Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 7(3): 516-533, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34692071

RESUMO

Due to its surrounding strong and deep Asian summer monsoon (ASM) circulation and active surface pollutant emissions, surface pollutants are transported to the stratosphere from the Tibetan Plateau region, which may have critical impacts on global climate through chemical, microphysical and radiative processes. This article reviews major recent advances in research regarding troposphere-stratosphere transport from the region of the Tibetan Plateau. Since the discovery of the total ozone valley over the Tibetan Plateau in summer from satellite observations in the early 1990s, new satellite-borne instruments have become operational and have provided significant new information on atmospheric composition. In addition, in situ measurements and model simulations are used to investigate deep convection and the ASM anticyclone, surface sources and pathways, atmospheric chemical transformations and the impact on global climate. Also challenges are discussed for further understanding critical questions on microphysics and microchemistry in clouds during the pathway to the global stratosphere over the Tibetan Plateau.

2.
Sci Bull (Beijing) ; 64(1): 1-3, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659517
3.
Sci Rep ; 7: 46091, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387247

RESUMO

The identification of causal effects is a fundamental problem in climate change research. Here, a new perspective on climate change causality is presented using the central England temperature (CET) dataset, the longest instrumental temperature record, and a combination of slow feature analysis and wavelet analysis. The driving forces of climate change were investigated and the results showed two independent degrees of freedom -a 3.36-year cycle and a 22.6-year cycle, which seem to be connected to the El Niño-Southern Oscillation cycle and the Hale sunspot cycle, respectively. Moreover, these driving forces were modulated in amplitude by signals with millennial timescales.

4.
Sci Rep ; 6: 35816, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27779217

RESUMO

This study investigates the response of large-scale atmospheric circulation over the Asian-Pacific sector and precipitation over eastern China to transient orbital changes during the Holocene summer using an intermediate-complexity climate model. Corresponding to variations in the incoming solar radiation, the eddy sea level pressure (SLP) exhibited an out-of-phase relationship between the North Pacific and the Eurasian landmass that was similar to the present-day Asia-Pacific Oscillation (APO) pattern and was defined as the paleo-APO. Its index presented an increasing trend, which implies the enhancement of a zonal thermal contrast between Asia and the North Pacific. Associated with the strengthening of the paleo-APO was the westward shift in North Pacific high pressure. Accordingly, there was less/more summer precipitation over both the middle reach of the Yangtze River and Southwest China/over North China. The high-resolution stalagmite δ18O records further support this decrease in the model precipitation. Along with the strengthening of paleo-APO from the early Holocene to the present, the eddy SLP anomalies exhibited a decreasing/increasing trend over the Eurasian landmass/the North Pacific, with a phase change of approximately 4.5 ka BP, and they both moved westward. Meanwhile, a less rainfall belt over eastern China exhibited northward propagation from southern China.

5.
Sci Rep ; 6: 21346, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26916258

RESUMO

When floods ravage Asian monsoon regions in summer, megadroughts often attack extratropical North America, which feature an intercontinental contrasting precipitation anomaly between Asia and North America. However, the characteristics of the contrasting Asian-North American (CANA) precipitation anomalies and associated mechanisms have not been investigated specifically. In this article, we firmly establish this summer CANA pattern, providing evidence for a significant effect of the land surface thermal forcing over Eurasian non-monsoon regions on the CANA precipitation anomalies by observations and numerical experiments. We show that the origin of the CANA precipitation anomalies and associated anomalous anticyclones over the subtropical North Pacific and Atlantic has a deeper root in Eurasian non-monsoon land surface heating than in North American land surface heating. The ocean forcing from the ENSO is secondary and tends to be confined in the tropics. Our results have strong implications to interpretation of the feedback of global warming on hydrological cycle over Asia and North America. Under the projected global warming due to the anthropogenic forcing, the prominent surface warming over Eurasian non-monsoon regions is a robust feature which, through the mechanism discussed here, would favor a precipitation increase over Asian monsoon regions and a precipitation decrease over extratropical North America.

6.
J Air Waste Manag Assoc ; 63(9): 1012-21, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24151676

RESUMO

Aerosol samples collected from July 2007 to March 2008 were used to obtain major aerosol constituents in an urban location in the Pearl River Delta Region (PRD), China. The minimum organic carbon (OC)/elemental carbon (EC) ratio was used to calculate the primary and secondary organic carbon and the extinction effect of the secondary aerosol on visibility was estimated. As indicated in the analysis, the mass of secondary aerosol takes up 50% of the total mass of PM2.5; the OC/EC ratio is larger than 2 and there are significant characteristics of secondary aerosol generation; the levels of secondary OC are comparable with those of sulfate; and there is obvious enrichment of secondary aerosol on more polluted days. In a dry environment, the extinction weight is 59% for the secondary aerosol, while it is as high as 82% if the environment is highly humid (relative humidity [RH] = 95%). The hygroscopic growth of the aerosol can reduce visibility greatly; the secondary aerosol shares much larger quotas on more polluted days. For the Pearl River Delta (PRD), secondary aerosol and carbonaceous aerosol, especially secondary organic carbon (SOC), are a very acute problem; the study of the generating mechanism and sources for secondary aerosol is the key to the effort of controlling visibility in this region. The equation set forth in IMPROVE experiments can only be referenced but is not applicable to evaluate the extinction effect of individual aerosol components on visibility in the PRD region.


Assuntos
Aerossóis/análise , Poluição do Ar/análise , Fenômenos Ópticos , China , Rios
7.
J Environ Sci (China) ; 17(4): 686-90, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16158606

RESUMO

A biogeochemical model (DNDC) is combined with a plant ecological model to estimate N2O emission from rice paddy fields in the Yangtze River Delta region. The model is driven by local meteorological, soil, and physiological data and is validated for 1999 and 2000 at a site in the region, which showed that the simulated N2O emissions agree fairly well with the observed data. This adds some confidence in the estimated N2O emissions during 1950 and 2000 in the Hangzhou Region. A significant correlation between the N2O emissions and the population for the Hangzhou Region is found, which is due to a combination of increased application of fertilizers and cultivated area. Such a correlation can not be established for the whole Yangtze River Delta region when the data of both urban and rural areas are included. However, when the data from the heavily urbanized areas are excluded, a significant correlation between population and N2O emissions emerges. The results show clearly that both the temporal and the spatial N2O emissions have significant positive relationship with population under traditional farming practice. These results have implications for suitable mitigation options towards a sustainable agriculture and environment in this region.


Assuntos
Óxidos de Nitrogênio/química , Carbono/química , China , Produtos Agrícolas/crescimento & desenvolvimento , Modelos Teóricos
8.
Huan Jing Ke Xue ; 23(6): 36-9, 2002 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-12619275

RESUMO

A numerical model for simulating N2O emissions in agroecosystem was established. Validation of the model with the observed data showed that the model simulated the process of N2O emissions in fields fairly well. The numerical analysis showed that the N2O emissions were interrelated well with average temperature during rice growth periods. Analysis of N2O emissions and meteorological factors by using power spectrum found that the change of N2O emissions had 7-9 year cycles. Sensitivity test showed that the N2O emission increased with temperature enhancement.


Assuntos
Poluição do Ar/análise , Produtos Agrícolas , Ecossistema , Óxido Nitroso/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA