to expedited healing of wounds in individuals with diabetes. The drug is loaded into biomimetic macrophage-membrane-coated PLGA nanoparticles (M-NPs/MLN4924). The membrane of macrophages shields nanoparticles from being eliminated in the reticuloendothelial system and counteracts the proinflammatory cytokines to alleviate inflammation in the surrounding area. The extended discharge of MLN4924 from M-NPs/MLN4924 stimulates the growth of endothelial cells and the formation of tubes, along with the polarization of macrophages towards the anti-inflammatory M2 phenotype. By loading M-NPs/MLN4924 into a hydrogel, the final formulation is able to meaningfully repair a diabetic wound, suggesting that M-NPs/MLN4924 is a promising engineered nanoplatform for tissue engineering.

20.
Signal Transduct Target Ther ; 9(1): 24, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246920

RESUMO

The clinical role and underlying mechanisms of valproic acid (VPA) on bone homeostasis remain controversial. Herein, we confirmed that VPA treatment was associated with decreased bone mass and bone mineral density (BMD) in both patients and mice. This effect was attributed to VPA-induced elevation in osteoclast formation and activity. Through RNA-sequencing, we observed a significant rise in precursor miR-6359 expression in VPA-treated osteoclast precursors in vitro, and further, a marked upregulation of mature miR-6359 (miR-6359) in vivo was demonstrated using quantitative real-time PCR (qRT-PCR) and miR-6359 fluorescent in situ hybridization (miR-6359-FISH). Specifically, the miR-6359 was predominantly increased in osteoclast precursors and macrophages but not in neutrophils, T lymphocytes, monocytes and bone marrow-derived mesenchymal stem cells (BMSCs) following VPA stimulation, which influenced osteoclast differentiation and bone-resorptive activity. Additionally, VPA-induced miR-6359 enrichment in osteoclast precursors enhanced reactive oxygen species (ROS) production by silencing the SIRT3 protein expression, followed by activation of the MAPK signaling pathway, which enhanced osteoclast formation and activity, thereby accelerating bone loss. Currently, there are no medications that can effectively treat VPA-induced bone loss. Therefore, we constructed engineered small extracellular vesicles (E-sEVs) targeting osteoclast precursors in bone and naturally carrying anti-miR-6359 by introducing of EXOmotif (CGGGAGC) in the 3'-end of the anti-miR-6359 sequence. We confirmed that the E-sEVs exhibited decent bone/osteoclast precursor targeting and exerted protective therapeutic effects on VPA-induced bone loss, but not on ovariectomy (OVX) and glucocorticoid-induced osteoporotic models, deepening our understanding of the underlying mechanism and treatment strategies for VPA-induced bone loss.


Assuntos
Vesículas Extracelulares , MicroRNAs , Feminino , Humanos , Animais , Camundongos , Ácido Valproico/farmacologia , Antagomirs , Hibridização in Situ Fluorescente , Vesículas Extracelulares/genética , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA