Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 434, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773357

RESUMO

Intercropping, a widely adopted agricultural practice worldwide, aims to increase crop yield, enhance plant nutrient uptake, and optimize the utilization of natural resources, contributing to sustainable farming practices on a global scale. However, the underlying changes in soil physio-chemical characteristics and enzymatic activities, which contribute to crop yield and nutrient uptake in the intercropping systems are largely unknown. Consequently, a two-year (2021-2022) field experiment was conducted on the maize/soybean intercropping practices with/without nitrogen (N) fertilization (i.e., N0; 0 N kg ha-1 and N1; 225 N kg ha-1 for maize and 100 N kg ha-1 for soybean ) to know whether such cropping system can improve the nutrients uptake and crop yields, soil physio-chemical characteristics, and soil enzymes, which ultimately results in enhanced crop yield. The results revealed that maize intercropping treatments (i.e., N0MI and N1MI) had higher crop yield, biomass dry matter, and 1000-grain weight of maize than mono-cropping treatments (i.e., N0MM, and N1MM). Nonetheless, these parameters were optimized in N1MI treatments in both years. For instance, N1MI produced the maximum grain yield (10,105 and 11,705 kg ha-1), biomass dry matter (13,893 and 14,093 kg ha-1), and 1000-grain weight (420 and 449 g) of maize in the year 2021 and 2022, respectively. Conversely, soybean intercropping treatments (i.e., N0SI and N1SI) reduced such yield parameters for soybean. Also, the land equivalent ratio (LER) and land equivalent ratio for N fertilization (LERN) values were always greater than 1, showing the intercropping system's benefits in terms of yield and improved resource usage. Moreover, maize intercropping treatments (i.e., N0MI and N1MI) and soybean intercropping treatments (i.e., N0SI and N1SI) significantly (p < 0.05) enhanced the nutrient uptake (i.e., N, P, K, Ca, Fe, and Zn) of maize and soybean, however, these nutrients uptakes were more prominent in N1MI and N1SI treatments of maize and soybean, respectively in both years (2021 and 2022) compared with their mono-cropping treatments. Similarly, maize-soybean intercropping treatments (i.e., N0MSI and N1MSI) significantly (p < 0.05) improved the soil-based N, P, K, NH4, NO3, and soil organic matter, but, reduced the soil pH. Such maize-soybean intercropping treatments also improved the soil enzymatic activities such as protease (PT), sucrose (SC), acid phosphatase (AP), urease (UE), and catalase (CT) activities. This indicates that maize-soybean intercropping could potentially contribute to higher and better crop yield, enhanced plant nutrient uptake, improved soil nutrient pool, physio-chemical characteristics, and related soil enzymatic activities. Thus, preferring intercropping to mono-cropping could be a preferable choice for ecologically viable agricultural development.


Assuntos
Produção Agrícola , Glycine max , Nitrogênio , Solo , Zea mays , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Solo/química , China , Produção Agrícola/métodos , Nitrogênio/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Agricultura/métodos , Fertilizantes , Nutrientes/metabolismo , Biomassa
2.
Front Plant Sci ; 13: 988055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119633

RESUMO

Photosynthetic rate (Pn) and photosynthetic nitrogen use efficiency (PNUE) are the two important factors affecting the photosynthesis and nutrient utilization of plant leaves. However, the effect of N fertilization combined with foliar application of Fe on the Pn and PNUE of the maize crops under different planting patterns (i.e., monocropping and intercropping) is elusive. Therefore, this experiment was conducted to determine the effect of N fertilization combined with foliar application of Fe on the photosynthetic characteristics, PNUE, and the associated enzymes of the maize crops under different planting patterns. The results of this study showed that under intercropping, maize treated with N fertilizer combined with foliar application of Fe had not only significantly (p < 0.05) improved physio-agronomic indices but also higher chlorophyll content, better photosynthetic characteristics, and related leaf traits. In addition, the same crops under such treatments had increased photosynthetic enzyme activity (i.e., rubisco activity) and nitrogen metabolism enzymes activities, such as nitrate reductase (NR activity), nitrite reductase (NiR activity), and glutamate synthase (GOGAT activity). Consequently, intercropping enhanced the PNUE and soluble sugar content of the maize crops, thus increasing its yield compared with monocropping. Thus, these findings suggest that intercropping under optimal N fertilizer application combined with Fe foliation can improve the chlorophyll content and photosynthetic characteristics of maize crops by regulating the associated enzymatic activities. Consequently, this results in enhanced PNUE, which eventually leads to better growth and higher yield in the intercropping system. Thus, practicing intercropping under optimal nutrient management (i.e., N and Fe) could be crucial for better growth and yield, and efficient nitrogen use efficiency of maize crops.

3.
Antioxidants (Basel) ; 11(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35326162

RESUMO

Melatonin is effective in modulating metabolism and regulating growth and development in many plants under biotic and abiotic stress. However, there is no systematic quantification of melatonin effects on maize growth, gas exchange, chlorophyll content, and the antioxidant defense system. A meta-analysis was conducted on thirty-two currently available published articles to evaluate the effect of stress types, study types, and maize varieties on response ratio (lnRR++) of "melatonin" to "control (no melatonin)" on plant growth, enzyme activities, gas exchange parameters, and photosynthetic pigments. Our findings revealed that melatonin application overall increased plant height, leaf area, root length, fresh and dry root weight and shoot weight, superoxide dismutase (SOD), peroxide (POD), catalase (CAT), ascorbate peroxidase (APX), soluble sugar and protein, photosynthetic rate, stomatal conductance, transpiration rate, chlorophyll, and carotenoid in maize leaf under stress conditions. In contrast, melatonin application decreased the levels of hydrogen peroxide (H2O2), superoxide anion (O2-), malondialdehyde (MDA), and electrolyte leakage. The categorical meta-analysis demonstrated that melatonin application to chilling stress resulted in higher SOD activity followed by salt stress. Melatonin application to all stress types resulted in higher POD, CAT and APX activities, except Cd stress, which had no effect on POD and decreased CAT by 38% compared to control. Compared to control, melatonin resulted in lower reactive oxygen species (ROS) and electrolyte leakage under no stress, Cd, drought, salt, lead, heat, and chilling stress in all study types (pot, growth chamber, hydroponic, and field), except O2 content which was not affected in pot and growth chamber studies. It was concluded that melatonin alleviates oxidative damage by improving stress tolerance, regulating the antioxidant defense system, and increasing leaf chlorophyll content compared to control.

4.
Antioxidants (Basel) ; 11(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35204247

RESUMO

Melatonin plays an important role in numerous vital life processes of animals and has recently captured the interests of plant biologists because of its potent role in plants. As well as its possible contribution to photoperiodic processes, melatonin is believed to act as a growth regulator and/or as a direct free radical scavenger/indirect antioxidant. However, identifying a precise concentration of melatonin with an optimum nitrogen level for a particular application method to improve plant growth requires identification and clarification. This work establishes inimitable findings by optimizing the application of melatonin with an optimum level of nitrogen, alleviating the detrimental effects of drought stress in maize seedlings. Maize seedlings were subjected to drought stress of 40-45% field capacity (FC) at the five-leaf stage, followed by a soil drenching of melatonin 100 µM and three nitrogen levels (200, 250, and 300 kg ha-1) to consider the changes in maize seedling growth. Our results showed that drought stress significantly inhibited the physiological and biochemical parameters of maize seedlings. However, the application of melatonin with nitrogen remarkably improved the plant growth attributes, chlorophyll pigments, fluorescence, and gas exchange parameters. Moreover, melatonin and nitrogen application profoundly reduced the reactive oxygen species (ROS) accumulation by increasing maize antioxidant and nitrogen metabolism enzyme activities under drought-stress conditions. It was concluded that the mitigating potential of 100 µM melatonin with an optimum level of nitrogen (250 kg N ha-1) improves the plant growth, photosynthetic efficiency, and enzymatic activity of maize seedling under drought-stress conditions.

5.
Biology (Basel) ; 11(1)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35053096

RESUMO

Waterlogging is one of the serious abiotic stresses that inhibits crop growth and reduces productivity. Therefore, investigating efficient waterlogging mitigation measures has both theoretical and practical significance. The objectives of the present research were to examine the efficiency of melatonin and KNO3 seed soaking and foliar application on alleviating the waterlogging inhibited growth performance of maize seedlings. In this study, 100 µM melatonin and different levels (0.25, 0.50 and 0.75 g) of potassium nitrate (KNO3) were used in seed soaking and foliar applications. For foliar application, treatments were applied at the 7th leaf stage one week after the imposition of waterlogging stress. The results showed that melatonin with KNO3 significantly improved the plant growth and biochemical parameters of maize seedlings under waterlogging stress conditions. However, the application of melatonin with KNO3 treatments increased plant growth characteristics, chlorophyll content, and the net photosynthetic rate at a variable rate under waterlogging stress. Furthermore, melatonin with KNO3 treatments significantly reduced the accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA), and it decreased the activity of pyruvate decarboxylase and alcohol dehydrogenase, while increasing enzymatic activities and soluble protein content of maize seedlings under waterlogging stress conditions. Overall, our results indicated that seed soaking with 100 µM melatonin and 0.50 g KNO3 was the most effective treatment that significantly improved the plant growth characteristics, chlorophyll content, photosynthetic rate, and enzymatic activity of maize seedling under waterlogging conditions.

6.
Ecotoxicol Environ Saf ; 228: 113000, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34808506

RESUMO

Selenium (Se) is a beneficial trace element for certain animals including humans, while remaining controversial for plants. High Se concentration in soil is toxic to plants especially at seedling stage of the plants. Although, arbuscular mycorrhizal fungi (AMF) are important for plant stress resistance; but the mechanisms by which AMF alleviate Se stress in crop seedlings are unclear. Therefore, we investigated the potential strategies of AMF symbiosis to alleviate Se stress in maize (Zea mays) from plants and soil perspectives. Results showed that Se stress (Se application level > 5 mg kg-1) significantly inhibited leaf area, shoot dry weight, and root dry weight of maize (P < 0.05). In contrast, AM symbiosis significantly improved root morphology, increased nitrogen and phosphorus nutrition, promoted shoot growth, inhibited the transport of Se from soil/roots to shoots, and then diluted the concentration of Se in shoots (32.65-52.80%). In general, the response of maize growth to AMF was mainly observed in shoots rather than roots. In addition, AMF inoculation significantly increased the easily extractable glomalin-related soil protein and organic matter contents and decreased the availability of soil Se to the plant. Principal component analysis showed that AMF promoted growth and nutrition uptake of maize was the most dominant effect of Se stress alleviation, followed by the decrease of soil Se availability, limiting Se transport from soil/roots to shoots. Moreover, the expression of Se uptake-related ion transporter genes (ZmPht2, ZmNIP2;1, and ZmSultr1;3) in maize roots were down-regulated upon AM symbiosis which resultantly inhibited the uptake and transport of Se from soil to maize roots. Thus, AMF could impede Se stress in maize seedlings by improving plant and soil characteristics.

7.
Physiol Plant ; 172(2): 1059-1072, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33206390

RESUMO

The unpredictable precipitation and water deficit conditions in semiarid regions significantly reduce the yield of summer maize. The exogenous application of plant growth regulators can be used as a strategy to enhance plant stress tolerance and improve the growth and yield of maize under semiarid conditions. Here, we studied the protective role of melatonin application on maize yield using grain filling rate and hormonal crosstalk in maize grains. In the first field experiment, seeds were soaked with melatonin at a concentration of 0 (SM0 ), 25 (SM1 ), 50 (SM2 ), and 75 µM (SM3 ) µM. In contrast, in the second experiment, melatonin was applied on the foliage at the ninth leaf stage at a concentration of 0 (FM0 ), 25 (FM1 ), 50 (FM2 ), and 75 (FM3 ) µM. Our findings showed that melatonin treatments as seed soaking significantly increased single seed weight, seed filling rate in superior, medium and inferior seeds by regulating the hormone levels compared to foliar application. Application of melatonin significantly increased the zeatin+zeatin riboside (Z+ZR), indole-3-acetic acid (IAA), and gibberellic acid (GA) contents. However, it significantly inhibited the contents of abscisic acid (ABA) during the seed filling period. The content of Z+ZR, IAA, and GA was positively correlated with the maximum seed filling rate, seed weight, and mean filling rate in middle, superior and lower seeds, while the ABA was negatively correlated. The ABA content in inferior seeds was positively correlated with the maximum and mean seed filling rate. In semiarid regions, melatonin treatment of SM2 and FM2 significantly increased the dry matter per plant, 100-grain weight, seed filling rate, IAA, Z+ZR, GA contents, ear characteristics, and maize yield.


Assuntos
Melatonina , Zea mays , Ácido Abscísico , Melatonina/farmacologia , Reguladores de Crescimento de Plantas , Sementes
8.
Ying Yong Sheng Tai Xue Bao ; 25(8): 2259-66, 2014 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-25509076

RESUMO

High-yield winter wheat cultivar Jimai 22 was used to study effects of irrigation and planting patterns on water consumption characteristics and photosynthetic characteristics of winter wheat in field from 2009 to 2011. Three different planting patterns (uniform row, wide-narrow row and furrow) and four irrigation schedules (W0, no irrigation; W1, irrigation at jointing stage; W2, irrigations at jointing and anthesis stages; W3, irrigation at jointing, anthesis and milking stages. Each irrigation rate was 60 mm) were designed in the experiment. Results showed that, with the increasing of irrigation amount, flag leaf area, net photosynthesis rate, maximum photochemical efficiency and actual light transformation efficiency at late growth stages of winter wheat increased. Compared with W0 treatment, the other irrigation treatments had higher grain yields, but lower water use efficiencies. Under the same irrigation condition, the flag leaf net photosynthesis, maximum photochemical efficiency and actual light transformation efficiency were much higher in furrow pattern. Grain yields of winter wheat under furrow pattern and W2 treatment were significantly higher than that of the other treatments. Taking grain yield and WUE into consideration, furrow pattern combined with irrigation at jointing and anthesis stages might be the optimal water-saving and planting mode for the winter wheat production in North China Plain.


Assuntos
Irrigação Agrícola , Agricultura/métodos , Triticum/crescimento & desenvolvimento , Biomassa , China , Fotossíntese , Folhas de Planta , Água
9.
Ying Yong Sheng Tai Xue Bao ; 24(7): 1871-8, 2013 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-24175516

RESUMO

Taking high-yield winter wheat cultivar 'Jimai 22' as test material, a field experiment was conducted in 2008-2010 to study the effects of different irrigation and planting modes on the water consumption characteristics and dry matter accumulation and distribution of winter wheat. Three planting patterns (uniform row, wide-narrow row, and furrow) and four irrigation schedules (no irrigation, W0; irrigation at jointing stage, W1; irrigation at jointing and anthesis stages, W2; and irrigation at jointing, anthesis, and milking stages, W3; with 60 mm per irrigation) were installed. With increasing amount of irrigation, the total water consumption and the ratio of irrigation water to total water consumption under different planting patterns all increased, while the soil water consumption and its ratio to total water consumption decreased significantly. As compared with W0, the other three irrigation schedules had a higher dry matter accumulation after anthesis and a higher grain yield, but a lower water use efficiency (WUE). Under the same irrigation schedules, furrow pattern had higher water consumption ratio, grain yield, and WUE. Taking the grain yield and WUE into consideration, furrow pattern combined with irrigation at jointing and anthesis stages would be the optimal water-saving and planting modes for the winter wheat production in North China Plain.


Assuntos
Irrigação Agrícola/métodos , Biomassa , Triticum/crescimento & desenvolvimento , Água/metabolismo , Agricultura/métodos , China , Estações do Ano , Triticum/metabolismo
10.
Ying Yong Sheng Tai Xue Bao ; 20(8): 1868-75, 2009 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-19947205

RESUMO

A field experiment was conducted in 2006-2008 to study the effects of different population distribution pattern and irrigation schedule on the radiation utilization in a winter wheat farmland at the same population density (2.04 x 10(6) plant x hm(-2)). Four population distribution patterns were designed, i.e., row spacing (cm) x plant spacing (cm) 7 x 7 (A), 14 x 3.5 (B), 24.5 x 2 (C), and 49 x 1 (D), and each pattern had four irrigation schedules, i. e., no-irrigation, irrigation at jointing stage, irrigation at jointing and heading stages, and irrigation at jointing, heading and filling stages. The irrigation amount was 0.60 m3 each time. In the patterns A and B, the tiller number and leaf area index (LIA) were significantly higher than those in C and D (P< 0.05). With the increase of row spacing, the photosynthetically active radiation (PAR) transmittance ratio increased gradually, while the PAR capture ratio had a decreasing trend. Increasing irrigation times increased the tiller number and LAI, but decreased the transmittance ratio of PAR, resulting in a significant increase of PAR capture ratio (P<0.05). The PAR capture ratio in the crop canopy was higher in upper layers, compared with that in lower layers. Relatively uniform population distribution and irrigation increased the PAR capture ratio in the upper 40 cm canopy layers significantly. The radiation use efficiency (RUE) decreased with increasing row spacing, with the two year's average total RUE in A, B, C, and D being 1.24%, 1.27%, 1.21% and 1.06%, respectively, and that in B was 5.21% and 19.56% higher than that in C and D, respectively, with the difference being significant. It was suggested that relatively uniform population distribution improved the winter wheat population structure and PAR capture, being beneficial to the fully use of radiation, and irrigation also had positive effects on the population structure, being helpful to the increase of crop RUE.


Assuntos
Agricultura/métodos , Fotossíntese/fisiologia , Luz Solar , Triticum/fisiologia , Água/análise , Dinâmica Populacional , Triticum/crescimento & desenvolvimento
11.
Ying Yong Sheng Tai Xue Bao ; 17(2): 243-6, 2006 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-16706046

RESUMO

The study showed that straw mulching decreased the basic seedlings and tillers of winter wheat and the leaf area index (LAI) at earlier growth stage, but increased the LAI at latter growth stage. Straw mulching and irrigation reduced the transmittance and reflectance of PAR, resulting in the increase of PAR capture ratio mainly at the height of 40-60 cm. The solar energy utilization ratio of grain was decreased by straw mulching, while that of stem and leaf was increased. The total solar energy utilization efficiency of winter wheat could also be increased by straw mulching.


Assuntos
Fotossíntese , Caules de Planta , Luz Solar , Triticum/fisiologia , Transpiração Vegetal , Estações do Ano , Triticum/crescimento & desenvolvimento , Água/análise , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA