Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Life Sci ; 349: 122716, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38762067

RESUMO

RNA helicases are involved in almost all biological events, and the DDXs family is one of the largest subfamilies of RNA helicases. Recently, studies have reported that RNA helicase DDX21 is involved in several biological events, specifically in orchestrating gene expression. Hence, in this review, we provide a comprehensive overview of the function of DDX21 in health and diseases. In the genome, DDX21 contributes to genome stability by promoting DNA damage repair and resolving R-loops. It also facilitates transcriptional regulation by directly binding to promoter regions, interacting with transcription factors, and enhancing transcription through non-coding RNA. Moreover, DDX21 is involved in various RNA metabolism such as RNA processing, translation, and decay. Interestingly, the activity and function of DDX21 are regulated by post-translational modifications, which affect the localization and degradation of DDX21. Except for its role of RNA helicase, DDX21 also acts as a non-enzymatic function in unwinding RNA, regulating transcriptional modifications and promoting transcription. Next, we discuss the potential application of DDX21 as a clinical predictor for diseases, which may facilitate providing novel pharmacological targets for molecular therapy.


Assuntos
RNA Helicases DEAD-box , Regulação da Expressão Gênica , Humanos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Animais , Instabilidade Genômica , Processamento de Proteína Pós-Traducional/genética
2.
Redox Biol ; 71: 103112, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461791

RESUMO

The Warburg effect, also referred as aerobic glycolysis, is a common metabolic program during viral infection. Through targeted metabolomics combined with biochemical experiments and various cell models, we investigated the central carbon metabolism (CCM) profiles of cells infected with porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. We found that PDCoV infection required glycolysis but decreased glycolytic flux, exhibiting a non-Warburg effect characterized by pyruvic acid accumulation. Mechanistically, PDCoV enhanced pyruvate kinase activity to promote pyruvic acid anabolism, a process that generates pyruvic acid with concomitant ATP production. PDCoV also hijacked pyruvic acid catabolism to increase biosynthesis of non-essential amino acids (NEAAs), suggesting that pyruvic acid is an essential hub for PDCoV to scavenge host energy and metabolites. Furthermore, PDCoV facilitated glutaminolysis to promote the synthesis of NEAA and pyrimidines for optimal proliferation. Our work supports a novel CCM model after viral infection and provides potential anti-PDCoV drug targets.


Assuntos
Infecções por Coronavirus , Coronavirus , Doenças dos Suínos , Suínos , Animais , Coronavirus/metabolismo , Ácido Pirúvico/metabolismo , Doenças dos Suínos/metabolismo , Doenças dos Suínos/patologia , Infecções por Coronavirus/patologia
3.
Vet Microbiol ; 292: 110066, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555788

RESUMO

Porcine reproductive and respiratory syndrome (PRRS), which has posed substantial threats to the swine industry worldwide, is primarily characterized by interstitial pneumonia. A disintegrin and metalloproteinase 17 (ADAM17) is a multifunctional sheddase involved in various inflammatory diseases. Herein, our study showed that PRRS virus (PRRSV) infection elevated ADAM17 activity, as demonstrated in primary porcine alveolar macrophages (PAMs), an immortalized PAM cell line (IPAM cells), and the lung tissues of PRRSV-infected piglets. We found that PRRSV infection promoted ADAM17 translocation from the endoplasmic reticulum to the Golgi by enhancing its interaction with inactive rhomboid protein 2 (iRhom2), a newly identified ADAM17 regulator, which in turn elevated ADAM17 activity. By screening for PRRSV-encoded structural proteins, viral envelope (E) and nucleocapsid (N) proteins were identified as the predominant ADAM17 activators. E and N proteins bind with both ADAM17 and iRhom2 to form ternary protein complexes, ultimately strengthening their interactions. Additionally, we demonstrated, using an ADAM17-knockout cell line, that ADAM17 augmented the shedding of soluble TNF-α, a pivotal inflammatory mediator. We also discovered that ADAM17-mediated cleavage of porcine TNF-α occurred between Arg-78 and Ser-79. By constructing a precision mutant cell line with Arg-78-Glu/Ser-79-Glu substitution mutations in TNF-α, we further revealed that the ADAM17-mediated production of soluble TNF-α contributed to the induction of inflammatory responses by PRRSV and its E and N proteins. Taken together, our results elucidate the mechanism by which PRRSV infection activates the iRhom2/ADAM17/TNF-α axis to enhance inflammatory responses, providing valuable insights into the elucidation of PRRSV pathogenesis.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Suínos , Animais , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Pulmão , Macrófagos Alveolares
4.
J Virol ; 98(1): e0167023, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38088561

RESUMO

Lactate, traditionally considered a metabolic by-product, has recently been identified as a substrate for the induction of lactylation, a newly identified epigenetic modification that plays an important role in the regulation of host gene expression. Our previous study showed that lactate levels were significantly elevated in cells infected with the porcine reproductive and respiratory syndrome virus (PRRSV), an Arterivirus that has devastated the swine industry worldwide for over 30 years. However, the role of elevated lactate in PRRSV infections remains unknown. In this study, we found that lactate was required for optimal PRRSV proliferation, and PRRSV infection increased cellular lactylation in a dose-dependent manner. Using the Cleavage Under Targets and Tagmentation (CUT&Tag) combined with RNA sequencing (RNA-seq) to screen the downstream genes regulated by lactylation in PRRSV-infected cells, we found that PRRSV-induced lactylation activated the expression of heat shock 70 kDa protein 6 (HSPA6). Follow-up experiments showed that HSPA6 is important for PRRSV proliferation by negatively modulating interferon (IFN)-ß induction. Mechanistically, HSPA6 impeded the interaction between TNF-receptor-associated factor 3 (TRAF3) and inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKKε), thereby hindering the production of IFN-ß. Taken together, these results indicate that the activated lactate-lactylation-HSPA6 axis promotes viral growth by impairing IFN-ß induction, providing new therapeutic targets for the prevention and control of PRRSV infection. The results presented here also link lactylation to the virus life cycle, improving our understanding of epigenetic regulation in viral infection.IMPORTANCEAs a newly identified epigenetic modification, lactate-induced lactylation has received attentions because it plays important roles in gene expression and contributes to tumorigenesis and the innate immune response. Previous studies showed that many viruses upregulate cellular lactate levels; however, whether virus-elevated lactate induces lactylation and the subsequent biological significance of the modification to viral infection have not been reported. In this study, we demonstrated that porcine reproductive and respiratory syndrome virus (PRRSV) infection induced cellular lactylation, which, in turn, upregulated the expression of HSPA6, an IFN-negative regulator. We also dissected the mechanism by which HSPA6 negatively regulates IFN-ß production. To our knowledge, this is the first report to study virus-induced lactylation and establish the relationship between lactylation and virus infection.


Assuntos
Ácido Láctico , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Epigênese Genética , Expressão Gênica , Ácido Láctico/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Suínos , Replicação Viral
5.
J Am Geriatr Soc ; 72(3): 892-902, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38018490

RESUMO

BACKGROUND: Delirium is frequently disproportionately under-recognized despite its high prevalence, detrimental impact, and potential lethality. Informant-based delirium detection tools can offer structured assessment and increase the timeliness and frequency of detection. We aimed to examine the diagnostic accuracy of the Family Confusion Assessment Method (FAM-CAM) for delirium detection. METHODS: We systematically searched the MEDLINE, EMBASE, PsycINFO, CINAHL, CNKI, WANFANG, and SinoMed databases from January 1988 to December 2022. Two reviewers independently screened studies and evaluated methodological quality using the revised quality assessment of diagnostic accuracy studies (QUADAS-2) tool. A bivariate random effects model was undertaken, and univariable meta-regression was carried out to explore heterogeneity. RESULTS: Seven studies with 483 dyads of participants and family caregivers were identified. Pooled sensitivity and specificity were 0.74 (95% CI: 0.59, 0.86) and 0.91 (95% CI: 0.83, 0.95), respectively, with an area under curve (AUC) of 0.91. The positive likelihood ratio was 8.27 (95% CI: 3.97, 17.25), and the negative likelihood ratio was 0.28 (95% CI: 0.16, 0.50). Settings impacted specificity (p = 0.02). CONCLUSIONS: Available evidence indicates that FAM-CAM exhibits moderate sensitivity and high specificity for delirium screening in adults. The FAM-CAM is concise and easy to use, making it appropriate for routine clinical practice, which might benefit early delirium detection and potentially foster delirium management. PROSPERO REGISTRATION NUMBER: CRD42022378742.


Assuntos
Delírio , Humanos , Delírio/diagnóstico , Sensibilidade e Especificidade , Cuidadores , Prevalência
6.
ACS Appl Mater Interfaces ; 15(50): 58251-58259, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38053348

RESUMO

Chiral nanoparticles (C-NPs) play a crucial role in biomedical applications, especially in their biological effects on cytotoxicity and metabolism. However, there are rare reports about the antivirus property of C-NPs and their working mechanism. Here, three different types of chiral ZnO NPs (l-ZnO, d-ZnO, and dl-ZnO) were prepared as enantioselective antivirals. Biocompatibility test results showed that the three different chiral ZnO NPs varied significantly in cytotoxicity. Evaluation of their effects against porcine reproductive and respiratory syndrome virus (PRRSV) indicated that compared with d-ZnO and dl-ZnO NPs, l-ZnO NPs exhibited stronger anti-PRRSV activity due to their higher cognate cell adhesion and uptake. Furthermore, the high concentration of l-ZnO NPs can obviously reduce cellular reactive oxygen species (ROS) in MARC-145 cells, thus effectively preventing PRRSV-induced oxidative damage. This study demonstrated the outstanding antiviral properties of l-ZnO NPs, which may facilitate the development and application of C-NPs in antiviral drugs and tissue engineering.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Estereoisomerismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Antivirais/farmacologia
7.
Biology (Basel) ; 12(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37998009

RESUMO

Paper mulberry (Broussonetia papyrifera) is currently an invasive species on several continents. However, little is known about whether paper mulberry has a competitive advantage over its surrounding trees in its native distribution range, subtropical regions of China. Here, we determined the relative intraspecific and interspecific competitive capacity of paper mulberry in three subtropical deciduous broad-leaved forests using the indices of structural diversity including the mixing index, the tree-tree interval index, and the diameter/height differentiation index. It was found that more than 80% of mingling index values were not greater than 0.25, suggesting a stronger competitiveness of paper mulberry relative to other tree species. The tree-tree interval index values ranged between 1 m and 2 m, suggesting a strong competition between paper mulberry and its neighbors. Moreover, more than 60% of the height differentiation index and diameter differentiation index values were positive, suggesting that the reference paper mulberry had a slight competitive advantage over neighboring trees in both the horizontal and vertical planes. These collectively suggest a competitive advantage over other tree species in the native distribution range, which may play a significant role in the ecological invasion of paper mulberry. Our findings not only help to reveal the invasion mechanism of paper mulberry, but also provide an important reference for the management and utilization of paper mulberry in invaded areas.

8.
Nucleic Acids Res ; 51(19): 10752-10767, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37739415

RESUMO

G-quadruplex (G4) is a unique secondary structure formed by guanine-rich nucleic acid sequences. Growing studies reported that the genomes of some viruses harbor G4 structures associated with viral replication, opening up a new field to dissect viral infection. Porcine reproductive and respiratory syndrome virus (PRRSV), a representative member of Arteriviridae, is an economically significant pathogen that has devastated the swine industry worldwide for over 30 years. In this study, we identified a highly conserved G-rich sequence with parallel-type G4 structure (named PRRSV-G4) in the negative strand genome RNA of PRRSV. Pyridostatin (PDS), a well-known G4-binding ligand, stabilized the PRRSV-G4 structure and inhibited viral replication. By screening the proteins interacting with PRRSV-G4 in PRRSV-infected cells and single-molecule magnetic tweezers analysis, we found that two helicases, host DDX18 and viral nsp10, interact with and efficiently unwound the PRRSV-G4 structure, thereby facilitating viral replication. Using a PRRSV reverse genetics system, we confirmed that recombinant PRRSV with a G4-disruptive mutation exhibited resistance to PDS treatment, thereby displaying higher replication than wild-type PRRSV. Collectively, these results demonstrate that the PRRSV-G4 structure plays a crucial regulatory role in viral replication, and targeting this structure represents a promising strategy for antiviral therapies.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Proteínas não Estruturais Virais/metabolismo , DNA Helicases/genética , Replicação Viral/genética , RNA
9.
Viruses ; 15(9)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37766223

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) has been a persistent challenge for the swine industry for over three decades due to the lack of effective treatments and vaccines. Reverse genetics systems have been extensively employed to build rapid drug screening platforms and develop genetically engineered vaccines. Herein, we rescued recombinant PRRS virus (rPRRSV) WUH3 using an infectious cDNA clone of PRRSV WUH3 acquired through a BstXI-based one-step-assembly approach. The rPRRSV WUH3 and its parental PRRSV WUH3 share similar plaque sizes and multiple-step growth curves. Previously, gene-editing of viral genomes depends on appropriate restrictive endonucleases, which are arduous to select in some specific viral genes. Thus, we developed a restrictive endonucleases-free method based on CRISPR/Cas9 to edit the PRRSV genome. Using this method, we successfully inserted the exogenous gene (EGFP gene as an example) into the interval between ORF1b and ORF2a of the PRRSV genome to generate rPRRSV WUH3-EGFP, or precisely mutated the lysine (K) at position 150 of PRRSV nsp1α to glutamine (Q) to acquire rPRRSV WUH3 nsp1α-K150Q. Taken together, our study provides a rapid and convenient method for the development of genetically engineered vaccines against PRRSV and the study on the functions of PRRSV genes.

10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(4): 752-758, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37545069

RESUMO

Objective: To investigate the incidence and influencing factors of postoperative delirium (POD) and subsyndromal delirium (SSD) in patients connected to cardiopulmonary bypass during cardiovascular surgeries. Methods: We collected the general data and the data for the perioperative hematological, physiological, and biochemical indicators and the surgical and therapeutic conditions of patients connected to cardiopulmonary bypass during the course of cardiovascular surgeries conducted at a tertiary-care hospital in Hubei province between May 2022 and September 2022. The outcome indicators, including the incidence of POD and SSD, were assessed with the Nursing Delirium Screening Scale (Nu-DESC). Multinomial logistic regression was performed to analyze the influencing factors of patients with different statuses of POD and SSD. Results: Among the 202 patients, the incidence of SSD, SSD progressing to POD, and no POD or SSD (ND) progressing to POD were 13.4%, 6.4%, and 34.2%, respectively. Regression analysis showed that, with ND patients as the controls, the influencing factors for SSD were preoperative blood glucose (odds ratio [ OR]=0.38, 95% confidence interval [ CI]: 0.19-0.76), intraoperative platelet transfusion ( OR=0.37, 95% CI: 0.15-0.92), intraoperative etomidate ( OR=0.93, 95% CI: 0.87-0.98), and postoperative total bilirubin level ( OR=1.04, 95% CI: 1.01-1.07). For the progression of SSD to POD, the influencing factors were age ( OR=1.09, 95% CI: 1.01-1.17), ASA classification of IV and above ( OR=10.72, 95% CI: 1.85-62.08), intraoperative dexmedetomidine ( OR=1.01, 95% CI: 1.003-1.02), and the duration of mechanical ventilation ( OR=1.04, 95% CI: 1.01-1.07). For the progression of ND to POD, the influencing factors were age ( OR=1.06, 95% CI: 1.02-1.10), middle or high school education ( OR=0.35, 95% CI: 0.15-0.83), and the duration of mechanical ventilation ( OR=1.04, 95% CI: 1.01-1.07). Conclusion: Age, education, ASA classification, preoperative blood glucose, intraoperative platelet transfusion, intraoperative etomidate, intraoperative dexmedetomidine, postoperative total bilirubin, and the duration of mechanical ventilation are influencing factors for different statuses of POD and SSD among patients connected to cardiopulmonary bypass when they are undergoing cardiovascular surgeries. The influencing factors vary across groups of patients with different statuses of POD and SSD. Therefore, we should accurately assess the risk factors of patients with different statuses of POD and SSD and carry out corresponding interventions, thereby preventing or reducing the occurrence of POD and SSD, and ultimately promoting enhanced recovery after surgery.


Assuntos
Delírio , Dexmedetomidina , Delírio do Despertar , Etomidato , Humanos , Delírio do Despertar/etiologia , Delírio do Despertar/complicações , Delírio/epidemiologia , Delírio/etiologia , Ponte Cardiopulmonar/efeitos adversos , Incidência , Glicemia , Complicações Pós-Operatórias/diagnóstico , Estudos Prospectivos , Fatores de Risco
11.
RSC Adv ; 13(35): 24519-24535, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37588979

RESUMO

Although polycaprolactone (PCL) matrix composites have been extensively studied, the weak interface with nanofillers limits their further applications in bone tissue engineering. Herein, this study has designed a porous bone scaffold model using the triply periodic minimal surfaces (TPMS), and the optimal porosity was determined by comparing the mechanical properties. A sodium stearate-modified PCL/tourmaline (PCL/TM) composite scaffold with a strong interfacial effect was prepared by selective laser sintering technology. Wherein, sodium stearate acts as a bridge to improve the interaction between TM and PCL interface, while promoting its uniform dispersion. The results showed that the PCL/3% modified TM specimens exhibit the optimum mechanical properties, and their ultimate tensile and compressive strength increases by 21.8% and 32.1%, respectively, compared with pure PCL. The factors of mechanical enhancement of composite scaffolds can be elaborated from the construction of interface bridges. On the one hand, the carboxyl group at one end of sodium stearate will interact with the hydroxyl group on the surface of TM to enhance interfacial adsorption by forming ionic bonds and hydrogen bonds. On the other hand, the hydrophobic long chain at the other end of sodium stearate is universally compatible with hydrophobic PCL, thereby improving the dispersion of TM. These characteristics make the PCL/TM composite scaffold a valuable reference for its application in bone tissue engineering.

12.
Biochem Biophys Res Commun ; 669: 61-67, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37267861

RESUMO

As a member of the gasdermin family, gasdermin E (GSDME) is specifically cleaved by caspase-3, resulting in pyroptosis. To date, the biological characteristics and functions of human and mouse GSDME have been extensively studied; however, little is known of porcine GSDME (pGSDME). In this study, the full-length pGSDME-FL was cloned, which encodes 495 amino acids (aa) that have closely evolutionary relationships to the homolog of camelus, aquatic mammals, cattle and goat. Moreover, pGSDME was detected at different levels of expression in 21 tissues and 5 pig-derived cell lines tested by qRT-PCR, with the highest expression levels in mesenteric lymph nodes and PK-15 cell lines. Anti-pGSDME polyclonal antibody (pAb) with good specificity was generated by expressing the truncated recombinant protein pGSDME-1-208 and immunizing the rabbits. By western blot analysis using highly specific anti-pGSDME polyclonal antibody (pAb) prepared as primary antibody, it was not only confirmed that paclitaxel and cisplatin were positive stimuli to pGSDME cleavage and caspase-3 activation, but also identified the aspartate (D268) at position 268th of pGSDME as a cleavage site of caspase-3, and the overexpressed pGSDME-1-268 possesses cytotoxicity to HEK-293T cells, indicating that pGSDME-1-268 may contain active domains and involve pGSDME-mediated pyroptosis. These results lay a foundation for further investigating the function of pGSDME, especially its role in pyroptosis and its interaction with pathogens.


Assuntos
Gasderminas , Piroptose , Bovinos , Humanos , Animais , Camundongos , Suínos , Coelhos , Caspase 3/genética , Caspase 3/metabolismo , Piroptose/fisiologia , Cisplatino , Clonagem Molecular , Mamíferos/metabolismo
13.
J Clin Nurs ; 32(15-16): 5046-5055, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37173828

RESUMO

AIMS AND OBJECTIVES: To examine knowledge, attitude, and practice regarding postoperative delirium and the relationships among cardiac surgery nurses in China. BACKGROUND: Postoperative delirium is a prevalent and devastating complication following cardiac surgery. Nurses play a part in multi-disciplinary collaboration for preventing and managing postoperative delirium, of whom knowledge, attitude, and practice are essential. DESIGN: A cross-sectional multi-centre study. METHODS: Nurses from cardiac surgery wards and intensive care units of five tertiary hospitals in Wuhan, Hubei Province, China were enrolled. Data were gathered online using a self-administered questionnaire. Student's t-test, or analysis of variance, or non-parametric tests were performed to compare differences across groups. Bootstrapping mediation analysis was conducted to examine the relationship between knowledge, attitude, and practice. The STROBE checklist was used for the reporting of this study. RESULTS: Of 429 nurses, a moderate level of knowledge and high levels of attitude and practice regarding postoperative delirium were revealed. Nurses with higher education, higher academic title, 5-10 years of practice in nursing and cardiac surgery nursing exhibited increased knowledge. With advanced age, practice in a specialised hospital, and training experience, nurses reported a better degree of practice. Attitude played a full mediating effect in the relationship between knowledge and practice, accounting for 81.82% of the total effects. CONCLUSIONS: Knowledge, attitude, and practice regarding postoperative delirium are promising among Chinese cardiac surgery nurses, with knowledge of screening tools and perioperative nonpharmacological interventions and practice of screening in need of enhancement. Attitudes act as an intermediary between knowledge and practice regarding postoperative delirium. RELEVANCE TO CLINICAL PRACTICE: Innovative and stratified in-service education is warranted to address knowledge enhancement. Meanwhile, organisations are suggested to make efforts to foster nurses' positive attitudes, particularly in creating a favourable culture and developing institutional protocols for postoperative delirium management to improve practice. NO PATIENT OR PUBLIC CONTRIBUTION: This study is focused on cardiac surgery nurses' knowledge, attitude, and practice regarding postoperative delirium, and the research questions and design are from clinical nursing practice, literature review, and expert panel review, in which the patient or public is temporarily not involved.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Delírio do Despertar , Enfermeiras e Enfermeiros , Recursos Humanos de Enfermagem Hospitalar , Humanos , Estudos Transversais , Conhecimentos, Atitudes e Prática em Saúde , Competência Clínica , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Inquéritos e Questionários , Atitude do Pessoal de Saúde
14.
Vet Microbiol ; 281: 109730, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37068404

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a severe infectious disease currently devasting the global pig industry. PRRS is characterized by intense inflammation and severe damage to the alveolar-capillary barrier. Therefore, it is crucial to uncover the underlying mechanism by which the PRRS virus (PRRSV) induces inflammatory responses and barrier function damage. In addition to porcine alveolar macrophages (PAMs), the primary target cells of PRRSV infection in vivo, pulmonary intravascular macrophages (PIMs) are also susceptible to PRRSV infection. However, the poor isolation efficiency limits the study of PRRSV infection in PIMs. In this study, we optimized the isolation method to obtain PIMs with higher purity and yield and demonstrated that PRRSV's infection kinetics in PIMs were similar to those in PAMs. Notably, PIMs exhibited a more acute inflammation process during PRRSV infection than PAMs, as evidenced by the earlier upregulation and higher levels of pro-inflammatory cytokines, including TNF-α and IL-1ß. More acute endothelial barrier disfunction upon PRRSV infection was also observed in PIMs compared to in PAMs. Mechanistically, PRRSV-induced TNF-α and IL-1ß could cause endothelial barrier disfunction by dysregulating tight junction proteins, including claudin 1 (CLDN1), claudin 8 (CLDN8) and occludin (OCLN). Our findings revealed the crucial and novel roles of PIMs in facilitating the progression of inflammatory responses and endothelial barrier injury and provided new insights into the mechanisms of PRRSV's induction of interstitial pneumonia.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Suínos , Macrófagos Alveolares , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Inflamação/metabolismo , Inflamação/veterinária , Doenças dos Suínos/metabolismo
15.
Vet Microbiol ; 279: 109674, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739813

RESUMO

The metabolic pathways of central carbon metabolism (CCM), glycolysis and the tricarboxylic acid (TCA) cycle, are important host factors determining the outcome of viral infection. Thus, it is not surprising that viruses easily manipulate CCM for optimized replication. Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has devastated the swine industry worldwide for over 30 years. However, whether PRRSV reprograms CCM is still unclear. In this study, we found that PRRSV infection increased the intensity of cellular uptake of glucose and glutamine, two main carbon sources for mammalian cells. Deprivation of glucose and/or glutamine significantly reduced PRRSV replication; restricted entry of glucose and glutamine into CCM inhibited PRRSV proliferation. We further found that PRRSV infection elevated glycolysis and maintained the TCA cycle flux. Furthermore, preventing the flow of glycolysis or the TCA cycle led to a reduction in PRRSV proliferation. The anaplerotic usage of glutamine in the TCA cycle partially rescued PRRSV growth by replacing glutamine with α-ketoglutarate (α-KG), an intermediate of the TCA cycle. Interestingly, the addition of α-KG in replete medium also promoted PRRSV proliferation. Taken together, these results reveal that PRRSV infection promotes cellular uptake of glucose and glutamine to provide the energy and macromolecules required for PRRSV replication, and optimal PRRSV replication occurs in cells dependent on glycolysis and the TCA cycle.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Glutamina/metabolismo , Replicação Viral , Glucose/metabolismo , Mamíferos
16.
Mar Drugs ; 21(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36827118

RESUMO

Our previous studies demonstrated that arming vaccinia viruses with marine lectins enhanced the antitumor efficacy in several cancer cells. This study aims to compare the efficacy of oncolytic vaccinia viruses harboring Tachypleus tridentatus lectin (oncoVV-TTL), Aphrocallistes vastus lectin (oncoVV-AVL), white-spotted charr lectin (oncoVV-WCL), and Asterina pectinifera lectin (oncoVV-APL) in breast cancer cells (BC). These results indicated that oncoVV-AVL elicited the highest anti-tumor effect, followed by oncoVV-APL, while oncoVV-TTL and oncoVV-WCL had lower effects in BC. Further studies showed that apoptosis and replication may work together to enhance the cytotoxicity of oncoVV-lectins in a cell-type dependent manner. TTL/AVL/APL/WCL may mediate multiple pathways, including ERK, JNK, Hippo, and PI3K pathways, to promote oncoVV replication in MDA-MB-231 cells. In contrast, these pathways did not affect oncoVV-TTL/AVL/APL/WCL replication in MCF-7 cells, suggesting that the mechanisms of recombinant viruses in MCF-7 (ER+, PR+) and MDA-MB-231 (TNBC) cells were significantly different. Based on this study, we hypothesized that ER or PR may be responsible for the differences in promoting viral replication and inducing apoptosis between MCF-7 and MDA-MB-231 cells, but the specific mechanism needs to be further explored. In addition, small-molecule drugs targeting key cellular signaling pathways, including MAPK, PI3K/Akt, and Hippo, could be conjunction with oncoVV-AVL to promote breast cancer therapy, and key pathway factors in the JNK and PI3K pathways may be related to the efficacy of oncoVV-APL/TTL/WCL. This study provides a basis for applying oncolytic vaccinia virus in breast carcinoma.


Assuntos
Neoplasias da Mama , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Feminino , Vaccinia virus , Linhagem Celular Tumoral , Terapia Viral Oncolítica/métodos , Lectinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo
17.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835232

RESUMO

Oncolytic viruses are being developed as novel strategies for cancer therapy. Our previous studies have shown that vaccinia viruses armed with marine lectins improved the antitumor efficacy in diverse cancer types. The objective of this study was to assess the cytotoxic effects of oncoVV harboring Tachypleus tridentatus lectin (oncoVV-TTL), Aphrocallistes vastus lectin (oncoVV-AVL), white-spotted charr lectin (oncoVV-WCL), and Asterina pectinifera lectin (oncoVV-APL) on HCC. Our data revealed that the effects of recombinant viruses on Hep-3B cells were oncoVV-AVL > oncoVV-APL > oncoVV-TTL > oncoVV-WCL; oncoVV-AVL showed stronger cytotoxicity than oncoVV-APL, while oncoVV-TTL/WCL had no effect on cell killing in Huh7 cells, and PLC/PRF/5 cells exhibited sensitivity to oncoVV-AVL/TTL but not to oncoVV-APL/WCL. The cytotoxicity of oncoVV-lectins could be enhanced by apoptosis and replication in a cell-type-dependent manner. Further research revealed that AVL may mediate various pathways, including MAPK, Hippo, PI3K, lipid metabolism, and androgen pathways through AMPK crosstalk, to promote oncoVV replication in HCC in a cell-dependent manner. OncoVV-APL replication could be affected by AMPK/Hippo/lipid metabolism pathways in Hep-3B cells, AMPK/Hippo/PI3K/androgen pathways in Huh7 cells, and AMPK/Hippo pathways in PLC/PRF/5 cells. OncoVV-WCL replication was also multi-mechanistic, which could be affected by AMPK/JNK/lipid metabolism pathways in Hep-3B cells, AMPK/Hippo/androgen pathways in Huh7 cells, and AMPK/JNK/Hippo pathways in PLC/PRF/5 cells. In addition, AMPK and lipid metabolism pathways may play critical roles in oncoVV-TTL replication in Hep-3B cells, and oncoVV-TTL replication in Huh7 cells may depend on AMPK/PI3K/androgen pathways. This study provides evidence for the application of oncolytic vaccinia viruses in hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Terapia Viral Oncolítica , Vírus Oncolíticos , Vaccinia virus , Humanos , Proteínas Quinases Ativadas por AMP , Androgênios/farmacologia , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Lectinas/farmacologia , Neoplasias Hepáticas/terapia , Terapia Viral Oncolítica/métodos , Fosfatidilinositol 3-Quinases , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Autophagy ; 19(8): 2257-2274, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36779599

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a typical immunosuppressive virus devastating the global swine industry. DEAD-box helicases (DDXs) are a family of ATP-dependent RNA helicases that are predominantly implicated in modulating cellular RNA metabolism. Meanwhile, a growing number of studies have suggested that some DDXs are associated with innate immunity and virus infection, so they are considered potential antiviral targets. Herein, we screened 40 DDXs and found that ectopic expression of DDX10 exhibited a significant anti-PRRSV effect, while DDX10 knockdown promoted PRRSV proliferation. Further analysis revealed that DDX10 positively regulates type I interferon production, which may contribute to its anti-PRRSV effect. Interestingly, PRRSV infection promoted DDX10 translocation from the nucleus to the cytoplasm for macroautophagic/autophagic degradation to block the antiviral effect of DDX10. By screening PRRSV-encoded proteins, we found that the viral envelope (E) protein interacted with DDX10. In line with the autophagic degradation of DDX10 during PRRSV infection, E protein could induce autophagy and reduce DDX10 expression in wild-type cells, but not in ATG5 or ATG7 knockout (KO) cells. When further screening the cargo receptors for autophagic degradation, we found that SQSTM1/p62 (sequestosome 1) interacted with both DDX10 and E protein, and E protein-mediated DDX10 degradation was almost entirely blocked in SQSTM1 KO cells, demonstrating that E protein degrades DDX10 by promoting SQSTM1-mediated selective autophagy. Our study reveals a novel mechanism by which PRRSV escapes host antiviral innate immunity through selective autophagy, providing a new target for developing anti-PRRSV drugs.Abbreviations: ACTB: actin beta; ATG: autophagy related; co-IP: co-immunoprecipitation; CQ: chloroquine; DDX10: DEAD-box helicase 10; E: envelope; EGFP: enhanced green fluorescent protein; hpi: hours post infection; hpt: hours post transfection; IFA: indirect immunofluorescence assay; IFN-I: type I IFN; IFNB/IFN-ß: interferon beta; IRF3: interferon regulatory factor 3; ISGs: interferon-stimulated genes; KO: knockout; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; mAb: monoclonal antibody; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-κB: nuclear factor kappa B; OPTN: optineurin; ORF: open reading frame; PRRSV: porcine reproductive and respiratory syndrome virus; SeV: sendai virus; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TCID50: 50% tissue culture infective dose; WT: wild type.


Assuntos
Interferon Tipo I , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Antivirais/farmacologia , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/genética , Autofagia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Interferon beta/metabolismo , Interferon Tipo I/metabolismo , NF-kappa B/metabolismo
19.
Microbiol Spectr ; : e0438622, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36815765

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen that has devastated the worldwide swine industry for over 30 years. Autophagy is an evolutionarily conserved intracellular lysosomal degradation pathway, and previous studies have documented that PRRSV infection prompts autophagosome accumulation. However, whether PRRSV induces complete or incomplete autophagy remains controversial. Here, we demonstrated that overexpression of PRRSV nonstructural protein 5 (nsp5) induced the accumulation of autophagosomes, and a similar scenario was observed in PRRSV-infected cells. Moreover, both PRRSV infection and nsp5 overexpression activated incomplete autophagy, as evidenced by the blockage of autophagosome-lysosome fusion. Mechanistically, nsp5 overexpression, as well as PRRSV infection, inhibited the interaction of syntaxin 17 (STX17) with synaptosomal-associated protein 29 (SNAP29), two SNARE proteins that mediate autophagosome fusion with lysosomes, to impair the formation of autolysosomes. We further confirmed that nsp5 interacted with STX17, rather than SANP29, and the interacting domains of STX17 were the N-terminal motif and SNARE motif. Taken together, the findings of our study suggest a mechanism by which PRRSV induces incomplete autophagy by blocking autophagosome degradation and provide insights into the development of new therapeutics to combat PRRSV infection. IMPORTANCE A substantial number of viruses have been demonstrated to utilize or hijack autophagy to benefit their replication. In the case of porcine reproductive and respiratory syndrome virus (PRRSV), previous studies have demonstrated the proviral effects of autophagy on PRRSV proliferation. Thus, an investigation of the mechanism by which PRRSV regulates the autophagy processes can provide new insight into viral pathogenesis. Autophagic flux is a dynamic process that consists of autophagosome formation and subsequent lysosomal degradation. However, the exact effect of PRRSV infection on the autophagic flux remains disputed. In this study, we demonstrated that PRRSV infection, as well as PRRSV nsp5 overexpression, inhibited the interaction of STX17 with SNAP29 to impair the fusion of autophagosomes with lysosomes, thereby blocking autophagic flux. This information will help us to understand PRRSV-host interactions and unravel new targets for PRRS prevention and control.

20.
Microbiol Spectr ; 11(1): e0190622, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36625575

RESUMO

The gut microbiota is known to play a role in regulating host metabolism, yet the mechanisms underlying this regulation are not well elucidated. Our study aimed to characterize the differences in gut microbiota compositions and their roles in iron absorption between wild-type (WT) and CD163/pAPN double-gene-knockout (DKO) weaned piglets. A total of 58 samples along the entire digestive tract were analyzed for microbial community using 16S rRNA gene sequencing. The colonic microbiota and their metabolites were determined by metagenomic sequencing and untargeted liquid chromatography-mass spectrometry (LC-MS), respectively. Our results showed that no alterations in microbial community structure and composition were observed between DKO and WT weaned piglets, with the exception of colonic microbiota. Interestingly, the DKO piglets had selectively increased the relative abundance of the Leeia genus belonging to the Neisseriaceae family and decreased the Ruminococcaceae_UCG_014 genus abundance. Functional capacity analysis showed that organic acid metabolism was enriched in the colon in DKO piglets. In addition, the DKO piglets showed increased iron levels in important tissues compared with WT piglets without any pathological changes. Pearson's correlation coefficient indicated that the specific bacteria such as Leeia and Ruminococcaceae_UCG_014 genus played a key role in host iron absorption. Moreover, the iron levels had significantly (P < 0.05) positive correlation with microbial metabolites, particularly carboxylic acids and their derivatives, which might increase iron absorption by preventing iron precipitation. Overall, this study reveals an interaction between colonic microbiota and host metabolism and has potential significance for alleviating piglet iron deficiency. IMPORTANCE Iron deficiency is a major risk factor for iron deficiency anemia, which is among the most common nutritional disorders in piglets. However, it remains unclear how the gut microbiota interacts with host iron absorption. The current report provides the first insight into iron absorption-microbiome connection in CD163/pAPN double knockout piglets. The present results showed that carboxylic acids and their derivatives contributed to the absorption of nonheme iron by preventing ferric iron precipitation.


Assuntos
Microbioma Gastrointestinal , Animais , Suínos , Microbioma Gastrointestinal/fisiologia , RNA Ribossômico 16S/genética , Antígenos CD , Colo/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA