Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
World J Clin Cases ; 12(11): 1960-1966, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38660543

RESUMO

BACKGROUND: Syphilis is an infectious disease caused by Treponema pallidum that can invade the central nervous system, causing encephalitis. Few cases of anti-N-methyl-D-aspartate receptor autoimmune encephalitis (AE) secondary to neurosyphilis have been reported. We report a neurosyphilis patient with anti-γ-aminobutyric acid-B receptor (GABABR) AE. CASE SUMMARY: A young man in his 30s who presented with acute epileptic status was admitted to a local hospital. He was diagnosed with neurosyphilis, according to serum and cerebrospinal fluid (CSF) tests for syphilis. After 14 d of antiepileptic treatment and anti-Treponema pallidum therapy with penicillin, epilepsy was controlled but serious cognitive impairment, behavioral, and serious psychiatric symptoms were observed. He was then transferred to our hospital. The Mini-Mental State Examination (MMSE) crude test results showed only 2 points. Cranial magnetic resonance imaging revealed significant cerebral atrophy and multiple fluid-attenuated inversion recovery high signals in the white matter surrounding both lateral ventricles, left amygdala and bilateral thalami. Anti-GABABR antibodies were discovered in CSF (1:3.2) and serum (1:100). The patient was diagnosed with neurosyphilis complicated by anti-GABABR AE, and received methylprednisolone and penicillin. Following treatment, his mental symptoms were alleviated. Cognitive impairment was significantly improved, with a MMSE of 8 points. Serum anti-GABABR antibody titer decreased to 1:32. The patient received methylprednisolone and penicillin after discharge. Three months later, the patient's condition was stable, but the serum anti-GABABR antibody titer was 1:100. CONCLUSION: This patient with neurosyphilis combined with anti-GABABR encephalitis benefited from immunotherapy.

2.
J Stroke Cerebrovasc Dis ; 33(4): 107634, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342274

RESUMO

BACKGROUND: Intracranial aneurysm (IA) is a common cerebrovascular disease and the leading cause of spontaneous subarachnoid hemorrhage. Recent evidence suggests that gut microbiota is involved in the pathophysiological process of IA through the gut-brain axis. However, the role of gut inflammation in the development of IA has yet to be clarified. Our study aimed to investigate whether fecal calprotectin (FC) level, a sensitive marker of gut inflammation, is correlated with the development of IA and the prognosis of patients with ruptured IA (RIA). METHODS: 182 patients were collected from January 2022 to January 2023, including 151 patients with IA and 31 healthy individuals. 151 IA patients included 109 patients with unruptured IA (UIA) and 42 patients with RIA. The FC level was measured by enzyme-linked immunosorbent assay. Other detailed information was obtained from an electronic medical record system. RESULTS: Compared with healthy controls, the FC levels in patients with IA were increased (P < 0.0001). Patients with RIA had significantly higher FC levels than UIA patients (P < 0.0001). Moreover, the FC level in RIA patients with unfavorable outcomes was higher than in RIA patients with favorable outcomes. Logistic regression analysis showed that the elevated FC level was an independent risk factor for a 3-month poor prognosis in patients with RIA (OR=1.005, 95% CI = 1.000 -1.009, P = 0.044). CONCLUSION: Fecal calprotectin level is significantly elevated in IA patients, especially those with RIA. FC is a novel biomarker of 3-month poor outcomes in RIA patients.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Hemorragia Subaracnóidea , Humanos , Aneurisma Intracraniano/complicações , Aneurisma Intracraniano/diagnóstico , Hemorragia Subaracnóidea/etiologia , Aneurisma Roto/etiologia , Biomarcadores , Inflamação/complicações
4.
Brain Sci ; 13(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37239288

RESUMO

Clinically, early brain injury (EBI), which refers to the acute injuries to the whole brain in the phase of the first 72 h following subarachnoid hemorrhage (SAH), is intensely investigated to improve neurological and psychological function. Additionally, it will be meaningful to explore new therapeutic approaches for EBI treatment to improve the prognosis of patients with SAH. To investigate the underlying neuroprotection mechanism in vitro, the Protein tyrosine phosphatase 1B inhibitor (PTP1B-IN-1) was put in primary neurons induced by OxyHb to observe neuroapoptosis, neuroinflammation, and ER stress. Then, one hundred forty male mice were subjected to Experiment two and Experiment three. The mice in the SAH24h + PTP1B-IN-1 group were given an intraperitoneal injection of 5 mg/kg PTP1B-IN-1 30 min before anesthesia. SAH grade, neurological score, brain water content, Western blot, PCR, and Transmission Electron Microscopy (TEM) were performed to observe the underlying neuroprotection mechanism in vivo. Overall, this study suggests that PTP1B-IN-1 could ameliorate neuroapoptosis, neuroinflammation, and ER stress in vitro and in vivo by regulating the IRS-2/AKT signaling pathway, suggesting that PTP1B-IN-1 may be a candidate drug for the treatment of early brain injury after SAH.

5.
J Neurosurg Sci ; 67(6): 727-732, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35416452

RESUMO

BACKGROUND: Unruptured intracranial vertebral artery dissecting aneurysms (IVADAs) with mass effect have an extremely poor natural course, and treatment of these aneurysms remains a challenge for endovascular and surgical strategies. The aim of this study was to analyze the role of double-stent-assisted coil embolization in preventing rupture and bleeding of intracranial vertebral artery dissecting aneurysm with brainstem compression by reducing mass effect and preventing the recurrence of the aneurysm. METHODS: A total of 25 patients (mean age, 56.04±13.0 years) with unruptured IVADAs with mass effect received dual-stent-assisted coil embolization. The baseline characteristics, the change of aneurysm size on MR, the rate of retreatment, and the improvement rate of clinical symptoms and signs were analyzed retrospectively. RESULTS: All patients completed the surgical procedures successfully. No aneurysm bleeding or perforating artery occlusion occurred during the perioperative and follow-up periods. The initial maximum diameter of the aneurysm on MR was 17.5±3.6 mm. One year after treatment, the maximum diameter of the aneurysm on MR was 15.8±4.9 mm. The reduction rate of the maximum diameter of the aneurysm was 10.7±12.7%. The change of the maximum diameter before and after treatment of aneurysm was statistically significant (P<0.001). In terms of the improvement rate of clinical symptoms, 15 cases were completely improved (60.0%), 6 cases were partially improved (24.0%), and the total clinical improvement rate was 84%. Four cases (16.0%) showed no improvement or even had aggravation of clinical symptoms. In 5 cases (20.0%), aneurysms recurred. Among 4 cases involving posterior inferior cerebellar artery origin, 3 cases had the recurrence (75%). 5 recurred cases were treated with single-stent-assisted coil embolization. No residual aneurysm and recurrence were found on the follow-up angiography. CONCLUSIONS: The double-stent-assisted coil embolization procedure is very safe and reliable. It can effectively prevent the aneurysm from continuing to grow and rupture and thereby reduce the clinical symptoms caused by the mass effect.


Assuntos
Dissecção Aórtica , Embolização Terapêutica , Aneurisma Intracraniano , Dissecação da Artéria Vertebral , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Artéria Vertebral/cirurgia , Aneurisma Intracraniano/cirurgia , Estudos Retrospectivos , Embolização Terapêutica/métodos , Resultado do Tratamento , Dissecação da Artéria Vertebral/cirurgia , Stents , Angiografia Cerebral/métodos
6.
J Anal Test ; 6(4): 353-364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966388

RESUMO

Gold nanoparticles (AuNPs) colorimetric assays based on distance-dependent optical characteristics have been widely employed for bioanalysis. However, this assay is not effective for visually detecting low-concentration targets due to the faint color change. Here, we developed a handheld nano-centrifugal device which could separate the crosslinked and non-crosslinked AuNPs. Results showed that the handheld nano-centrifugal device could easily reach more than 6000 r/min within 10 s simply by stretching and tightening the coiled rope in an appropriate rhythm. Further, combined with the CRISPR/Cas12a nucleic acids recognition system, a field-deployable colorimetric platform termed handheld nano-centrifugal device assisted CRISPR/Cas12a (Hand-CRISPR) has been validated. Moreover, clinical diagnostics applications for Epstein-Barr virus (EBV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) detection with high sensitivity and accuracy (100% consistency with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) test results) have been demonstrated. Overall, the Hand-CRISPR platform showed great promise in point-of-care-test (POCT) application, expected to become a powerful supplement to the standard nucleic acid testing method in remote or poverty-stricken areas. Supplementary Information: The online version contains supplementary material available at 10.1007/s41664-022-00232-0.

7.
Oxid Med Cell Longev ; 2022: 9069825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855863

RESUMO

Ferroptosis is a regulated cell death that characterizes the lethal lipid peroxidation and iron overload, which may contribute to early brain injury (EBI) pathogenesis after subarachnoid hemorrhage (SAH). Although Sirtuin 1 (SIRT1), a class III histone deacetylase, has been proved to have endogenous neuroprotective effects on the EBI following SAH, the role of SIRT1 in ferroptosis has not been studied. Hence, we designed the current study to determine the role of ferroptosis in the EBI and explore the correlation between SIRT1 and ferroptosis after SAH. The pathways of ferroptosis were examined after experimental SAH in vivo (prechiasmatic cistern injection mouse model) and in HT-22 cells stimulated by oxyhemoglobin (oxyHb) in vitro. Then, ferrostatin-1 (Fer-1) was used further to determine the role of ferroptosis in EBI. Finally, we explored the correlation between SIRT1 and ferroptosis via regulating the expression of SIRT1 by resveratrol (RSV) and selisistat (SEL). Our results showed that ferroptosis was involved in the pathogenesis of EBI after SAH through multiple pathways, including acyl-CoA synthetase long-chain family member 4 (ACSL4) activation, iron metabolism disturbance, and the downregulation of glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1). Inhibition of ferroptosis by Fer-1 significantly alleviated oxidative stress-mediated brain injury. SIRT1 activation could suppress SAH-induced ferroptosis by upregulating the expression of GPX4 and FSP1. Therefore, ferroptosis could be a potential therapeutic target for SAH, and SIRT1 activation is a promising method to inhibit ferroptosis.


Assuntos
Lesões Encefálicas , Ferroptose , Sirtuína 1 , Hemorragia Subaracnóidea , Animais , Lesões Encefálicas/metabolismo , Camundongos , Sirtuína 1/metabolismo , Hemorragia Subaracnóidea/metabolismo
8.
Front Mol Biosci ; 9: 927549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769905

RESUMO

Chronic inflammatory airway diseases, characterized by airway inflammation and airway remodelling, are increasing as a cause of morbidity and mortality for all age groups and races across the world. The underlying molecular mechanisms involved in chronic inflammatory airway diseases have not been fully explored. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have recently attracted much attention for their roles in the regulation of a variety of biological processes. A number of studies have confirmed that both lncRNAs and miRNAs can regulate the initiation and progression of chronic airway diseases by targeting mRNAs and regulating different cellular processes, such as proliferation, apoptosis, inflammation, migration, and epithelial-mesenchymal transition (EMT). Recently, accumulative evidence has shown that the novel regulatory mechanism underlying the interaction among lncRNAs, miRNAs and messenger RNAs (mRNAs) plays a critical role in the pathophysiological processes of chronic inflammatory airway diseases. In this review, we comprehensively summarized the regulatory roles of the lncRNA-miRNA-mRNA network in different cell types and their potential roles as biomarkers, indicators of comorbidities or therapeutic targets for chronic inflammatory airway diseases, particularly chronic obstructive pulmonary disease (COPD) and asthma.

9.
J Anal Test ; 6(1): 44-52, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251748

RESUMO

The COVID-19 pandemic has brought great challenges to traditional nucleic acid detection technology. Thus, it is urgent to develop a more simple and efficient nucleic acid detection technology. CRISPR-Cas12 has signal amplification ability, high sensitivity and high nucleic acid recognition specificity, so it is considered as a nucleic acid detection tool with broad development prospects and high application value. This review paper discusses recent advances in CRISPR-Cas12-based nucleic acid detection, with an emphasis on the new research methods and means to improve the nucleic acid detection capability of CRISPR-Cas12. Strategies for improving sensitivity, optimization of integrated detection, development of simplified detection mode and improvement of quantitative detection capabilities are included. Finally, the future development of CRISPR-Cas12-based nucleic acids detection is prospected.

11.
Neurochem Res ; 47(3): 590-600, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34665391

RESUMO

Subarachnoid hemorrhage (SAH), as one of the most severe hemorrhagic strokes, is closely related to neuronal damage. Neurogenesis is a promising therapy, however, reliable targets are currently lacking. Increasing evidence has indicated that CD24 is associated with the growth of hippocampal neurons and the regulation of neural stem/precursor cell proliferation. To investigate the potential effect of CD24 in astrocytes on neuron growth in the hippocampus, we used a Transwell co-culture system of hippocampal astrocytes and neurons, and oxyhemoglobin (OxyHb) was added to the culture medium to mimic SAH in vitro. A specific lentivirus was used to knock down CD24 expression in astrocytes, which was verified by western blot, quantitative real-time polymerase chain reaction, and immunofluorescent staining. Astrocyte activation, neurite elongation, neuronal apoptosis, and cell viability were also assessed. We first determined the augmented expression level of CD24 in hippocampal astrocytes after SAH. A similar result was observed in cultured astrocytes exposed to OxyHb, and a corresponding change in SHP2/ERK was also noticed. CD24 in astrocytes was then downregulated by the lentivirus, which led to the impairment of axons and dendrites on the co-cultured neurons. Aggravated neuronal apoptosis was induced by the CD24 downregulation in astrocytes, which might be a result of a lower level of brain derived neurotrophic factor (BDNF). In conclusion, the knock-down of CD24 in astrocytes suppressed hippocampal neuron growth, in which the SHP2-ERK signaling pathway and BNDF were possibly involved.


Assuntos
Astrócitos , Antígeno CD24 , Oxiemoglobinas , Astrócitos/metabolismo , Antígeno CD24/genética , Antígeno CD24/fisiologia , Regulação para Baixo , Hipocampo/metabolismo , Neurogênese , Neurônios/metabolismo , Oxiemoglobinas/metabolismo , Oxiemoglobinas/farmacologia
12.
Front Chem ; 9: 775274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778220

RESUMO

Subarachnoid hemorrhage (SAH) is a fatal disease. Within 72 h of SAH, the intracranial blood-brain barrier (BBB) is destroyed, and the nerve cells have responses such as autophagy, apoptosis, and oxidative stress. Antioxidation is an essential treatment of SAH. Astaxanthin (ATX) induces cells' antioxidant behaviors by regulating related signal pathways to reduce the damage of brain oxidative stress, inflammation, and apoptosis. Because of its easy degradability and low bioavailability, ATX is mainly encapsulated with stimulus-responsive nanocarriers to improve its stability, making it rapidly release in the brain and efficiently enter the lesion tissue. In this study, the ultrasonic cavitation agent perfluorocarbon (PFH), ATX, and fluorescent dye IR780 were loaded with polydopamine (PDA) to prepare a US triggered release nanoparticles (AUT NPs). The core-shell structure of AUT NPs formed a physical barrier to improve the bioavailability of ATX. AUT NPs have high ATX loading capacity and US responsiveness. The experimental results show that the AUT NPs have high stability in the physiological environment. Both US and pH stimuli can trigger the release. Under US, PFH breaks through the rigid shell. The structure of AUT NPs is destroyed in situ, releasing the loaded drugs into neuronal cells to realize the antioxidant and antiapoptotic effects. The in vivo experiment results show that the AUT NPs have good biosafety. They release the drugs in the brain under stimuli. The in vivo treatment results also show that AUT NPs have an excellent therapeutic effect. This approach presents an experimental basis for the establishment of Innovative SAH treatments.

13.
World J Clin Cases ; 9(19): 5054-5063, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34307556

RESUMO

BACKGROUND: High-grade aneurysmal subarachnoid hemorrhage is a devastating disease with a low favorable outcome. Elevated intracranial pressure is a substantial feature of high-grade aneurysmal subarachnoid hemorrhage that can result to secondary brain injury. Early control of intracranial pressure including decompressive craniectomy and external ventricular drainage had been reported to be associated with improved outcomes. But in recent years, little is known whether external ventricular drainage and intracranial pressure monitoring after coiling could improve outcomes in high-grade aneurysmal subarachnoid hemorrhage. AIM: To investigate the outcomes of high-grade aneurysmal subarachnoid hemorrhage patients with coiling and ventricular intracranial pressure monitoring. METHODS: A retrospective analysis of a consecutive series of high-grade patients treated between Jan 2016 and Jun 2017 was performed. In our center, followed by continuous intracranial pressure monitoring, the use of ventricular pressure probe for endovascular coiling and invasive intracranial pressure monitoring in the acute phase is considered to be the first choice for the treatment of high-grade patients. We retrospectively analyzed patient characteristics, radiological features, intracranial pressure monitoring parameters, complications, mortality and outcome. RESULTS: A total of 36 patients were included, and 32 (88.89%) survived. The overall mortality rate was 11.11%. No patient suffered from aneurysm re-rupture. The intracranial pressure in 33 patients (91.67%) was maintained within the normal range by ventricular drainage during the treatment. A favorable outcome was achieved in 18 patients (50%) with 6 mo follow-up. Delayed cerebral ischemia and Glasgow coma scale were considered as significant predictors of outcome (2.066 and -0.296, respectively, P < 0.05). CONCLUSION: Ventricular intracranial pressure monitoring may effectively maintain the intracranial pressure within the normal range. Despite the small number of cases in the current work, high-grade patients may benefit from a combination therapy of early coiling and subsequent ventricular intracranial pressure monitoring.

15.
World J Clin Cases ; 9(11): 2611-2618, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33889627

RESUMO

BACKGROUND: Eltrombopag is an orally administered thrombopoietin receptor agonist linked to a heightened risk of treatment-related thromboembolism. Both venous and arterial thromboses have been documented in the medical literature. CASE SUMMARY: In the absence of nephropathy, a 48-year-old patient receiving eltrombopag for immune thrombocytopenia (ITP) developed renal vein thrombosis and pulmonary embolism. The renal vein thrombus spontaneously resolved during subsequent anticoagulant treatment, restoring venous circulation. CONCLUSION: A rapid upsurge in platelets, rather than their absolute number, may trigger thrombotic events in this setting. For patients at high thrombotic risk, individualized eltrombopag dosing and vigilance in platelet monitoring are perhaps needed during treatment of ITP.

16.
Am J Transl Res ; 12(10): 6395-6408, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194038

RESUMO

Massive neuron loss is the key reason for poor prognoses in patients with traumatic brain injury (TBI), and astrocytes function as nutrition-providing neurons. Therefore, researchers must determine the potential role of astrocytes in neural regeneration after TBI. Our previous studies established that upregulating CD24 in the hippocampus might improve cognitive functions after TBI. However, whether CD24 in hippocampal astrocytes is involved in neural regeneration after TBI remains unknown. Therefore, we detected the CD24 expression in the ipsilateral hippocampus via western blot and quantitative real-time PCR. We further investigated the CD24 expression patterns in hippocampal astrocytes via immunofluorescence staining. We then injected adeno-associated virus-Gfa2-siRNA-CD24 (AAV-CD24) into the astrocytes to downregulate CD24 and analyzed the related cellular signals. Golgi-Cox staining and the growth associated protein-43 (GAP43) level were used to observe neuronal morphology and neural regeneration around the astrocytes in the ipsilateral hippocampus, and the Morris water maze test was used to assess neural functional recovery. The CD24 protein and mRNA levels in the cornu ammonis and dentate gyrus regions of the ipsilateral hippocampus were elevated after TBI, and high CD24 expression was widespread in the hippocampal astrocytes after TBI. Specific inhibition of CD24 in the hippocampal astrocytes interfered with the activation of Src homology region 2 containing protein tyrosine phosphatase 2 (SHP2) and extracellular signal regulated kinase (ERK), shortened the neuronal dendritic spines, decreased the GAP43 level and impaired the cognitive functions of the TBI-model mice. These results revealed that elevated hippocampal CD24 in astrocytes participated in neural regeneration in mice after TBI, possibly by activating the SHP2/ERK pathway.

17.
World J Clin Cases ; 8(19): 4652-4659, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33083430

RESUMO

BACKGROUND: Gemcitabine is a chemotherapy agent with relatively low toxicities, as a valid option for elderly patients with underlying diseases. Gemcitabine-induced pulmonary toxicities are rare and various, ranging from self-limited episodes of bronchospasm to fatal, progressive, severe, interstitial pneumonitis and respiratory failure. Intravesical gemcitabine instillations are commonly used to reduce recurrence or progression for non-muscle-invasive bladder cancer or urothelial cancer. Few severe toxicities have been reported for the intravesical instillation is assumed to be completely separated from the systemic circulation. CASE SUMMARY: A 67-year-old patient received 30 cycles of intravesical gemcitabine instillation after transurethral resection and developed a 1-wk fever, cough, hemoptysis, and dyspnea. After a thorough checkup, bilateral consolidation and infiltration of the lungs were documented and a percutaneous lung biopsy confirmed organizing pneumonia after treatment with broad-spectrum empirical antibiotics failed. Tapered corticosteroids were administered, and pulmonary toxicity gradually resolved. CONCLUSION: Gemcitabine-induced pulmonary toxicities present with various manifestations. In spite of the rare pulmonary involvement by the intravesical gemcitabine instillation, health care professionals who administer gemcitabine chemotherapy in this way should monitor for gemcitabine-induced pulmonary toxicities, particularly in patients with high-risk factors.

18.
J Neuroinflammation ; 17(1): 188, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32539839

RESUMO

BACKGROUND: Aucubin (Au), an iridoid glycoside from natural plants, has antioxidative and anti-inflammatory bioactivities; however, its effects on a traumatic brain injury (TBI) model remain unknown. We explored the potential role of Au in an H2O2-induced oxidant damage in primary cortical neurons and weight-drop induced-TBI in a mouse model. METHODS: In vitro experiments, the various concentrations of Au (50 µg/ml, 100 µg/ml, or 200 µg/ml) were added in culture medium at 0 h and 6 h after neurons stimulated by H2O2 (100 µM). After exposed for 12 h, neurons were collected for western blot (WB), immunofluorescence, and M29,79-dichlorodihydrofluorescein diacetate (DCFH-DA) staining. In vivo experiments, Au (20 mg/kg or 40 mg/kg) was administrated intraperitoneally at 30 min, 12 h, 24 h, and 48 h after modeling. Brain water content, neurological deficits, and cognitive functions were measured at specific time, respectively. Cortical tissue around focal trauma was collected for WB, TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, Nissl staining, quantitative real time polymerase chain reaction (q-PCR), immunofluorescence/immunohistochemistry, and enzyme linked immunosorbent assay (ELISA) at 72 h after TBI. RNA interference experiments were performed to determine the effects of nuclear factor erythroid-2 related factor 2 (Nrf2) on TBI mice with Au (40 mg/kg) treatment. Mice were intracerebroventricularly administrated with lentivirus at 72 h before TBI establishment. The cortex was obtained at 72 h after TBI and used for WB and q-PCR. RESULTS: Au enhanced the translocation of Nrf2 into the nucleus, activated antioxidant enzymes, suppressed excessive generation of reactive oxygen species (ROS), and reduced cell apoptosis both in vitro and vivo experiments. In the mice model of TBI, Au markedly attenuated brain edema, histological damages, and improved neurological and cognitive deficits. Au significantly suppressed high mobility group box 1 (HMGB1)-mediated aseptic inflammation. Nrf2 knockdown in TBI mice blunted the antioxidant and anti-inflammatory neuroprotective effects of the Au. CONCLUSIONS: Taken together, our data suggest that Au provides a neuroprotective effect in TBI mice model by inhibiting oxidative stress and inflammatory responses; the mechanisms involve triggering Nrf2-induced antioxidant system.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Inflamação/patologia , Glucosídeos Iridoides/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Animais , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
19.
Front Physiol ; 11: 420, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425813

RESUMO

The aim of this study was to build a formula to predict short-term prognosis using main pulmonary artery (MPA) parameters reconstructed from computed tomographic pulmonary angiography in non-high-risk acute pulmonary embolism (PE) patients. After reconstructing the MPA and its centerline, the MPA, the right and left pulmonary artery inlet, and the MPA outlet plane were differentiated to measure the cross-sectional area (CSA), the maximal diameter and the hydraulic diameter. The MPA bifurcation area, volume and angle were measured. MPA dilation was defined as >29 mm at the transverse section plane. The patients were randomly divided into a training set and a validation set. A least absolute shrinkage and selection operator (LASSO) logistic regression algorithm was used to build a predictive formula. The performances of the predictive formula from LASSO were tested by the area under the receiver operating characteristic curve (AUC) and precision-recall (PR) curve with 10-fold cross-validation. The clinical utility was assessed by decision curve analysis (DCA). In total, 296 patients were enrolled and randomly divided (50:50) into a training set and a validation set. The LASSO predictive formula (lambda.1SE) was as follows: 0.92 × MPA bifurcation area + 0.50 × MPA outlet hydraulic diameter + 0.10 × MPA outlet CSA. The AUCs of the predictive formula were 0.860 (95% CI: 0.795-0.912) and 0.943 (95% CI: 0.892-0.975) in the training set and validation set, respectively. The LASSO predictive formula had a higher average area under the PR curve than MPA dilation (0.71 vs. 0.23 in the training set and 0.55 vs. 0.23 in the validation set) and added a net benefit in clinical utility by DCA. Integration of MPA outlet CSA, hydraulic diameter, and bifurcation area with the LASSO predictive formula as a novel weighting method facilitated the prediction of poor short-term prognosis within 30 days after hospital admission in non-high-risk acute PE patients.

20.
Chin Med J (Engl) ; 133(10): 1192-1202, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433051

RESUMO

BACKGROUND: Pulmonary fibrosis is a respiratory disease caused by the proliferation of fibroblasts and accumulation of the extracellular matrix (ECM). It is known that the lung ECM is mainly composed of a three-dimensional fiber mesh filled with various high-molecular-weight proteins. However, the small-molecular-weight proteins in the lung ECM and their differences between normal and fibrotic lung ECM are largely unknown. METHODS: Healthy adult male Sprague-Dawley rats (Rattus norvegicus) weighing about 150 to 200 g were randomly divided into three groups using random number table: A, B, and C and each group contained five rats. The rats in Group A were administered a single intragastric (i.g.) dose of 500 µL of saline as control, and those in Groups B and C were administered a single i.g. dose of paraquat (PQ) dissolved in 500 µL of saline (20 mg/kg). After 2 weeks, the lungs of rats in Group B were harvested for histological observation, preparation of de-cellularized lung scaffolds, and proteomic analysis for small-molecular-weight proteins, and similar procedures were performed on Group C and A after 4 weeks. The differentially expressed small-molecular-weight proteins (DESMPs) between different groups and the subcellular locations were analyzed. RESULTS: Of the 1626 small-molecular-weight proteins identified, 1047 were quantifiable. There were 97 up-regulated and 45 down-regulated proteins in B vs. A, 274 up-regulated and 31 down-regulated proteins in C vs. A, and 237 up-regulated and 28 down-regulated proteins identified in C vs. B. Both the up-regulated and down-regulated proteins in the three comparisons were mainly distributed in single-organism processes and cellular processes within biological process, cell and organelle within cellular component, and binding within molecular function. Further, more up-regulated than down-regulated proteins were identified in most sub-cellular locations. The interactions of DESMPs identified in extracellular location in all comparisons showed that serum albumin (Alb) harbored the highest degree of node (25), followed by prolyl 4-hydroxylase beta polypeptide (12), integrin ß1 (10), apolipoprotein A1 (9), and fibrinogen gamma chain (9). CONCLUSIONS: Numerous PQ-induced DESMPs were identified in de-cellularized lungs of rats by high throughput proteomics analysis. The DESMPs between the control and treatment groups showed diversity in molecular functions, biological processes, and pathways. In addition, the interactions of extracellular DESMPs suggested that the extracellular proteins Alb, Itgb1, Apoa1, P4hb, and Fgg in ECM could be potentially used as biomarker candidates for pulmonary fibrosis. These results provided useful information and new insights regarding pulmonary fibrosis.


Assuntos
Proteômica , Fibrose Pulmonar , Animais , Matriz Extracelular , Pulmão , Masculino , Fibrose Pulmonar/induzido quimicamente , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA