Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Front Public Health ; 12: 1297635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827625

RESUMO

Background: In China, bacillary dysentery (BD) is the third most frequently reported infectious disease, with the greatest annual incidence rate of 38.03 cases per 10,000 person-years. It is well acknowledged that temperature is associated with BD and the previous studies of temperature-BD association in different provinces of China present a considerable heterogeneity, which may lead to an inaccurate estimation for a region-specific association and incorrect attributable burdens. Meanwhile, the common methods for multi-city studies, such as stratified strategy and meta-analysis, have their own limitations in handling the heterogeneity. Therefore, it is necessary to adopt an appropriate method considering the spatial autocorrelation to accurately characterize the spatial distribution of temperature-BD association and obtain its attributable burden in 31 provinces of China. Methods: A novel three-stage strategy was adopted. In the first stage, we used the generalized additive model (GAM) model to independently estimate the province-specific association between monthly average temperature (MAT) and BD. In the second stage, the Leroux-prior-based conditional autoregression (LCAR) was used to spatially smooth the association and characterize its spatial distribution. In the third stage, we calculate the attribute BD cases based on a more accurate estimation of association. Results: The smoothed association curves generally show a higher relative risk with a higher MAT, but some of them have an inverted "V" shape. Meanwhile, the spatial distribution of association indicates that western provinces have a higher relative risk of MAT than eastern provinces with 0.695 and 0.645 on average, respectively. The maximum and minimum total attributable number of cases are 224,257 in Beijing and 88,906 in Hainan, respectively. The average values of each province in the eastern, western, and central areas are approximately 40,991, 42,025, and 26,947, respectively. Conclusion: Based on the LCAR-based three-stage strategy, we can obtain a more accurate spatial distribution of temperature-BD association and attributable BD cases. Furthermore, the results can help relevant institutions to prevent and control the epidemic of BD efficiently.


Assuntos
Disenteria Bacilar , Temperatura , China/epidemiologia , Humanos , Disenteria Bacilar/epidemiologia , Incidência , Análise Espacial , Modelos Estatísticos
2.
Hematology ; 29(1): 2330851, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38511647

RESUMO

Myelodysplastic syndrome (MDS) is characterized by activated inflammatory signaling and affects prognosis. Targeting inflammatory signaling may provide a way to treat the disease. We were curious whether there were changes in A20 in peripheral blood mononuclear cells (PBMC) of MDS patients. Therefore, we conducted a study with 60 clinical samples, including 30 MDS patients and 30 healthy controls. All patients with MDS were diagnosed and classified according to the criteria of the 2016 World Health Organization. The study was performed in accordance with the guidelines of the Declaration of Helsinki. Using Quantitative Real-Time RT-PCR, we discovered that A20 mRNA expression in PBMC of the MDS group was significantly lower than that in the control group (P < 0.001). Additionally, using Luminex Liquid Suspension Chip, we observed elevated plasma levels of pro-inflammatory IL-8 and TNF-α in the MDS group compared to the healthy control group (P < 0.001). We did not find a significant correlation between A20 mRNA and clinical characteristics (age, sex, concentration of hemoglobin, neutrophils count, platelets count, percent of blasts, and WHO classification) of the patients, nor between A20 mRNA and plasma cytokines (data not shown). Our study found down-regulated of A20 and increased levels of pro-inflammatory cytokines in the peripheral blood of MDS patients, providing further evidence for the activation of inflammatory signals in MDS.


Assuntos
Leucócitos Mononucleares , Síndromes Mielodisplásicas , Humanos , Citocinas/genética , Regulação para Baixo , Leucócitos Mononucleares/metabolismo , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , RNA Mensageiro/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética
3.
Aging (Albany NY) ; 16(2): 1161-1181, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38231472

RESUMO

Chronic Cerebral Hypoperfusion (CCH) is associated with cognitive dysfunction, the underlying mechanisms of which remain elusive, hindering the development of effective therapeutic approaches. In this study, we employed an established CCH animal model to delve into neuropathological alterations like oxidative stress, inflammation, neurotransmitter synthesis deficits, and other morphological alterations. Our findings revealed that while the number of neurons remained unchanged, there was a significant reduction in neuronal fibers post-CCH, as evidenced by microtubule-associated protein 2 (MAP2) staining. Moreover, myelin basic protein (MBP) staining showed exacerbated demyelination of neuronal fibers. Furthermore, we observed increased neuroinflammation, proliferation, and activation of astrocytes and microglia, as well as synaptic loss and microglial-mediated synapse engulfment post-CCH. Utilizing RNA sequencing, differential expression analysis displayed alterations in both mRNAs and circRNAs. Following gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, both showed significant enrichment in immunological and inflammation-related terms and pathways. Importantly, the differentially expressed circular RNAs (DE circRNAs) exhibited a notable coexpression pattern with DE mRNAs. The ternary circRNA-miRNA-mRNA competing endogenous RNAs (ceRNA) network was constructed, and subsequent analysis reiterated the significance of neuroimmunological and neuroinflammatory dysfunction in CCH-induced neuropathological changes and cognitive dysfunction. This study underscores the potential role of circRNAs in these processes, suggesting them as promising therapeutic targets to mitigate the detrimental effects of CCH.


Assuntos
Disfunção Cognitiva , MicroRNAs , Animais , RNA Circular/genética , RNA Endógeno Competitivo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Inflamação/genética , Disfunção Cognitiva/genética , Redes Reguladoras de Genes
5.
Theor Appl Genet ; 136(12): 256, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010528

RESUMO

KEY MESSAGE: By integrating QTL fine mapping and transcriptomics, a candidate gene responsible for oil content in rapeseed was identified. The gene is anticipated to primarily function in photosynthesis and photosystem metabolism pathways. Brassica napus is one of the most important oil crops in the world, and enhancing seed oil content is an important goal in its genetic improvement. However, the underlying genetic basis for the important trait remains poorly understood in this crop. We previously identified a major locus, OILA5 responsible for seed oil content on chromosome A5 through genome-wide association study. To better understand the genetics of the QTL, we performed fine mapping of OILA5 with a double haploid population and a BC3F2 segregation population consisting of 6227 individuals. We narrowed down the QTL to an approximate 43 kb region with twelve annotated genes, flanked by markers ZDM389 and ZDM337. To unveil the potential candidate gene responsible for OILA5, we integrated fine mapping data with transcriptome profiling using high and low oil content near-isogenic lines. Among the candidate genes, BnaA05G0439400ZS was identified with high expression levels in both seed and silique tissues. This gene exhibited homology with AT3G09840 in Arabidopsis that was annotated as cell division cycle 48. We designed a site-specific marker based on resequencing data and confirmed its effectiveness in both natural and segregating populations. Our comprehensive results provide valuable genetic information not only enhancing our understanding of the genetic control of seed oil content but also novel germplasm for advancing high seed oil content breeding in B. napus and other oil crops.


Assuntos
Brassica napus , Humanos , Brassica napus/genética , Brassica napus/metabolismo , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Sementes/química , Óleos de Plantas/análise
6.
Hematology ; 28(1): 2284047, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010876

RESUMO

OBJECTIVES: The role of subcutaneous (SC) rituximab in the efficacy and safety to non-Hodgkin lymphoma (NHL) is not clear enough. The purpose of this study was to conduct a systematic review and meta-analysis, to assess the efficacy and safety of subcutaneous rituximab to NHL. METHOD: A full-scale search was carried out based on the set search terms in PubMed, Web of Science, Embase and Cochrane CENTRAL until 12 October 2022 to identify relevant studies of subcutaneous rituximab for NHL. The efficacy and safety outcomes included complete response (CR) plus unconfirmed complete response (CRu), adverse events (AEs), grade ≥3 AEs, serious adverse events (SAEs), administration-related reactions (ARRs), adverse reaction rates. RESULTS: From a total of 758 studies, 9 trials were eligible. The CR/CRu of patients with NHL receiving SC rituximab was 57%, 55% for Diffuse large B-cell lymphoma (DLBCL) and 54% for Follicular lymphoma (FL). The meta-analysis performed on safety demonstrated that AEs of NHL patients with SC rituximab was 85%, grade ≥3 AEs was 38%, SAE was 27% and ARR was 33%. The result also showed that SC rituximab had a high risk of neutropenia and nausea. CONCLUSION: For NHL patients, there is no significant difference in the efficacy between subcutaneous rituximab and conventional therapy, while subcutaneous injection can shorten exposure time in the hospital and reduce the risk of infection.


Assuntos
Linfoma Folicular , Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Humanos , Rituximab/efeitos adversos , Linfoma não Hodgkin/tratamento farmacológico , Linfoma não Hodgkin/etiologia , Resultado do Tratamento , Linfoma Folicular/induzido quimicamente , Linfoma Folicular/tratamento farmacológico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
7.
Front Plant Sci ; 14: 1247781, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790787

RESUMO

Background: Tocotrienols and tocopherols, which are synthesized in plastids of plant cells with similar functionalities, comprise vitamin E to serve as a potent lipid-soluble antioxidant in plants. The synthesis of tocopherols involves the condensation of homogentisic acid (HGA) and phytyl diphosphate (PDP) under the catalysis of homogentisate phytyltransferase (HPT). Tocotrienol synthesis is initiated by the condensation of HGA and geranylgeranyl diphosphate (GGDP) mediated by homogentisate geranylgeranyl transferase (HGGT). As one of the most important oil crops, canola seed is regarded as an ideal plant to efficiently improve the production of vitamin E tocochromanols through genetic engineering approaches. However, only a modest increase in tocopherol content has been achieved in canola seed to date. Methods: In this study, we transformed barley HGGT (HvHGGT) into canola to improve total tocochromanol content in canola seeds. Results and discussion: The results showed that the total tocochromanol content in the transgenic canola seeds could be maximally increased by fourfold relative to that in wild-type canola seeds. Notably, no negative impact on important agronomic traits was observed in transgenic canola plants, indicating great application potential of the HvHGGT gene in enhancing tocochromanol content in canola in the future. Moreover, the oil extracted from the transgenic canola seeds exhibited significantly enhanced oxidative stability under high temperature in addition to the increase in total tocochromanol content, demonstrating multiple desirable properties of HvHGGT.

8.
Theor Appl Genet ; 136(9): 187, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572171

RESUMO

KEY MESSAGE: Modifications of multiple copies of the BnaSAD2 gene family with genomic editing technology result in higher stearic acid content in the seed of polyploidy rapeseed. Solid fats from vegetable oils are widely used in food processing industry. Accumulating data showed that stearic acid is more favorite as the major composite among the saturate fatty acids in solid fats in considerations of its effects on human health. Rapeseed is the third largest oil crop worldwide, and has potential to be manipulated to produce higher saturated fatty acids as raw materials of solid fats. Toward that end, we identified four SAD2 gene family members in B. napus genome and established spatiotemporal expression pattern of the BnaSAD2 members. Genomic editing technology was applied to mutate all the copies of BnaSAD2 in this allopolyploid species and mutants at multiple alleles were generated and characterized to understand the effect of each BnaSAD2 member on blocking desaturation of stearic acid. Mutations occurred at BnaSAD2.A3 resulted in more dramatic changes of fatty acid profile than ones on BnaSAD2.C3, BnaSAD2.A5 and BnaSAD2.C4. The content of stearic acid in mutant seeds with single locus increased dramatically with a range of 3.1-8.2%. Furthermore, combination of different mutated alleles of BnaSAD2 resulted in more dramatic changes in fatty acid profiles and the double mutant at BnaSAD2.A3 and BnaSAD2.C3 showed the most dramatic phenotypic changes compared with its single mutants and other double mutants, leading to 11.1% of stearic acid in the seeds. Our results demonstrated that the members of BnaSAD2 have differentiated in their efficacy as a Δ9-Stearoyl-ACP-Desaturase and provided valuable rapeseed germplasm for breeding high stearic rapeseed oil.


Assuntos
Brassica napus , Brassica rapa , Humanos , Brassica napus/genética , Brassica napus/metabolismo , Edição de Genes , Melhoramento Vegetal , Ácidos Graxos/metabolismo , Ácidos Esteáricos/metabolismo , Óleos de Plantas , Brassica rapa/genética , Sementes/genética , Sementes/metabolismo
9.
Front Plant Sci ; 14: 1042430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866373

RESUMO

The Arabidopsis homeodomain transcription factor SHOOT MERISTEMLESS (STM) is crucial for shoot apical meristem (SAM) function, which cooperates with CLAVATA3 (CLV3)/WUSCHEL (WUS) feedback regulation loops to maintain the homeostasis of stem cells in SAM. STM also interacts with the boundary genes to regulate the tissue boundary formation. However, there are still few studies on the function of STM in Brassica napus, an important oil crop. There are two homologs of STM in B. napus (BnaA09g13310D and BnaC09g13580D). In the present study, CRISPR/Cas9 technology was employed to create the stable site-directed single and double mutants of the BnaSTM genes in B. napus. The absence of SAM could be observed only in the BnaSTM double mutants at the mature embryo of seed, indicating that the redundant roles of BnaA09.STM and BnaC09.STM are vital for regulating SAM development. However, different from Arabidopsis, the SAM gradually recovered on the third day after seed germination in Bnastm double mutants, resulting in delayed true leaves development but normal late vegetative and reproductive growth in B. napus. The Bnastm double mutant displayed a fused cotyledon petiole phenotype at the seedling stage, which was similar but not identical to the Atstm in Arabidopsis. Further, transcriptome analysis showed that targeted mutation of BnaSTM caused significant changes for genes involved in the SAM boundary formation (CUC2, CUC3, LBDs). In addition, Bnastm also caused significant changes of a sets of genes related to organogenesis. Our findings reveal that the BnaSTM plays an important yet distinct role during SAM maintenance as compared to Arabidopsis.

10.
Mol Plant ; 16(4): 775-789, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36919242

RESUMO

In the post-genome-wide association study era, multi-omics techniques have shown great power and potential for candidate gene mining and functional genomics research. However, due to the lack of effective data integration and multi-omics analysis platforms, such techniques have not still been applied widely in rapeseed, an important oil crop worldwide. Here, we report a rapeseed multi-omics database (BnIR; http://yanglab.hzau.edu.cn/BnIR), which provides datasets of six omics including genomics, transcriptomics, variomics, epigenetics, phenomics, and metabolomics, as well as numerous "variation-gene expression-phenotype" associations by using multiple statistical methods. In addition, a series of multi-omics search and analysis tools are integrated to facilitate the browsing and application of these datasets. BnIR is the most comprehensive multi-omics database for rapeseed so far, and two case studies demonstrated its power to mine candidate genes associated with specific traits and analyze their potential regulatory mechanisms.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Multiômica , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Genômica , Brassica rapa/genética
11.
J Int Med Res ; 51(1): 3000605221149870, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36650914

RESUMO

OBJECTIVE: To conduct a meta-analysis assessing the efficacy and safety of cyclosporine-based combinations for primary immune thrombocytopenia (ITP). METHODS: Randomized controlled clinical trials were collected by systematically searching databases (PubMed®, MEDLINE®, EMBASE, The Cochrane Library, China National Knowledge Infrastructure) from inception to June 2022. All studies included patients with ITP who received cyclosporine-based regimens. We performed comprehensive analyses of the overall response rate (ORR), complete response (CR) rate, partial response (PR) rate, relapse rate, platelet count, and adverse drug reaction (ADR) rate. RESULTS: Seven studies (n = 418) were ultimately included. According to a fixed-effects model, cyclosporine-based combinations improved the ORR and CR rate and reduced the relapse rate. The ADR rate was not increased in the cyclosporine-based combination group. Cyclosporine-based regimens effectively increased the platelet count. Subgroup analysis illustrated that cyclosporine-based combinations were linked to higher ORRs in both children (odds ratio [OR] = 5.74, 95% confidence interval [CI] = 1.79-18.41) and adults (OR = 5.46, 95% CI = 2.48-12.02) and a higher CR rate in adults (OR = 2.97, 95% CI = 1.56-5.63). CONCLUSION: Cyclosporine exhibited efficacy in the treatment of ITP without increasing the risk of ADRs.


Assuntos
Púrpura Trombocitopênica Idiopática , Criança , Adulto , Humanos , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Ciclosporina/efeitos adversos , Contagem de Plaquetas , Protocolos Clínicos , Indução de Remissão
13.
PeerJ ; 10: e14016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093337

RESUMO

Background: Clostridioides difficile infection (CDI) caused by toxigenic strains leads to antibiotic-related diarrhea, colitis, or even fatal pseudomembranous enteritis. Previously, we conducted a cross-sectional study on prevalence of CDI in southwest China. However, the antibiotics resistance and characteristics of genomes of these isolates are still unknown. Methods: Antibiotic susceptibility testing with E-test strips and whole genome sequence analysis were used to characterize the features of these C. difficile isolates. Results: Forty-nine strains of C. difficile were used in this study. Five isolates were non-toxigenic and the rest carried toxigenic genes. We have previously reported that ST35/RT046, ST3/RT001 and ST3/RT009 were the mostly distributed genotypes of strains in the children group. In this study, all the C. difficile isolates were sensitive to metronidazole, meropenem, amoxicillin/clavulanic acid and vancomycin. Most of the strains were resistant to erythromycin, gentamicin and clindamycin. The annotated resistant genes, such as macB, vanRA, vanRG, vanRM, arlR, and efrB were mostly identified related to macrolide, glycopeptide, and fluoroquinolone resistance. Interestingly, 77.55% of the strains were considered as multi-drug resistant (MDR). Phylogenetic analysis based on core genome of bacteria revealed all the strains were divided into clade 1 and clade 4. The characteristics of genome diversity for clade 1 could be found. None of the isolates showed 18-bp deletion of tcdC as RT027 strain as described before, and polymorphism of tcdB showed a high degree of conservation than tcdA gene. Conclusions: Most of the C. difficile isolates in this study were resistant to macrolide and aminoglycoside antibiotics. Moreover, the MDR strains were commonly found. All the isolates belonged to clade 1 and clade 4 according to phylogenetic analysis of bacterial genome, and highly genomic diversity of clade 1 was identified for these strains.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Criança , Humanos , Clostridioides difficile/genética , Clostridioides , Toxinas Bacterianas/genética , Estudos Transversais , Filogenia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Infecções por Clostridium/epidemiologia , China/epidemiologia , Macrolídeos , Genômica
14.
Front Plant Sci ; 13: 942054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909728

RESUMO

As a vegetable oil, consisting principally of triacylglycerols, is the major storage form of photosynthetically-fixed carbon in oilseeds which are of significant agricultural and industrial value. Photosynthesis in chlorophyll-containing green seeds, along with photosynthesis in leaves and other green organs, generates ATP and reductant (NADPH and NADH) needed for seed fatty acid production. However, contribution of seed photosynthesis to fatty acid accumulation in seeds have not been well-defined. Here, we report the contribution of seed-photosynthesis to fatty acid production by probing segregating green (photosynthetically-competent) and non-green or yellow (photosynthetically-non-competent) seeds in siliques of an Arabidopsis chlorophyll synthase mutant. Using this mutant, we found that yellow seeds lacking photosynthetic capacity reached 80% of amounts of oil in green seeds at maturity. Combining this with studies using shaded siliques, we determined that seed-photosynthesis accounts for 20% and silique and leaf/stem photosynthesis each account for ~40% of the ATP and reductant for seed oil production. Transmission electron microscopy (TEM) and pyridine nucleotides and ATP analyses revealed that seed photosynthesis provides ATP and reductant for oil production mostly during early development, as evidenced by delayed oil accumulation in non-green seeds. Transcriptomic analyses suggests that the oxidative pentose phosphate pathway could be the source of carbon, energy and reductants required for fatty acid synthesis beyond the early stages of seed development.

15.
Ann Hematol ; 101(10): 2219-2229, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35976414

RESUMO

Thrombocytopenia is a common and unsolved problem in myelodysplastic syndrome (MDS) patients; we aimed to summarize the evidence of TPO-RA treatment for heath-related quality of life (HRQoL) and platelet transfusion burden of MDS patients. We searched Pubmed, Web of Science, EMBASE, and CENTRAL for randomized clinical trials (RCTs) comparing TPO-RA to placebo in MDS published until July 31, 2021. A random-effect model was used. Eight RCTs with 908 patients were identified. Only three RCTs involving eltrombopag reported HRQoL, and all three studies treated HRQoL as a secondary outcome. In these three RCTs, the HRQoL instruments used in each study were different. However, this outcome cannot be meta-analyzed because some studies did not provide complete data. Subsequent clinical trials should pay more attention to this. Compared to placebo, TPO-RA did not affect platelet transfusion incidence 0.83 (95% CI 0.60-1.15). There was no evidence for subgroup differences in the analyses of different types of TPO-RA, different additional agent, and different types of MDS risk groups. However, platelet transfusion units (RR = 0.68, 95% CI 0.53 to 0.84) were significantly decreased. The RR of patients who did not require platelet transfusion for 56 or more consecutive days was not different between groups (RR = 0.98, 95% CI 0.41 to 2.34). TPO-RA may decrease platelet transfusion units in MDS patients with thrombocytopenia. But the significance of this finding should be interpreted with caution, because too few studies were meta-analyzed.


Assuntos
Fármacos Hematológicos , Síndromes Mielodisplásicas , Trombocitopenia , Fármacos Hematológicos/uso terapêutico , Humanos , Síndromes Mielodisplásicas/tratamento farmacológico , Transfusão de Plaquetas/efeitos adversos , Qualidade de Vida , Receptores de Trombopoetina/agonistas , Proteínas Recombinantes de Fusão/uso terapêutico , Trombocitopenia/complicações , Trombocitopenia/epidemiologia , Trombocitopenia/terapia , Trombopoetina/uso terapêutico
16.
Gut Microbes ; 14(1): 2089007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734810

RESUMO

Some serovars of Salmonella are not or rare found to cause salmonellosis in human. In our clinic-based surveillance, three rare Salmonella 4,5,12:a:- strains were recovered from three patients with diarrhea. To explore their genetic and epidemiological characteristics and pathogenesis, we conducted whole-genome sequencing, in vitro invasion assays in mammalian cells, and in vivo virulence assays in an animal model. The three isolates had indistinguishable molecular patterns and similar genome sequences, and clustered together with an isolate from edible fish traded among countries. The isolates had biochemical reactions identical with those of Salmonella subspecies enterica but belonged to subspecies salamae according to genome phylogeny, revealing a new serovar, S. enterica subsp. II serovar 4,5,12:a:-. The strains contained multiple virulence genes, elicited temporary bacteremia and enteritidis and caused cell damage in the mouse liver and cecum. This study provides evidence that this new Salmonella salamae serovar can infect humans and cause clusters of cases, and whole-genome sequencing detection and surveillance of Salmonella can help to accurately define Salmonella classification and clonality, improve diagnosis, facilitate outbreak detection and aid in the source tracing of salmonellosis epidemics.


Assuntos
Gastroenterite , Microbioma Gastrointestinal , Intoxicação Alimentar por Salmonella , Salmonelose Animal , Infecções por Salmonella , Salmonella enterica , Animais , Humanos , Mamíferos , Camundongos , Filogenia , Intoxicação Alimentar por Salmonella/epidemiologia , Salmonella enterica/genética , Sorogrupo
17.
Mol Ther Nucleic Acids ; 28: 477-487, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35505964

RESUMO

Immune thrombocytopenia (ITP) is an autoimmune disease with the typical symptom of a low platelet count in blood. ITP demonstrated age and sex biases in both occurrences and prognosis, and adult ITP was mainly induced by the living environments. The current diagnosis guideline lacks the integration of molecular heterogenicity. This study recruited the largest cohort of platelet transcriptome samples. A comprehensive procedure of feature selection, feature engineering, and stacking classification was carried out to detect the ITP biomarkers using RNA sequencing (RNA-seq) transcriptomes. The 40 detected biomarkers were loaded to train the final ITP detection model, with an overall accuracy 0.974. The biomarkers suggested that ITP onset may be associated with various transcribed components, including protein-coding genes, long intergenic non-coding RNA (lincRNA) genes, and pseudogenes with apparent transcriptions. The delivered ITP detection model may also be utilized as a complementary ITP diagnosis tool. The code and the example dataset is freely available on http://www.healthinformaticslab.org/supp/resources.php.

18.
Plant Biotechnol J ; 20(8): 1502-1517, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35445530

RESUMO

Clubroot is one of the most important diseases for many important cruciferous vegetables and oilseed crops worldwide. Different clubroot resistance (CR) loci have been identified from only limited species in Brassica, making it difficult to compare and utilize these loci. European fodder turnip ECD04 is considered one of the most valuable resources for CR breeding. To explore the genetic and evolutionary basis of CR in ECD04, we sequenced the genome of ECD04 using de novo assembly and identified 978 candidate R genes. Subsequently, the 28 published CR loci were physically mapped to 15 loci in the ECD04 genome, including 62 candidate CR genes. Among them, two CR genes, CRA3.7.1 and CRA8.2.4, were functionally validated. Phylogenetic analysis revealed that CRA3.7.1 and CRA8.2.4 originated from a common ancestor before the whole-genome triplication (WGT) event. In clubroot susceptible Brassica species, CR-gene homologues were affected by transposable element (TE) insertion, resulting in the loss of CR function. It can be concluded that the current functional CR genes in Brassica rapa and non-functional CR genes in other Brassica species were derived from a common ancestral gene before WGT. Finally, a hypothesis for CR gene evolution is proposed for further discussion.


Assuntos
Brassica napus , Brassica , Ração Animal , Brassica/genética , Brassica napus/genética , Mapeamento Cromossômico , Genes vpr , Filogenia , Melhoramento Vegetal , Doenças das Plantas/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-35251215

RESUMO

The traditional medicine Dingqing Tablet produces effective efficacy in treating acute myeloid leukemia, but its specific mechanism remains to be investigated. Dingqing Tablet consists of Codonopsis, Indigo Naturalis, Cortex Moutan, Radix Notoginseng, Citrus Reticulata, and Eolite. The active components of Dingqing Tablets were screened by the TCMSP database. Meanwhile, the SwissTargetPrediction database was utilized to predict the corresponding targets. Relevant disease targets of acute myeloid leukemia were obtained from GeneCards. The obtained targets of Dingqing Tablets and genes of acute myeloid leukemia were used, and the overlapped genes were presented in the Venn diagram. A drug-component-target network was constructed via Cytoscape 3.6.0 software. Molecular docking methodology was also used with AutoDock Vina 1.1.2. Furthermore, the effects of kaempferol on the proliferation and apoptosis of HL-60 cells were identified using 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT), 5-Ethynyl-2'-deoxyuridine (EDU), flow cytometry, and TdT-mediated dUTP nick-end labeling (TUNEL) assays. The combination of kaempferol and AKT1 was verified using an immunoprecipitation (IP) experiment and the effects of Kaempferol on HL-60 cell apoptosis by western blot (WB) and qPCR. The key component kaempferol and the core target gene AKT1 were sorted out using a drug-component target network diagram. Molecular docking results revealed that the binding energy between kaempferol and AKT1 was lower than -5 kcal/mol. MTT and EDU assays indicated that kaempferol markedly inhibited the proliferation of HL-60 cells. Flow cytometry and TUNEL assays suggested that kaempferol substantially promoted HL-60 cell apoptosis. IP assay results testified that kaempferol could bind to AKT1, thereby reducing the level of P-AKT and promoting HL-60 cell apoptosis. The monomer kaempferol of Dingqing Tablet could promote apoptosis of HL-60 cells, and the mechanism might correlate with the combination of kaempferol and AKT1, reducing the level of P-AKT and promoting the expression of the apoptotic signaling pathway.

20.
Front Plant Sci ; 13: 801456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222464

RESUMO

The diversity of petal and leaf color can improve the ornamental value of rapeseed and promote the development of agriculture and tourism. The two copies of carotenoid isomerase gene (BnaCRTISO) in Brassica napus (BnaA09.CRTISO and BnaC08.CRTISO) was edited using the CRISPR/Cas9 system in the present study. The mutation phenotype of creamy white petals and yellowish leaves could be recovered only in targeted mutants of both BnaCRTISO functional copies, indicating that the redundant roles of BnaA09.CRTISO and BnaC08.CRTISO are vital for the regulation of petal and leaf color. The carotenoid content in the petals and leaves of the BnaCRTISO double mutant was significantly reduced. The chalcone content, a vital substance that makes up the yellow color, also decreased significantly in petals. Whereas, the contents of some carotenes (lycopene, α-carotene, γ-carotene) were increased significantly in petals. Further, transcriptome analysis showed that the targeted mutation of BnaCRTISO resulted in the significant down-regulation of important genes BnaPSY and BnaC4H in the carotenoid and flavonoid synthesis pathways, respectively; however, the expression of other genes related to carotenes and xanthophylls synthesis, such as BnaPDS3, BnaZEP, BnaBCH1 and BCH2, was up-regulated. This indicates that the molecular mechanism regulating petal color variation in B. napus is more complicated than those reported in Arabidopsis and other Brassica species. These results provide insight into the molecular mechanisms underlying flower color variation in rapeseed and provides valuable resources for rapeseed breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA