Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Poult Sci ; 103(5): 103603, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457990

RESUMO

Quail, as an advantageous avian model organism due to its compact size and short reproductive cycle, holds substantial potential for enhancing our understanding of skeletal muscle development. The quantity of skeletal muscle represents a vital economic trait in poultry production. Unraveling the molecular mechanisms governing quail skeletal muscle development is of paramount importance for optimizing meat and egg yield through selective breeding programs. However, a comprehensive characterization of the regulatory dynamics and molecular control underpinning quail skeletal muscle development remains elusive. In this study, through the application of HE staining on quail leg muscle sections, coupled with preceding fluorescence quantification PCR of markers indicative of skeletal muscle differentiation, we have delineated embryonic day 9 (E9) and embryonic day 14 (E14) as the start and ending points, respectively, of quail skeletal muscle differentiation. Then, we employed whole transcriptome sequencing to investigate the temporal expression profiles of leg muscles in quail embryos at the initiation of differentiation (E9) and upon completion of differentiation (E14). Our analysis revealed the expression patterns of 12,012 genes, 625 lncRNAs, 14,457 circRNAs, and 969 miRNAs in quail skeletal muscle samples. Differential expression analysis between the E14 and E9 groups uncovered 3,479 differentially expressed mRNAs, 124 lncRNAs, 292 circRNAs, and 154 miRNAs. Furthermore, enrichment analysis highlighted the heightened activity of signaling pathways related to skeletal muscle metabolism and intermuscular fat formation, such as the ECM-receptor interaction, focal adhesion, and PPAR signaling pathway during E14 skeletal muscle development. Conversely, the E9 stage exhibited a prevalence of pathways associated with myoblast proliferation, exemplified by cell cycle processes. Additionally, we constructed regulatory networks encompassing lncRNA‒mRNA, miRNA‒mRNA, lncRNA‒miRNA-mRNA, and circRNA-miRNA‒mRNA interactions, thus shedding light on their putative roles within quail skeletal muscle. Collectively, our findings illuminate the gene and non-coding RNA expression characteristics during quail skeletal muscle development, serving as a foundation for future investigations into the regulatory mechanisms governing non-coding RNA and quail skeletal muscle development in poultry production.


Assuntos
Coturnix , Redes Reguladoras de Genes , Desenvolvimento Muscular , Músculo Esquelético , Transdução de Sinais , Transcriptoma , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Coturnix/genética , Coturnix/crescimento & desenvolvimento , Coturnix/embriologia , Coturnix/metabolismo , Codorniz/genética , Codorniz/embriologia , Codorniz/crescimento & desenvolvimento , Perfilação da Expressão Gênica/veterinária
2.
J Colloid Interface Sci ; 658: 258-266, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104408

RESUMO

Photoelectrocatalyzed hydrogen production plays an important role in the path to carbon neutrality. The construction of heterojunctions provides an ideal example of an oxygen precipitation reaction. In this work, the performance of the n-n type heterojunction CeBTC@FeBTC/NIF in the photoelectronically coupled catalytic oxygen evolution reaction (OER) reaction is presented. The efficient transfer of carriers between components enhances the catalytic activity. Besides, the construction of heterojunctions optimizes the energy level structure and increases the absorption of light, and the microstructure forms holes with a blackbody effect that also enhances light absorption. Consequently, CeBTC@FeBTC/NIF has excellent photoelectric coupling catalytic properties and requires an overpotential of only 300 mV to drive a current density of 100 mA cm-2 under illumination. More importantly, the n-n heterojunction was found to be effective in enhancing charge and photogenerated electron migration by examining the carrier density of each component and carrier diffusion at the interface.

3.
Angew Chem Int Ed Engl ; 63(7): e202319003, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38131604

RESUMO

To date, significant efforts have been dedicated to improve their ionic conductivity, thermal stability, and mechanical strength of solid polymer electrolytes (SPEs). However, direct monitoring of physical and chemical changes in SPEs is still lacking. Moreover, existing thermosetting SPEs are hardly degradable. Herein, by overcoming the limitation predicted by Flory theory, self-reporting and biodegradable thermosetting hyperbranched poly(ß-amino ester)-based SPEs (HPAE-SPEs) are reported. HPAE is successfully synthesized through a well-controlled "A2+B4" Michael addition strategy and then crosslinked it in situ to produce HPAE-SPEs. The multiple tertiary aliphatic amines at the branching sites confer multicolour luminescence to HPAE-SPEs, enabling direct observation of its physical and chemical damage. After use, HPAE-SPEs can be rapidly hydrolysed into non-hazardous ß-amino acids and polyols via self-catalysis. Optimized HPAE-SPE exhibits an ionic conductivity of 1.3×10-4  S/cm at 60 °C, a Na+ transference number ( t N a + ${{t}_{Na}^{+}}$ ) of 0.67, a highly stable sodium plating-stripping behaviour and a low overpotential of ≈190 mV. This study establishes a new paradigm for developing SPEs by engineering multifunctional polymers. The self-reporting and biodegradable properties would greatly expand the scope of applications for SPEs.

4.
Adv Mater ; : e2306358, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37992728

RESUMO

The irregular expression or activity of enzymes in the human body leads to various pathological disorders and can therefore be used as an intrinsic trigger for more precise identification of disease foci and controlled release of diagnostics and therapeutics, leading to improved diagnostic accuracy, sensitivity, and therapeutic efficacy while reducing systemic toxicity. Advanced synthesis strategies enable the preparation of polymers with enzymatically activatable skeletons or side chains, while understanding enzymatically responsive mechanisms promotes rational incorporation of activatable units and predictions of the release profile of diagnostics and therapeutics, ultimately leading to promising applications in disease diagnosis and treatment with superior biocompatibility and efficiency. By overcoming the challenges, new opportunities will emerge to inspire researchers to develop more efficient, safer, and clinically reliable enzymatically activatable polymeric carriers as well as prodrugs.

5.
Inorg Chem ; 62(32): 12730-12740, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37529894

RESUMO

The construction of attractive dual-functional lanthanide-based metal-organic frameworks (Ln-MOFs) with ratiometric fluorescent detection and proton conductivity is significant and challenging. Herein, a three-dimensional (3D) Eu-MOF, namely, [Eu4(HL)2(SBA)4(H2O)6]·9H2O, has been hydrothermally synthesized with a dual-ligand strategy, using (4-carboxypiperidyl)-N-methylenephosphonic acid (H3L = H2O3PCH2-NC5H9-COOH) and 4-sulfobenzoic acid monopotassium salt (KHSBA = KO3SC6H4COOH) as organic linkers. Eu-MOF showed ratiometric fluorescent broad-spectrum sensing of benzophenone-like ultraviolet filters (BP-like UVFs) with satisfactory sensitivity, selectivity, and low limits of detection in water/ethanol (1:1, v/v) solutions and real urine systems. A portable test paper was prepared for the convenience of actual detection. The potential sensing mechanisms were thoroughly analyzed by diversified experiments. The synergistic effect of the forbidden energy transfer from the ligand to Eu3+, the internal filtration effect (IFE), the formation of a complex, and weak interactions between the KHSBA ligand and BP-like UVFs is responsible for the ratiometric sensing effect. Meanwhile, Eu-MOF displayed relatively high proton conductivity of 2.60 × 10-4 S cm-1 at 368 K and 95% relative humidity (RH), making it a potential material for proton conduction. This work provides valuable guidance for the facile and effective design and construction of multifunctional Ln-MOFs with promising performance.

6.
Front Cell Dev Biol ; 11: 1149132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305686

RESUMO

Photoreceptors are integral and crucial for the retina, as they convert light into electrical signals. Epigenetics plays a vital role in determining the precise expression of genetic information in space and time during the development and maturation of photoreceptors, cell differentiation, degeneration, death, and various pathological processes. Epigenetic regulation has three main manifestations: histone modification, DNA methylation, and RNA-based mechanisms, where methylation is involved in two regulatory mechanisms-histone methylation and DNA methylation. DNA methylation is the most studied form of epigenetic modification, while histone methylation is a relatively stable regulatory mechanism. Evidence suggests that normal methylation regulation is essential for the growth and development of photoreceptors and the maintenance of their functions, while abnormal methylation can lead to many pathological forms of photoreceptors. However, the role of methylation/demethylation in regulating retinal photoreceptors remains unclear. Therefore, this study aims to review the role of methylation/demethylation in regulating photoreceptors in various physiological and pathological situations and discuss the underlying mechanisms involved. Given the critical role of epigenetic regulation in gene expression and cellular differentiation, investigating the specific molecular mechanisms underlying these processes in photoreceptors may provide valuable insights into the pathogenesis of retinal diseases. Moreover, understanding these mechanisms could lead to the development of novel therapies that target the epigenetic machinery, thereby promoting the maintenance of retinal function throughout an individual's lifespan.

7.
PeerJ Comput Sci ; 9: e1354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346683

RESUMO

Purity is an important factor of maize seed quality that affects yield, and traditional seed purity identification methods are costly or time-consuming. To achieve rapid and accurate detection of the purity of maize seeds, a method for identifying maize seed varieties, using random subspace integrated learning and hyperspectral imaging technology, was proposed. A hyperspectral image of the maize seed endosperm was collected to obtain a spectral image cube with a wavelength range of 400∼1,000 nm. Methods, including Standard Normal Variate (SNV), multiplicative Scatter Correction (MSC), and Savitzky-Golay First Derivative (SG1) were used to preprocess raw spectral data. Iteratively retains informative variables (IRIV) and competitive adaptive reweighted sampling (CARS) were used to reduce the dimensions of the spectral data. A recognition model of maize seed varieties was established using k-nearest neighbor (KNN), support vector machine (SVM), line discrimination analysis (LDA) and decision tree (DT). Among the preprocessing methods, MSC has the best effect. Among the dimensionality reduction methods, IRIV has the best performance. Among the base classifiers, LDA had the highest precision. To improve the precision in identifying maize seed varieties, LDA was used as the base classifier to establish a random subspace ensemble learning (RSEL) model. Using MSC-IRIV-RSEL, precision increased from 0.9333 to 0.9556, and the Kappa coefficient increased from 0.9174 to 0.9457. This study shows that the method based on hyperspectral imaging technology combined with subspace ensemble learning algorithm is a new method for maize seed purity recognition.

8.
ACS Macro Lett ; 12(5): 626-631, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37094219

RESUMO

Proteins have tremendous potential for vaccine development and disease treatment, but multiple extracellular and intracellular biological barriers must be overcome before they can exert specific biological functions in the target tissue. The use of polymers as carriers would greatly improve their bioavailability and therapeutic efficiency. Nevertheless, effective protein packaging and cell membrane penetration without causing cytotoxicity is particularly challenging, due largely to the simultaneous distribution of positive and negative charges on protein surface. Here, phosphocholine-functionalized zwitterionic poly(ß-amino ester)s, HPAE-D-(±), are developed for cytoplasmic protein delivery. The zwitterionic phosphocholine is capable of binding to both proteins and the cell membrane to facilitate protein packaging and nanoparticle cellular uptake. Compared to amine-functionalized HPAE-E-(+) and carboxylic acid-functionalized HPAE-C-(-), HPAE-D-(±) exhibits much higher cytoplasmic protein delivery efficiency and lower cytotoxicity. In addition, HPAE-D-(±) are readily degraded in aqueous solution. This strategy may be extended to other zwitterions and polymers, thus having profound implications for the development of safe and efficient protein delivery systems.


Assuntos
Ésteres , Fosforilcolina , Polímeros/metabolismo
9.
Small ; 19(33): e2301255, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086139

RESUMO

The electronic regulation and surface reconstruction of earth-abundant electrocatalysts are essential to efficient oxygen evolution reaction (OER). Here, an inverse-spinel Co,S atomic pair codoped Fe3 O4 grown on iron foam (Co,S-Fe3 O4 /IF) is fabricated as a cost-effective electrocatalyst for OER. This strategy of Co and S atomic pair directional codoping features accelerates surface reconstruction and dynamically stabilizes electronic regulation. CoS atomic pairs doped in the Fe3 O4 crystal favor controllable surface reconstruction via sulfur leaching, forming oxygen vacancies and Co doping on the surface of reconstructed FeOOH (Co-FeOOH-Ov /IF). Before and after surface reconstruction via in situ electrochemical process, the Fe sites with octahedral field dynamically maintains an appropriate electronic structure for OER intermediates, thus exhibiting consistently excellent OER performance. The electrochemically tuned Fe-based electrodes exhibit a low overpotential of 349 mV at a current density of 1000 mA cm-2 , a slight Tafel slope of 43.3 mV dec-1 , and exceptional long-term electrolysis stability of 200 h in an alkaline medium. Density functional theory calculations illustrate the electronic regulation of Fe sites, changes in Gibbs free energies, and the breaking of the restrictive scaling relation between OER intermediates. This work provides a promising directional codoping strategy for developing precatalysts for large-scale water-splitting systems.

10.
Chem Commun (Camb) ; 59(28): 4142-4157, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36919482

RESUMO

Free radical (co)polymerization (FRP/FRcP) of multivinyl monomers (MVMs) has emerged as a powerful strategy for the synthesis of chemically and topologically complex polymers due to its unique reaction kinetics, which enables the preparation of polymers with multiple functional groups and novel macromolecular structures. However, conventional FRP/FRcP of MVMs inevitably leads to insoluble crosslinked materials. Therefore, the development of advanced strategies for the controlled polymerization of MVMs is essential for the preparation of chemically and topologically complex polymers. In this review, we introduce the gelation mechanism of conventional FRP of MVMs and present the strategies of controlled polymerization of MVMs for the preparation of chemically and topologically complex polymers. We also discuss polymers with unique topologies synthesized by controlled polymerization of MVMs, such as crosslinked networks, (hyper)branched, star, cyclic, and single-chain cyclized/knotted structures. Finally, biomedical applications of various advanced polymeric materials prepared by controlled polymerization of MVMs are highlighted and the challenges is this field are discussed.

11.
Inorg Chem ; 61(49): 20111-20122, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36424127

RESUMO

Construction and investigation of dual-functional metal-organic frameworks (MOFs) with luminescent sensing and proton conduction provide widespread applications in clean energy and environmental monitoring fields. By selecting a phosphonic acid ligand 4-pyridyl-CH2N(CH2PO3H2)2 (H4L) and coligand 2,2'-biimidazole (H2biim), two cadmium-based MOFs [Cd1.5(HL)(H2biim)0.5] (1) and (H4biim)0.5·[Cd2(L)(H2biim)Cl] (2) with different structures and properties have been hydrothermally synthesized by controlling reaction temperature. Based on the excellent thermal and chemical stabilities, and good luminescent stabilities in water solution, 1 and 2 can serve as luminescent sensors of chloramphenicol (CAP) with different quenching constant (KSV) values and detection limits (LODs) in water, simulated environmental system, and real fish water system. Meanwhile, different sensing effects and possible sensing mechanisms are analyzed in detail. Moreover, 1 and 2 can also serve as good proton-conducting materials. The proton conductivities can reach up to 1.41 × 10-4 S cm-1 for 1 and 1.02 × 10-3 S cm-1 for 2 at 368 K and 95% relative humidity (RH). Among them, 2 shows better luminescent sensing and proton conduction performance than 1, which indicates that different crystal structures have a great impact on the properties of MOFs. Through the discussion of the relationship between structures and properties in detail, the possible reasons for the differences in properties are obtained, which can provide theoretical guidance for the rational design of this kind of dual-functional MOFs in the future.


Assuntos
Estruturas Metalorgânicas , Animais , Prótons , Antibacterianos , Cádmio , Água
12.
World J Clin Cases ; 10(17): 5690-5701, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35979137

RESUMO

BACKGROUND: Yougui pills have long been used to treat hypothyroidism, usually in combination with levothyroxine sodium in clinical treatment, while their clinical efficacy and safety are still controversial when compared to levothyroxine treatment alone. AIM: To explore the clinical efficacy and safety of Yougui pills combined with levothyroxine sodium in the treatment of hypothyroidism. METHODS: This meta-analysis was performed in accordance with the PRISMA guidelines. Randomized controlled trials on Yougui pills in the treatment of hypothyroidism published from 2008 to May 2021 were searched in a total of 8 databases (4 databases in Chinese and 4 databases in English). The quality of the included studies was evaluated according to the Cochrane risk assessment tool. Weighted mean difference (WMD) was used for continuous variables, and relative risk (RR) was used for binary variables. Data were extracted, and the meta-analysis was conducted with the statistical software of Stata15.0 and RevMan5.0. RESULTS: A total of 140 articles were retrieved, and 9 of them were finally included, with a total sample size of 936 cases. The main meta-analysis results are as follows: (1) The group of Yougui pills combined with levothyroxine sodium had a significantly higher overall response rate than the group of levothyroxine sodium (RR = 1.20, 95%CI 1.12, 1.28, P < 0.00001); (2) Yougui pills combined with levothyroxine sodium achieved significantly better efficacy than levothyroxine sodium alone in alleviating adverse symptoms [standard mean difference (SMD) = -1.10, 95%CI: -1.37, -0.84, P < 0.00001]; (3) The level of thyrotropin stimulating hormone in the group of Yougui pills combined with levothyroxine sodium was significantly lower than in the control group of levothyroxine sodium (WMD = -1.38, 95%CI: -2.10, -0.67, P = 0.00001); (4) The level of free triiodothyronine in the group of Yougui pills combined with levothyroxine sodium was higher than that in the control group of levothyroxine sodium (WMD = 0.41, 95%CI: 0.03, 0.79, P = 0.03); (5) The level of free thyroxine in the group of Yougui pills combined with levothyroxine sodium was significantly higher than that in the control group of levothyroxine sodium (SMD = 0.83, 95%CI: 0.44, 1.22, P ≤ 0.0001); and (6) The adverse reactions in the group of Yougui pills combined with levothyroxine sodium were significantly less than those in the control group of levothyroxine sodium (RR = 0.33, 95%CI: 0.20, -0.53, P < 0.00001). CONCLUSION: In the treatment of hypothyroidism, the combination of Yougui pills with levothyroxine sodium may be better than levothyroxine sodium treatment alone.

13.
Analyst ; 147(11): 2575-2581, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35579472

RESUMO

In this paper, we developed an amplified fluorescence biosensor for acetylcholinesterase (AChE) activity detection by taking advantage of the mercury ion-mediated Mgzyme (Mg2+-dependent DNAzyme) activity. The catalytic activity of Mgzyme can be inhibited by the formation of T-Hg2+-T base pairs between the Mgzyme and mercury ions. Therefore, the Mgzyme-Hg2+ complex has no activity on a molecular beacon (MB) substrate, which afforded a very weak fluorescence background for this biosensor. After the addition of acetylcholinesterase (AChE), the substrate acetylthiocholine could be hydrolyzed to thiocholine, which has a stronger binding power with mercury ions than T-Hg2+-T base pairs. Therefore, the Mgzyme activity was recovered. The activated Mgzyme could hybridize with the MB substrate and undergo many cleavage cycles, resulting in a significant increase of fluorescence intensity. This biosensor displayed high sensitivity with the detection limit as low as 0.01 mU mL-1. Moreover, this design did not require complex composition and sequence design; thus it is simple and convenient. This biosensor was also applied for the determination of AChE in human blood and showed satisfactory results.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Mercúrio , Acetilcolinesterase/metabolismo , Técnicas Biossensoriais/métodos , DNA Catalítico/química , Humanos , Íons , Limite de Detecção , Mercúrio/química
14.
ACS Appl Mater Interfaces ; 14(15): 17229-17239, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35385258

RESUMO

Tracking microstructure transformation under industrial conditions is significant and urgent for the development of oxygen evolution reaction (OER) catalysts. Herein, employing iron foam (IF) as an object, we closely monitor related morphologies and composition evolution under 300 mA cm-2 at 40 °C (IF-40-t)/80 °C (IF-80-t) in 6 M KOH and find that the OER activity first increases and then decreases with the continuous generation of FeOOH. Moreover, the reasons for different tendencies of Tafel slope, double-layer capacitance, and impedance for IF-40-t/IF-80-t have been investigated thoroughly. In detail, the OER activity of IF-40-t is governed by electron and mass transport, while for IF-80-t, the dominating factor is electron transfer. Further, to improve the stability, guided by the above results, two versatile methods that do not sacrifice electron and mass transport have been proposed: surface coating and dynamic interface construction. The synchronous improvements of stability and activity are deeply revealed, which may provide inspiration for catalyst design for industrial applications.

15.
BMC Psychiatry ; 22(1): 117, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168584

RESUMO

BACKGROUND: Although some psychological processes, such as stigma and self-efficacy, affect the complicated relationship between social support and depressive symptoms, few studies explored a similar psychological mechanism among individuals with substance use disorders (SUDs). Hence, this research investigates the mediating effects of stigma and the moderating effects of self-efficacy among the psychological mechanism that social support affects depressive symptoms. METHODS: The study included 1040 Chinese participants with SUDs and completed a series of self-report questionnaires. R software was used to organize and clean up data sets and analyze mediation and moderation effects. RESULTS: The result showed that stigma partially mediated depressive symptoms, while self-efficacy moderated this relationship. More specifically, less social support increased depression symptoms by bringing about higher stigma. Besides, subjects with higher self-efficacy are less susceptible to stigma and therefore have mild depressive symptoms. Furthermore, clinical and theoretical implications are discussed in our study. CONCLUSIONS: Chinese SUDs patients' depressive symptoms were indirectly affected by perceived social support via stigma and less affected by stigma with improved self-efficacy. The theoretical and practical implications of these results are discussed.


Assuntos
Depressão , Autoeficácia , Depressão/psicologia , Humanos , Estigma Social , Apoio Social , Inquéritos e Questionários
17.
J Colloid Interface Sci ; 613: 224-233, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35033768

RESUMO

High-valence metal doping and abundant grain boundaries (GBs) have been proved to be effective strategies to promote the oxygen evolution reaction (OER). However, the reasonable design of the two to facilitate OER collaboratively is challenging. Herein, a convenient and novel one-step molten salt decomposition strategy is proposed to fabricate segregated-Mo doped nickle nitrate hydroxide with substantial GBs on MoNi foam (Mo-NNOH@MNF). When processed in molten salt, the Mo species on the conductive substrate migrates unevenly to the surface of Mo-NNOH@MNF, which not only induces the formation of abundant GBs to modulate electronic structure, but also improves the intrinsic activity as high-valence dopants, synergistically elevating OER activity. As verification, the optimized Mo-NNOH@MNF-10h exhibits low overpotential of 150 mV at 10 mA cm-2, which can be attributed to the reduced valence charge transition energy of Ni by high-valence Mo dopant, coupled with the fine-tuning of d-band center bond and corresponding local electron density by induced GBs and Mo doping, as DFT calculations revealed. Moreover, the intrinsic robustness and strong adhesion ensure the long-term stability of 6 h at 500 mA cm-2. This work provides a promising molten salt decomposition approach to synthesize advanced materials with unique structures.

18.
ACS Appl Mater Interfaces ; 14(1): 677-683, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939409

RESUMO

Sodium-ion batteries (SIBs) are currently the most promising candidates for large-scale energy storage devices owing to their low cost and abundant resources. Titanium-based layered oxides have attracted widespread attention as promising anode materials due to delivering a safe potential of about 0.7 V (vs Na+/Na) and a small volume contraction during cycles; P2-type Ti-based layered oxides are typically reported, due to the challenging synthesis of the O3-type counterpart resulting from the high percentage of unstable Ti3+. Herein, we report an anomalous O3-Na2/3Ni1/3Ti2/3O2 layered oxide as an ultrastable and high-rate anode material for SIBs. The anode material delivers a reversible capacity of 112 mA h g-1 after 300 cycles at 0.1 C, a good capacity retention rate of 91% after 1400 cycles at 2 C, and, in particular, a capacity of 52 mA h g-1 even at a high rate of 20 C (1780 mA g-1). Furthermore, the in situ X-ray diffraction monitoring reveals no phase transitions and almost zero strain both underlie the good long-cycle stability. The measured high apparent Na+ diffusion coefficient (2.06 × 10-10 cm2 s-1) and the low migration energy barrier (0.59 eV) from density functional theory calculations are responsible for the superior rate capability. Our results promise advanced high-performance O3-type Ti-based layered oxides as promising anode materials toward application for SIBs.

19.
Sustain Cities Soc ; 75: 103388, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34608429

RESUMO

Understanding the spatiotemporal patterns of the COVID-19 impact on industrial production could improve the estimation of the economic loss and sustainable work resumption policies in cities. In this study, assuming and checking a correlation between the land surface temperature (LST) and industrial production, we applied the BFAST algorithm and linear regression models on multi-temporal MODIS data to derive monthly time-series deviation of LST with a spatial resolution of 1 × 1 km, to quantificationally explore the fine-scale spatiotemporal patterns of the COVID-19 control measures impact on industrial production, within Wuhan city. The results demonstrate that (1) the trend of time-series LST could partly reflect the impact of the COVID-19 pandemic on industrial production, and the year-around industrial production was less than expectations, with a fall of 14.30%; (2) the most serious COVID-19 impact on industrial production appeared in Mar. and Apr., then, after the lifting of lockdown, some regions (approximate 4.90%) firstly returned to expected levels in Jun, and almost all regions (98.49%) have completed the resumption of work and production before Nov.; (3) the southwest and south-central had more serious impact of the COVID-19 pandemic, approximate twice as much as that in the north and suburban, in Wuhan. The results and findings elaborated the spatiotemporal distribution and their changes during 2020 within Wuhan, which could provide a beneficial support for assessment of the COVID-19 pandemic and implementation of resumption plans for sustainable development.

20.
Inorg Chem ; 60(22): 17303-17314, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34699193

RESUMO

It remains a challenge to exploit dual-functional metal-organic frameworks (MOFs) for applications, including luminescence detection and proton conduction. With the deliberate selection of the bifunctional organic ligand 5-sulfoisophthalic acid monosodium salt (NaH2bts), and the phosphonic acid ligand N,N'-piperazine (bismethylenephosphonic acid; H4L), a robust three-dimensional (3D) noninterpenetrating dual-functional MOF, [Tb(H2L)(H2bts)(H2O)]·H2O (1), has been synthesized hydrothermally. On the basis of the excellent thermal and chemical as well as superior luminescence stabilities in water and solutions with different pHs, 1 can serve as the simple, rapid, and highly selective and sensitive luminescence detection of the carcinoid biomarkers 5-hydroxytryptamine (HT) and its metabolite 5-hydroxyindole-3-acetic acid (HIAA) with detection limits of nanomolar magnitude in water and in simulated blood plasma and urine systems. Due to the change in the signals that could be readily differentiated by the naked eye under a UV lamp, a portable test paper has been developed. The probable quenching mechanisms are discussed in detail. In addition, a great number of hydrogen-bonding networks are formed among the uncoordinated carboxylic oxygen atoms, sulfonate oxygen atoms, protonated nitrogen atoms, and water molecules, which provide potential proton-hopping sites for proton conduction, leading to a maximum proton conductivity of 2.3 × 10-4 S cm-1 at 368 K and 95% relative humidity. The above results suggest that rationally designed dual-functional MOFs can open an avenue for the development of occupational diagnostic tools and alternative energy technology.


Assuntos
Tumor Carcinoide/química , Luminescência , Estruturas Metalorgânicas/química , Prótons , Biomarcadores/análise , Estruturas Metalorgânicas/síntese química , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA