Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1713: 464542, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38070357

RESUMO

Benzoxazolinone-type alkaloids found in Acanthus ebracteatus and Acanthus ilicifolius Linnaeus possess various beneficial properties, such as antileishmanial, antipyretic, analgesic, antibacterial, and antioxidant effects. In this study, we employed a surface imprinting technique on nanomaterials. We utilized functionalized Fe3O4@SiO2NH2 as a scaffold, with 2-benzoxazolinone and 2H-1,4-benzoxazin-3(4H)-one serving as dual templates, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, and 2,2-azodiisobutyric nitrile (AIBN) as the initiator. Prior to polymerization, we screened functional monomers using ultraviolet (UV) spectroscopy. The resulting magnetic surface molecular imprinting polymer (Fe3O4@SiO2@MIP) was thoroughly characterized using Fourier transform infrared spectrometry (FT-IR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). We also conducted assessments of its adsorption isotherms, dynamics, and selective binding capabilities. Our findings indicate that the MIPs exhibited exceptional selective recognition performance. Through meticulous screening and optimization of extraction and separation conditions, we established an LC‒MS/MS method based on magnetic solid-phase extraction technology. The method exhibited a recovery range of 78.80-106.99 % (RSD, 0.46-3.31 %) for 2-benzoxazolinone, with a limit of detection (LOD) and limit of quantification (LOQ) of 2.85 and 9.00 µg L-1, respectively. For 2H-1,4-benzoxazin-3(4H)-one, the method yielded a recovery range of 84.75-103.53 % (RSD, 0.07-5.96 %), with an LOD and LOQ of 3.60 and 12.60 µg L-1, respectively, in real samples. The resulting Fe3O4@SiO2@MIP demonstrated a high capacity for class-specific adsorption.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Espectroscopia de Infravermelho com Transformada de Fourier , Dióxido de Silício , Cromatografia Líquida , Espectrometria de Massas em Tandem , Impressão Molecular/métodos , Extração em Fase Sólida/métodos , Adsorção , Fenômenos Magnéticos
2.
Front Vet Sci ; 10: 1130466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816184

RESUMO

[This corrects the article DOI: 10.3389/fvets.2019.00294.].

3.
Microbiol Spectr ; : e0350222, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36809060

RESUMO

Enterohemorrhagic Escherichia coli O157:H7 is an important foodborne pathogen that forms biofilms. In this study, three quorum-sensing (QS) inhibitors (M414-3326, 3254-3286, and L413-0180) were obtained through virtual screening, and their in vitro antibiofilm activities were validated. Briefly, the three-dimensional structure model of LuxS was constructed and characterized using the SWISS-MODEL. High-affinity inhibitors were screened from the ChemDiv database (1,535,478 compounds) using LuxS as a ligand. Five compounds (L449-1159, L368-0079, M414-3326, 3254-3286, and L413-0180) with a good inhibitory effect (50% inhibitory concentration <10 µM) on type II QS signal molecule autoinducer-2 (AI-2) were obtained using a AI-2 bioluminescence assay. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties predicated that the five compounds had high intestinal absorption levels (high) and plasma protein binding (absorbent strong) and did not inhibit the metabolism of CYP2D6 metabolic enzymes. In addition, molecular dynamics simulation showed that compounds L449-1159 and L368-0079 could not stably bind with LuxS. Thus, these compounds were excluded. Furthermore, surface plasmon resonance results showed that the three compounds could specifically bind to LuxS. IN addition, the three compounds could effectively inhibit the biofilm formation without affecting the growth and metabolism of the bacteria. Finally, the reverse transcription-quantitative PCR results showed that the three compounds downregulated the expression of the LuxS gene. Overall, these results revealed that the three compounds obtained through virtual screening could inhibit biofilm formation of E. coli O157:H7 and are potential LuxS inhibitors that can be used to treat E. coli O157:H7 infections. IMPORTANCE E. coli O157:H7 is a foodborne pathogen of public health importance. Quorum sensing (QS) is a form of bacterial communication that can regulate various group behaviors, including biofilm formation. Here, we identified three QS AI-2 inhibitors (M414-3326, 3254-3286, and L413-0180) that can stably and specifically bind to LuxS protein. The three QS AI-2 inhibitors inhibited biofilm formation without affecting the growth and metabolic activity of E. coli O157:H7. The three QS AI-2 inhibitors are promising agents for treating E. coli O157:H7 infections. Further studies to identify the mechanism of the three QS AI-2 inhibitors are needed to develop new drugs to overcome antibiotic resistance.

5.
Front Microbiol ; 13: 1003692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386683

RESUMO

A new antibacterial strategy based on inhibiting bacterial quorum sensing (QS) has emerged as a promising method of attenuating bacterial pathogenicity and preventing bacterial resistance to antibiotics. In this study, we screened Echinatin (Ech) with high-efficiency anti-QS from 13 flavonoids through the AI-2 bioluminescence assay. Additionally, crystal violet (CV) staining combined with confocal laser scanning microscopy (CLSM) was used to evaluate the effect of anti-biofilm against Escherichia coli (E. coli). Further, the antibacterial synergistic effect of Ech and marketed antibiotics were measured by broth dilution and Alamar Blue Assay. It was found that Ech interfered with the phenotype of QS, including biofilm formation, exopolysaccharide (EPS) production, and motility, without affecting bacterial growth and metabolic activity. Moreover, qRT-PCR exhibited that Ech significantly reduced the expression of QS-regulated genes (luxS, pfs, lsrB, lsrK, lsrR, flhC, flhD, fliC, csgD, and stx2). More important, Ech with currently marketed colistin antibiotics (including colistin B and colistin E) showed significantly synergistically increased antibacterial activity in overcoming antibiotic resistance of E. coli. In summary, these results suggested the potent anti-QS and novel antibacterial synergist candidate of Ech for treating E. coli infections.

6.
Front Vet Sci ; 9: 738904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35978707

RESUMO

CTX-M extended spectrum beta-lactamase-producing Escherichia coli cause severe health hazards in livestock breeding. To date, little is known about antibiotic resistance differences among bacterial isolates from yaks, cows, and beef cattle; therefore, the aims of this study were to analyse the prevalence of CTX-M-producing E. coli in yak, beef cattle, and dairy cattle feces from different provinces in China. A total of 790 fecal samples from yaks, beef cattle, and dairy cows were used. Among all the samples, 523 non duplicate E. coli isolates were identified, and 29.6% of samples harbored CTX-M producers. The results showed that these E. coli strains harbored 15 clusters of CTX-M genes: CTX-M-79, CTX-M-55, CTX-M-15, CTX-M-14, CTX-M-28, CTX-M-179, CTX-M-65, CTX-M-24, CTX-M-27, CTX-M-102, CTX-M-105, CTX-M-173, CTX-M-238, CTX-M-196, and CTX-M-10. The dominant resistance genes were CTX-M-15, CTX-M-14, and CTX-M-55. Moreover, the distribution of CTX-M genes was related to geographical region. Based on the above findings, we reasoned that bovines are potential reservoirs of antibiotic resistance, and this problem should be given adequate attention.

7.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955943

RESUMO

As an opportunistic pathogen, Escherichia coli (E. coli) forms biofilm that increases the virulence of bacteria and antibiotic resistance, posing a serious threat to human and animal health. Recently, ginkgetin (Gin) has been discovered to have antiinflammatory, antioxidant, and antitumor properties. In the present study, we evaluated the antibiofilm and antibacterial synergist of Gin against E. coli. Additionally, Alamar Blue assay combined with confocal laser scanning microscope (CLSM) and crystal violet (CV) staining was used to evaluate the effect of antibiofilm and antibacterial synergist against E. coli. Results showed that Gin reduces biofilm formation, exopolysaccharide (EPS) production, and motility against E. coli without limiting its growth and metabolic activity. Furthermore, we identified the inhibitory effect of Gin on AI-2 signaling molecule production, which showed apparent anti-quorum sensing (QS) properties. The qRT-PCR also indicated that Gin reduced the transcription of curli-related genes (csgA, csgD), flagella-formation genes (flhC, flhD, fliC, fliM), and QS-related genes (luxS, lsrB, lsrK, lsrR). Moreover, Gin showed obvious antibacterial synergism to overcome antibiotic resistance in E. coli with marketed antibiotics, including gentamicin, colistin B, and colistin E. These results suggested the potent antibiofilm and novel antibacterial synergist effect of Gin for treating E. coli infections.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Biflavonoides , Biofilmes , Proteínas de Transporte , Colistina/farmacologia , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Proteínas de Escherichia coli/farmacologia , Humanos
9.
Sci Rep ; 11(1): 22626, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799677

RESUMO

Yaks and Tibetan sheep are important and renowned livestock of the Qinghai-Tibetan Plateau (QTP). Both host genetics and environmental factors can shape the composition of gut microbiota, however, there is still no consensus on which is the more dominant factor. To investigate the influence of hosts and seasons on the gut microbiome diversity component, we collected fecal samples from yaks and Tibetan sheep across different seasons (summer and winter), during which they consumed different diets. Using 16S rRNA sequencing, principal component analysis (PCoA) data showed that PCo1 explained 57.4% of the observed variance (P = 0.001) and clearly divided winter samples from summer ones, while PCo2 explained 7.1% of observed variance (P = 0.001) and mainly highlighted differences in host species. Cluster analysis data revealed that the gut microbiota composition displayed a convergence caused by season and not by genetics. Further, we profiled the gut microbial community and found that the more dominant genera in yak and Tibetan sheep microbiota were influenced by seasonal diets factors rather than genetics. This study therefore indicated that seasonal diet can trump host genetics even at higher taxonomic levels, thus providing a cautionary note for the breeding and management of these two species.


Assuntos
Bovinos/genética , Microbioma Gastrointestinal , Ovinos/genética , Ração Animal , Animais , Biodiversidade , Análise por Conglomerados , Dieta , Fezes , Gado , Microbiota , Análise de Componente Principal , RNA Ribossômico 16S/genética , Estações do Ano , Análise de Sequência de DNA , Tibet
10.
BMC Vet Res ; 17(1): 275, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399756

RESUMO

BACKGROUND: Myrislignan is a natural product from Myristica sp. with diverse pharmacological activities. Recently, the anti-Toxoplasma gondii (T. gondii) activity of myrislignan has been proposed, and in vivo studies of its pharmacokinetics in BALB/c mice are necessary to further evaluate the clinical effects of myrislignan. RESULTS: In this study, a sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to quantify myrislignan levels in mouse plasma using dehydrodiisoeugenol as an internal standard (IS) in positive ion mode. Chromatographic separation of the analytes was achieved using an ACE Ultracore Super C18 analytical column (2.5 µm, 2.1 × 50 mm) at 30 °C. A gradient mobile phase consisting of water (0.1 % formic acid) and acetonitrile (0.1 % formic acid) was delivered at a flow rate of 0.4 mL/min. Myrislignan and the IS eluted at 1.42 and 1.71 min, respectively. A good excellent linear response across the concentration range of 1-1000 ng/mL was achieved (r2 = 0.9973). The lower limit of quantification (LLOQ) was 1 ng/mL, and the inter- and intra-day accuracy and precision of the method showed relative standard deviations (RSDs) less than 10 %. The method was applied to examine the pharmacokinetics of myrislignan in mouse plasma following a single oral administration of 200 mg/kg or intraperitoneal administration of 50 mg/kg myrislignan, and the bioavailability (F) of orally administered myrislignan was only 1.97 % of the bioavailability of intraperitoneally administered myrislignan. CONCLUSIONS: A rapid and sensitive LC-MS/MS method has been was developed, validated and successfully used to determine myrislignan levels in mice after oral or intraperitoneal administration. This study is the first to report the pharmacokinetic parameters of myrislignan in mice and to compare its pharmacokinetics after oral and intraperitoneal administration, which will be useful for further research on the administration of myrislignan in animals and humans.


Assuntos
Cromatografia Líquida , Lignanas/sangue , Lignanas/farmacocinética , Espectrometria de Massas em Tandem , Administração Oral , Animais , Área Sob a Curva , Células 3T3 BALB , Disponibilidade Biológica , Meia-Vida , Injeções Intraperitoneais/veterinária , Lignanas/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
BMC Microbiol ; 21(1): 214, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271864

RESUMO

BACKGROUND: The natural hosts of Shigella are typically humans and other primates, but it has been shown that the host range of Shigella has expanded to many animals. Although Shigella is becoming a major threat to animals, there is limited information on the genetic background of local strains. The purpose of this study was to assess the presence of virulence factors and the molecular characteristics of S. flexneri isolated from calves with diarrhea. RESULTS: Fifty-four S. flexneri isolates from Gansun, Shanxi, Qinghai, Xinjiang and Tibet obtained during 2014 to 2016 possessed four typical biochemical characteristics of Shigella. The prevalences of ipaH, virA, ipaBCD, ial, sen, set1A, set1B and stx were 100 %, 100 %, 77.78 %, 79.63 %, 48.15 %, 48.15 and 0 %, respectively. Multilocus variable number tandem repeat analysis (MLVA) based on 8 variable number of tandem repeat (VNTR) loci discriminated the isolates into 39 different MLVA types (MTs), pulsed field gel electrophoresis (PFGE) based on NotI digestion divided the 54 isolates into 31 PFGE types (PTs), and multilocus sequence typing (MLST) based on 15 housekeeping genes differentiated the isolates into 7 MLST sequence types (STs). CONCLUSIONS: The findings from this study enrich our knowledge of the molecular characteristics of S. flexneri collected from calves with diarrhea, which will be important for addressing clinical and epidemiological issues regarding shigellosis.


Assuntos
Diarreia/veterinária , Disenteria Bacilar/veterinária , Shigella flexneri/genética , Fatores de Virulência/genética , Animais , Bovinos , Diarreia/microbiologia , Disenteria Bacilar/epidemiologia , Disenteria Bacilar/microbiologia , Eletroforese em Gel de Campo Pulsado , Repetições Minissatélites , Shigella flexneri/patogenicidade
12.
Front Cell Dev Biol ; 9: 684393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179016

RESUMO

Toxoplasma gondii is an obligate intracellular pathogen that infects warm-blooded animals and humans. However, side effects limit toxoplasmosis treatment, and new drugs with high efficiency and low toxicity need to be developed. Natural products found in plants have become a useful source of drugs for toxoplasmosis. In this study, twenty natural compounds were screened for anti-T. gondii activity by Giemsa staining or real-time fluorescence quantitative polymerase chain reaction (qPCR) in vitro. Among these, licarin-B from nutmeg exhibited excellent anti-T. gondii activity, inhibiting T. gondii invasion and proliferation in a dose-dependent manner, with an EC50 of 14.05 ± 3.96 µg/mL. In the in vivo, licarin-B treatment significantly reduced the parasite burden in tissues compared to no treatment, protected the 90% infected mice from to death at 50 mg/kg.bw. Flow cytometry analysis suggested a significant reduction in T. gondii survival after licarin-B treatment. Ultrastructural changes in T. gondii were observed by transmission electron microscopy (TEM), as licarin-B induced mitochondrial swelling and formation of cytoplasmic vacuoles, an autophagosome-like double-membrane structure and extensive clefts around the T. gondii nucleus. Furthermore, MitoTracker Red CMXRos, MDC, and DAPI staining showed that licarin-B promoted mitochondrial damage, autophagosome formation, and nuclear disintegration, which were consistent with the TEM observations. Together, these findings indicate that licarin-B is a promising anti-T. gondii agent that potentially functions by damaging mitochondria and activating autophagy, leading to T. gondii death.

13.
J Antibiot (Tokyo) ; 74(8): 508-518, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103703

RESUMO

Drug resistance has been partly driven by the overuse of antimicrobials in agricultural animal feed. Better understanding of antibiotic resistance in bovine gut is needed to assess its potential effects based on metagenomic approach and analysis. In this study, we collected 40 fecal samples to explore drug resistance derived from antibiotic use in the bacterial community by an analysis of the diversities and differences of antibiotic-resistant genes (ARGs) in the gut microbiota from yak, beef, and dairy cattle. Overall, 1688 genes were annotated, including 734 ARG subtypes. The ARGs were related to tetracyclines, quinolones, ß-lactam, and aminoglycosides, in accordance with the antibiotics widely used in the clinic for humans or animals. The emergence, prevalence, and differences in resistance genes in the intestines of yaks, beef, and dairy cattle may be caused by the selective pressure of different feeding patterns, where yaks were raised without antibiotics for growth promotion. In addition, the abundance of ARGs in yak was lower than in beef and dairy cattle, whereas the abundance of integron, a kind of mobile genetic elements (MGEs) was higher in yaks than those in beef and dairy cattle. Furthermore, the results of this study could provide the basis for a comprehensive profile of various ARGs among yak, beef, and dairy cattle in future.


Assuntos
Bovinos/microbiologia , Farmacorresistência Bacteriana/genética , Metagenômica/métodos , Microbiota/genética , Ração Animal , Animais , Laticínios , Fezes/microbiologia , Humanos , Integrons/genética , Sequências Repetitivas Dispersas/genética , Carne , Microbiologia do Solo , Especificidade da Espécie
14.
Artigo em Inglês | MEDLINE | ID: mdl-33820771

RESUMO

Clostridioides difficile infection (CDI) is considered a major concern of the health care system globally, with an increasing need for alternative therapies. OBP-4, a new oxazolidinone-fluoroquinolone hybrid with excellent in vitro activities and good safety, shows promising features as an antibacterial agent. Here, we further evaluated the in vitro and in vivo activities of OBP-4 against C. difficile and its absorption (A), distribution (D), and excretion (E) profiles in rats. In vitro assays indicated that OBP-4 was active against all tested C. difficile strains, with MICs ranging from 0.25 to 1 mg/liter. In addition, OBP-4 showed complete inhibition of spore formation at 0.5× MIC. In the mouse model of CDI, 5-day oral treatment with OBP-4 provided complete protection from death and CDI recurrence in infected mice. However, cadazolid (CZD) and vancomycin (VAN) showed less protection of infected mice than did OBP-4 in terms of diarrhea and weight loss, especially VAN. Subsequently, ADE investigations of OBP-4 with a reliable liquid chromatography-tandem mass spectrometry (LC-MS/MS) method showed extremely low systemic exposure and predominantly fecal excretion, resulting in a high local concentration of OBP-4 in the intestinal tract-the site of CDI. These results demonstrated that OBP-4 possesses good activity against C. difficile and favorable ADE characteristics for oral treatment of CDI, which support further development of OBP-4 as a potential anti-CDI agent.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cromatografia Líquida , Clostridioides , Infecções por Clostridium/tratamento farmacológico , Camundongos , Ratos , Espectrometria de Massas em Tandem , Distribuição Tecidual
15.
BMC Microbiol ; 21(1): 6, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407134

RESUMO

BACKGROUND: The widespread distribution of antimicrobial-resistant Shigella has become a recurrent challenge in many parts of the developing world. Previous studies indicate that the host of Shigella has expanded from humans to animals. This study aimed to investigate the prevalence of fluoroquinolone resistance and associated molecular characterization of S. dysenteriae 1 isolated from calves. RESULTS: All 38 unduplicated S. dysenteriae 1 isolates were collected from calves in Gansu Province from October 2014 to December 2016. According to MLST and PFGE analysis, these isolates were separated into 4 and 28 genotypes, respectively. The most common STs identified were ST228 (34.21%, 13/38) and ST229 (39.47%, 15/38), which were first found in the present study. All isolates harbored virulence genes, and the incidence of the seven virulence genes were ipaH (100%), ipaBCD (92.11%), stx (73.68%), ial (57.89%), sen (28.95%), set1A and set1B (0%). According to the results of antimicrobial susceptibilities, 76.32% (29/38) were resistant to fluoroquinolone and showed multidrug resistance. In a study on the polymorphism of quinolone resistance-determining region (QRDR) of gyrA/B and parC/E genes, we identified two mutations in gyrA (Ser83 → Leu and Asp87 → Asn) and parC (Ser80 → Ile and Ser83 → Leu), respectively. Among them, 55.17% (16/29) of resistant strains had the gyrA point mutations (Ser83 → Leu) and parC point mutation (Ser83 → Leu). Moreover, 41.38% (12/29) of isolates had all five point mutations of gyrA and parC. In addition, the prevalence of the plasmid-mediated quinolone resistance (PMQR) determinant genes was also investigated. All 29 fluoroquinolone-resistant isolates were positive for the aac (6')-Ib-cr gene but negative for qepA, except for SD001. In addition, only 6 (20.69%, 6/29) isolates harbored the qnr gene, including two with qnrB (6.90%, 2/29) and four with qnrS (13.79%, 4/29). CONCLUSION: Given the increased common emergence of multidrug resistant isolates, uninterrupted surveillance will be necessary to understand the actual epidemic burden and control this infection.


Assuntos
Doenças dos Bovinos/microbiologia , Farmacorresistência Bacteriana , Disenteria Bacilar/epidemiologia , Disenteria Bacilar/veterinária , Shigella dysenteriae/patogenicidade , Fatores de Virulência/genética , Animais , Proteínas de Bactérias/genética , Bovinos , Doenças dos Bovinos/diagnóstico , Disenteria Bacilar/diagnóstico , Eletroforese em Gel de Campo Pulsado , Fluoroquinolonas/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genótipo , Tipagem de Sequências Multilocus , Mutação , Plasmídeos/genética , Prevalência , Shigella dysenteriae/classificação , Shigella dysenteriae/efeitos dos fármacos , Shigella dysenteriae/genética
16.
J Vet Pharmacol Ther ; 44(3): 298-312, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33438767

RESUMO

Microencapsulation is a process where very minute droplets or particles of solid or liquid or gas are trapped with a polymer to isolate the internal core material from external environmental hazards. Microencapsulation is applied mostly for flavor masking, fortification, and sustained and control release. It improves palatability, absorption, and bioavailability of drugs with good conformity. Microencapsulation has been widely studied in numerous drug delivery systems for human health. The application of microcapsules in the veterinary pharmaceutical sciences is increasing day by day. The treatment systems for humans and animals are likely to be similar, but more complex in the veterinary field due to the diversity of the species, breeds, body size, biotransformation rate, and other factors associated with animal physiology. Commercially viable, economically profitable, and therapeutically effective microencapsulated vaccine, anthelmintic, antibacterial, and other therapeutics have a great demand for livestock and poultry production. Nowadays, researchers emphasize the controlled and sustained-release dosage form of drugs in the veterinary field. This paper has highlighted the microencapsulation materials, preparation techniques, characteristics, roles, and the application of microcapsules in veterinary medicine.


Assuntos
Polímeros , Animais , Disponibilidade Biológica , Cápsulas
17.
Vet Med Sci ; 6(1): 105-113, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31589010

RESUMO

BACKGROUND: Porcine infectious pleuropneumonia caused by Actinobacillus pleuropneumoniae (App) is one of the most serious infectious diseases in pigs and has brought huge economic losses to the world pig industry. The aim of this trial was to evaluate the effect of enteric-coated tilmicosin granule in the treatment and control of artificial infection of App. METHODS: Sixty Duroc and Yorkshire crossbred pigs (50 of which were artificially infected) were divided into six groups: BCG (Blank control group), ICG (Infection-only control group), HDG (High-dose enteric-coated tilmicosin granules), MDG (Medium-dose enteric-coated tilmicosin granules), LDG (Low-dose enteric-coated tilmicosin granules) and TPG (Tilmicosin premix drug control group). The cure rate, mortality, clinical respiratory score, body temperature score, weight gain, lung score and so on were recorded. RESULTS: The cure rate of HDG and MDG was as high as 90%, the mortality was 10%, and the clinical signs recovered quickly. CONCLUSION: The results showed that enteric-coated tilmicosin granules had obvious therapeutic effect on artificial infection, which could reduce the damage caused by the disease and reduce the mortality.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Antibacterianos/farmacologia , Doenças dos Suínos/tratamento farmacológico , Tilosina/análogos & derivados , Infecções por Actinobacillus/tratamento farmacológico , Infecções por Actinobacillus/microbiologia , Animais , Antibacterianos/administração & dosagem , Feminino , Masculino , Sus scrofa , Suínos , Doenças dos Suínos/microbiologia , Comprimidos com Revestimento Entérico , Tilosina/administração & dosagem , Tilosina/farmacologia
18.
Front Vet Sci ; 7: 598313, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392292

RESUMO

To evaluate the safety of ivermectin microemulsion injection, 100 Wistar rats were injected intraperitoneally at 0.38 g/kg, 0.19 g/kg, and 0.1 g/kg for 14 days. The 14-day repeated toxicity test of ivermectin microemulsion injection was systematically evaluated by clinical observation, organ coefficient, hematological examination, clinical chemistry examination, and histopathological examination. The results showed that no rats died during the test. At the initial stage of treatment, the rats in the high dose group had mild clinical reaction, which disappeared after 4 days. Clinical chemistry showed that the high dose of ivermectin microemulsion could cause significant changes in ALT and LDH parameters in male rats; high and medium doses could increase the liver coefficients of male and female rats. The toxic target organ may be the liver as indicated by histopathological findings. No significant toxic injury was found in the heart, liver, spleen, lung, kidney, brain, ovary, and testes of all groups of rats. No drug-related toxic effects were found at low doses, and thus the NOVEL of ivermectin microemulsion injection was 0.19 g/kg.

19.
Front Vet Sci ; 7: 589126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33614754

RESUMO

Neonatal calf diarrhea (NCD) is one of the most serious health challenges facing the livestock industry and has caused substantial economic losses due to increased morbidity and mortality rates. The present study investigated the main infectious pathogens causing NCD among cattle in Yangxin County, China. Sixty-nine fecal samples were collected from diarrheic newborn cattle and tested for infectious agents, including bovine rotavirus, bovine coronavirus, Escherichia coli K99, Cryptosporidium parvum, and Giardia lamblia, that cause NCD, as determined by rapid kit analysis and polymerase chain reaction (PCR) amplification. The PCR results showed that the percentages of samples that were positive for C. parvum, bovine rotavirus A, bovine coronavirus, and G. lamblia were 44.93, 36.23, 17.39, and 13.04%, respectively. The rapid kit analysis results showed that the prevalence of C. parvum, rotavirus, coronavirus, and G. lamblia was 52.17, 31.88, 28.98, and 18.84%, respectively. No E. coli K99 was detected by either method. The total positivity of the samples, as determined by PCR and rapid kit analysis, was 80.00 and 81.16%, respectively. No significant difference between the two methods was observed. The results of this study may help to establish a foundation for future research investigating the epidemiology of NCD in cattle and may facilitate the implementation of measures to control NCD transmission to cattle in Yangxin County, Shandong Province, China.

20.
Front Vet Sci ; 7: 604628, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33575278

RESUMO

A comparative study on pharmacokinetics of four long-acting enrofloxacin injectable formulations was investigated in 36 healthy pigs after intramuscular injection according to the recommended single dose @ 2.5 mg/kg body weight. The drug concentrations in the plasma were computed using high-performance liquid chromatography (HPLC) with fluorescence detection. WinNonLin5.2.1 software was used to analyze the experimental data and compared it under one-way ANOVA using SPSS software with a 95% confidence interval (CI). The main pharmacokinetic parameters, that is, the maximum plasma concentrations (Cmax), the time to maximum concentration (Tmax), area under the time curve concentration (AUCall) and Terminal half-life (T1/2) were 733.84 ± 129.87, 917.00 ± 240.13, 694.84 ± 163.49, 621.98 ± 227.25 ng/ml, 2.19 ± 0.0.66, 1.50 ± 0.37, 2.89 ± 0.24, 0.34 ± 0.13 h, 7754.43 ± 2887.16, 8084.11 ± 1543.98, 7369.42 ± 2334.99, 4194.10 ± 1186.62 ng h/ml, 10.48 ± 2.72, 10.37 ± 2.38, 10.20 ± 2.81, and 10.61 ± 0.86 h for 10% enrofloxacin (Alkali), 20% enrofloxacin (Acidic), Yangkang and control drug Nuokang® respectively. There were significant differences among Cmax, Tmax, and AUCall of three formulations compare with that of the reference formulation. No significant differences were observed among the T1/2 for tested formulations compare with the reference formulation. The pharmacokinetic parameters showed that the tested formulations were somewhat better compared to the reference one. The calculated PK/PD indices were effective for bacteria such as Actinobacillus pleuropneumoniae and Pasteurella multocida with values higher than the cut-off points (Cmax/MIC90≥10-12 and AUC/MIC90 ≥ 125). However, they were not effective against bacteria like Haemophilus parasuis, Streptococcus suis, E. coli, and Bordetella bronchiseptica where lower values were obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA