Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 8636, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39366974

RESUMO

Molecular ferroelectrics have made breakthrough progress in intrinsic piezoelectric response that can be on par with advanced inorganic piezoelectric ceramics. However, their successful applications in high-density energy harvesting and self-powered flexible devices have been great challenge, owing to the low elastic moduli, intrinsically brittle, and fracture proneness of such material systems under mechanical loading. Here, we have developed a flexible porous composite piezoelectric material by using soft thermoplastic polyurethane (TPU) and molecular ferroelectric materials. Benefiting from the porous structure of TPU, the flexible piezoelectric composites enable effectively large doping ratio (50%) of [Me3NCH2Cl]CdCl3 (TMCM-CdCl3) and highly efficient stress absorption, coupled with the excellent piezoelectric properties of TMCM-CdCl3, to realize a superior power density (636.9 µW cm-2 or 1273.9 µW cm-3). This output is 2000 times higher than that of flexible piezoelectric materials represented by poly(vinylidene fluoride) (PVDF). We believe that the outstanding performance of the porous composite piezoelectric material would pave a feasible way for real industrial applications of molecular ferroelectrics.

2.
Front Oncol ; 14: 1371599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035744

RESUMO

With the improvement of national health awareness and the popularization of a series of screening methods, the number of patients with early colorectal cancer is gradually increasing, and accurate prediction of lymph node metastasis of T1 colorectal cancer is the key to determining the optimal therapeutic solutions. Whether patients with T1 colorectal cancer undergoing endoscopic resection require additional surgery and regional lymph node dissection is inconclusive in current guidelines. However, we can be sure that in early colorectal cancer without lymph node metastasis, endoscopic resection alone does not affect the prognosis, and it greatly improves the quality of life and reduces the incidence of surgical complications while preserving organ integrity. Therefore, it is vital to discriminate patients without lymph node metastasis in T1 colorectal cancer, and this requires accurate predictors. This paper briefly explains the significance and shortcomings of traditional pathological factors, then extends and states the new pathological factors, clinical test factors, molecular biomarkers, and the risk assessment models of lymph node metastasis based on artificial intelligence.

4.
Med Chem ; 20(4): 422-433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351695

RESUMO

OBJECTIVE: This study aimed to overcome the growing antibiotic resistance. Moreover, the new series of emodin alkyl azoles were synthesized. METHOD: The novel emodin alkyl azoles were synthesized using commercial emodin and azoles by alkylation. The NMR and HRMS spectra were employed to confirm the structures of novel prepared compounds. The in vitro antibacterial and antifungal activities of the prepared emodin compounds were studied by the 96-well plate method. The binding behavior between emodin 4-nitro imidazole compound 3c and S. aureus DNA was researched using an ultraviolet-visible spectrophotometer. Furthermore, fluorescence spectrometry was used to explore the interaction with human serum albumin (HSA). RESULTS: The in vitro antimicrobial results displayed that compound 3c gave relatively strong activities with MIC values of 4-16 µg/mL. Notably, this compound exhibited 2-fold more potent activity against S. aureus (MIC = 4 µg/mL) and E. coli (MIC = 8 µg/mL) strains than clinical drug Chloromycin (MIC = 8 and 16 µg/mL). The UV-vis absorption spectroscopy showed that 4-nitro imidazole emodin 3c could form the 3c-DNA complex by intercalating into S. aureus DNA, inhibiting antimicrobial activities. The simulation results displayed that the emodin 3c and DNA complex were formed by hydrogen bonds. The spectral experiment demonstrated that compound 3c could be transported by human serum albumin (HSA) via hydrogen bonds. The molecular simulation found that the hydroxyl group and the nitroimidazole ring of the emodin compound showed an important role in transportation behavior. CONCLUSION: This work may supply useful directions for the exploration of novel antimicrobial agents.


Assuntos
Azóis , Emodina , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Albumina Sérica Humana , Staphylococcus aureus , Emodina/farmacologia , Emodina/química , Emodina/síntese química , Emodina/análogos & derivados , Humanos , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Azóis/química , Azóis/farmacologia , Azóis/síntese química , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , DNA/metabolismo , DNA/química , Relação Estrutura-Atividade , Estrutura Molecular , DNA Bacteriano/efeitos dos fármacos , DNA Bacteriano/metabolismo
6.
Adv Mater ; 35(31): e2210106, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37286198

RESUMO

Metal halide perovskites are ideal candidates for indoor photovoltaics (IPVs) because of their easy-to-adjust bandgaps, which can be designed to cover the spectrum of any artificial light source. However, the serious non-radiative carrier recombination under low light illumination restrains the application of perovskite-based IPVs (PIPVs). Herein, polar molecules of amino naphthalene sulfonates are employed to functionalize the TiO2 substrate, anchoring the CsPbI3 perovskite crystal grains with a strong ion-dipole interaction between the molecule-level polar interlayer and the ionic perovskite film. The resulting high-quality CsPbI3 films with the merit of defect-immunity and large shunt resistance under low light conditions enable the corresponding PIPVs with an indoor power conversion efficiency of up to 41.2% (Pin : 334.11 µW cm-2 , Pout : 137.66 µW cm-2 ) under illumination from a commonly used indoor light-emitting diode light source (2956 K, 1062 lux). Furthermore, the device also achieves efficiencies of 29.45% (Pout : 9.80 µW cm-2 ) and 32.54% (Pout : 54.34 µW cm-2 ) at 106 (Pin : 33.84 µW cm-2 ) and 522 lux (Pin : 168.21 µW cm-2 ), respectively.

7.
J Nanobiotechnology ; 21(1): 194, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322478

RESUMO

BACKGROUND: Polarization of microglia, the resident retinal immune cells, plays important roles in mediating both injury and repair responses post-retinal ischemia-reperfusion (I/R) injury, which is one of the main pathological mechanisms behind ganglion cell apoptosis. Aging could perturb microglial balances, resulting in lowered post-I/R retinal repair. Young bone marrow (BM) stem cell antigen 1-positive (Sca-1+) cells have been demonstrated to have higher reparative capabilities post-I/R retinal injury when transplanted into old mice, where they were able to home and differentiate into retinal microglia. METHODS: Exosomes were enriched from young Sca-1+ or Sca-1- cells, and injected into the vitreous humor of old mice post-retinal I/R. Bioinformatics analyses, including miRNA sequencing, was used to analyze exosome contents, which was confirmed by RT-qPCR. Western blot was then performed to examine expression levels of inflammatory factors and underlying signaling pathway proteins, while immunofluorescence staining was used to examine the extent of pro-inflammatory M1 microglial polarization. Fluoro-Gold labelling was then utilized to identify viable ganglion cells, while H&E staining was used to examine retinal morphology post-I/R and exosome treatment. RESULTS: Sca-1+ exosome-injected mice yielded better visual functional preservation and lowered inflammatory factors, compared to Sca-1-, at days 1, 3, and 7 days post-I/R. miRNA sequencing found that Sca-1+ exosomes had higher miR-150-5p levels, compared to Sca-1- exosomes, which was confirmed by RT-qPCR. Mechanistic analysis found that miR-150-5p from Sca-1+ exosomes repressed the mitogen-activated protein kinase kinase kinase 3 (MEKK3)/JNK/c-Jun axis, leading to IL-6 and TNF-α downregulation, and subsequently reduced microglial polarization, all of which contributes to reduced ganglion cell apoptosis and preservation of proper retinal morphology. CONCLUSION: This study elucidates a potential new therapeutic approach for neuroprotection against I/R injury, via delivering miR-150-5p-enriched Sca-1+ exosomes, which targets the miR-150-5p/MEKK3/JNK/c-Jun axis, thereby serving as a cell-free remedy for treating retinal I/R injury and preserving visual functioning.


Assuntos
Exossomos , MicroRNAs , Traumatismo por Reperfusão , Camundongos , Animais , Microglia/metabolismo , MicroRNAs/metabolismo , Exossomos/metabolismo , Traumatismo por Reperfusão/metabolismo , Células da Medula Óssea/metabolismo
8.
Angew Chem Int Ed Engl ; 62(21): e202219255, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36919897

RESUMO

Achieving efficient blue electroluminescence (EL) remains the fundamental challenge that impedes perovskite light-emitting diodes (PeLEDs) towards commercial applications. The bottleneck accounting for the inefficient blue PeLEDs is broadly attributed to the poor-emissive blue perovskite emitters based on either mixed halide engineering or reduced-dimensional strategy. Herein, we report the high-performing sky-blue PeLEDs (490 nm) with the maximum EQE exceeding 15 % by incorporating a molecular modifier, namely 4,4'-Difluorophenone, for significantly suppressing the non-radiative recombination and tuning of the low-dimensional phase distribution of quasi-2D blue perovskites, which represents a remarkable paradigm for developing the new generation of blue lighting sources.

9.
Ying Yong Sheng Tai Xue Bao ; 33(11): 2915-2922, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36384825

RESUMO

Developing outer crown profile prediction models of typical urban greening tree species will lay a foundation for the spatial allocation optimization of urban greening. In this study, Pinus tabuliformis, a typical greening tree species in Shenyang, was selected as the research object. Based on the Crown Window device, a total of 60 sample trees were selected to measure the crown shape, with power equation, segmented polynomial equation, and modified Kozak equation as the basic models. By introducing crown structure variables (the maximum crown radius) and neighbour competition variables (mean tree height, mean diameter at breast height, mean crown width, number for the neighbour trees, and mean crown contact height between sample trees and neighbour trees) through reparameterization, we constructed an outer crown shape model of P. tabuliformis that incorporates neighbour tree competition and maximum crown radius. The results showed that modified Kozak equation had the largest Ra2 and the smallest RMSE, as well as good stability. After introducing the maximum crown radius and the mean DBH of neighbour trees into the basic model through reparameterization, the Ra2 of the model increased by 0.0693 and the MSER was 14.4%. The maximum crown radius had a great influence on the crown shape, while the crown radius increased with the increases of the maximum crown radius. The influence of mean DBH of neighbour trees on crown shape was weaker than that of maximum crown radius. The upper part of crown increased and the lower part of crown decreased with increasing neighbour tree competition. In this study, the marginal regression outer crown profile model of P. tabuliformis coupled with neighbour tree competition and the maximum crown radius showed good goodness of fit and could reasonably simulate and predict the crown shape of planted P. tabuliformis.


Assuntos
Pinus , Árvores
10.
J Am Chem Soc ; 144(40): 18470-18478, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36164747

RESUMO

Despite recent encouraging developments, achieving efficient blue perovskite light-emitting diodes (PeLEDs) have been widely considered a critical challenge. The efficiency breakthrough only occurred in the sky-blue region, and the device performance of pure-blue and deep-blue PeLEDs lags far behind those of their sky-blue counterparts. To avoid the negative effects associated with dimensionality reduction and excess chloride typically needed to achieve deep-blue emission, here we demonstrate guanidine (GA+)-induced deep-blue (∼457 nm) perovskite emitters enabling spectrally stable PeLEDs with a record external quantum efficiency (EQE) over 3.41% through a combination of quasi-2D perovskites and halide engineering. Owing to the presence of GA+, even a small inclusion of chloride ions is sufficient for generating deep-blue electroluminescence (EL), in clear contrast to the previously reported deep-blue PeLEDs with significant chloride inclusion that negatively affects spectral stability. Based on the carrier dynamics analysis and theoretical calculation, GA+ is found to stabilize the low-dimensional species during annealing, retarding the cascade energy transfer and facilitating the deep-blue EL. Our findings open a potential third route to achieve deep-blue PeLEDs beyond the conventional methods of dimensionality reduction and excessive chloride incorporation.

11.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408938

RESUMO

Oxidative dissolution of stibnite (Sb2S3), one of the most prevalent geochemical processes for antimony (Sb) release, can be promoted by Sb-oxidizing microbes, which were studied under alkaline and neutral conditions but rarely under acidic conditions. This work is dedicated to unraveling the enhancement mechanism of stibnite dissolution by typical acidophile Acidithiobacillus ferrooxidans under extremely acidic conditions. The results of solution behavior showed that the dissolution of Sb2S3 was significantly enhanced by A. ferrooxidans, with lower pH and higher redox potential values and higher [Sb(III)] and [Sb(V)] than the sterile control. The surface morphology results showed that the cells adsorbed onto the mineral surface and formed biofilms. Much more filamentous secondary minerals were formed for the case with A. ferrooxidans. Further mineral phase compositions and Sb/S speciation transformation analyses showed that more secondary products Sb2O3/SbO2-, Sb2O5/SbO3-, SO42-, as well as intermediates, such as S0, S2O32- were formed for the biotic case, indicating that the dissolution of Sb2S3 and the Sb/S speciation transformation was promoted by A. ferrooxidans. These results were further clarified by the comparative transcriptome analysis. This work demonstrated that through the interaction with Sb2S3, A. ferrooxidans promotes S/Sb oxidation, so as to enhance S/Sb transformation and thus the dissolution of Sb2S3.


Assuntos
Acidithiobacillus , Antimônio/química , Minerais/química , Oxirredução , Solubilidade
12.
Chem Sci ; 12(36): 11936-11954, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34667561

RESUMO

With the rapid development of the Internet of Things (IoTs), photovoltaics (PVs) has a vast market supply gap of billion dollars. Moreover, it also puts forward new requirements for the development of indoor photovoltaic devices (IPVs). In recent years, PVs represented by organic photovoltaic cells (OPVs), silicon solar cells, dye-sensitized solar cells (DSSCs), etc. considered for use in IoTs mechanisms have also been extensively investigated. However, there are few reports on the indoor applications of perovskite devices, even though it has the advantages of better performance. In fact, perovskite has the advantages of better bandgap adjustability, lower cost, and easier preparation of large-area on flexible substrates, compared with other types of IPVs. This review starts from the development status of IoTs and investigates the cost, technology, and future trends of IPVs. We believe that perovskite photovoltaics is more suitable for indoor applications and review some strategies for fabricating high-performance perovskite indoor photovoltaic devices (IPVs). Finally, we also put forward a perspective for the long-term development of perovskite IPVs.

13.
Ecotoxicol Environ Saf ; 222: 112502, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34265534

RESUMO

Arsenic often coexists with metal sulfide minerals and occurs in different speciation and different toxicity in responding to Fe/S biooxidation. The differential inhibitive effects and fates of As(III) and As(V) during biooxidations of elemental sulfur (S0), ferrous ions (Fe2+) and pyrite (FeS2) by Sulfobacillus thermosulfidooxidans were studied. The results revealed that the arsenic species hardly changed for the biooxidation of S0, but dramatically changed for the biooxidation of Fe2+ and FeS2. Different transformation degree between As(III) and As(V) occurred for biooxidation of FeS2 in the presence of arsenic, where about 72% of As(III) was transformed to As(V) for the group with As(III) added, and 16% of As(V) was transformed to As(III) for that with As(V) added. Both formation and dissolution of amorphous ferric arsenate occurred during biooxidation of FeS2 with the addition of As(III) or As(V) and for the group grown on Fe2+ with added As(V), which were controlled by the changes of Fe/As molar ratio and pH value in the solution. Jarosite was detected for the group grown on Fe2+ and could adsorb As(III) and As(V). The inhibitive effects of As(V) were higher than As(III) when the strain grew on FeS2, which was contrary to those when the strain grew on S0 and Fe2+. The above results signify that the fates and inhibitive effects of arsenic are much related to each other, and such a relationship is significantly affected by the utilization of Fe/S energy substrates by the sulfur- and ferrous-oxidizing microorganisms.


Assuntos
Arsênio , Clostridiales , Compostos Férricos , Minerais , Oxirredução , Enxofre
14.
Front Microbiol ; 12: 819804, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35222314

RESUMO

It is well known that speciation transformations of As(III) vs. As(V) in acid mine drainage (AMD) are mainly driven by microbially mediated redox reactions of Fe and S. However, these processes are rarely investigated. In this study, columns containing mine water were inoculated with two typical acidophilic Fe/S-oxidizing/reducing bacteria [the chemoautotrophic Acidithiobacillus (At.) ferrooxidans and the heterotrophic Acidiphilium (Aph.) acidophilum], and three typical energy substrates (Fe2+, S0, and glucose) and two concentrations of As(III) (2.0 and 4.5 mM) were added. The correlation between Fe/S/As speciation transformation and bacterial depth distribution at three different depths, i.e., 15, 55, and 105 cm from the top of the columns, was comparatively investigated. The results show that the cell growth at the top and in the middle of the columns was much more significantly inhibited by the additions of As(III) than at the bottom, where the cell growth was promoted even on days 24-44. At. ferrooxidans dominated over Aph. acidophilum in most samples collected from the three depths, but the elevated proportions of Aph. acidophilum were observed in the top and bottom column samples when 4.5 mM As(III) was added. Fe2+ bio-oxidation and Fe3+ reduction coupled to As(III) oxidation occurred for all three column depths. At the column top surfaces, jarosites were formed, and the addition of As(III) could lead to the formation of the amorphous FeAsO4⋅2H2O. Furthermore, the higher As(III) concentration could inhibit Fe2+ bio-oxidation and the formation of FeAsO4⋅2H2O and jarosites. S oxidation coupled to Fe3+ reduction occurred at the bottom of the columns, with the formations of FeAsO4⋅2H2O precipitate and S intermediates. The formed FeAsO4⋅2H2O and jarosites at the top and bottom of the columns could adsorb to and coprecipitate with As(III) and As(V), resulting in the transfer of As from solution to solid phases, thus further affecting As speciation transformation. The distribution difference of Fe/S energy substrates could apparently affect Fe/S/As speciation transformation and bacterial depth distribution between the top and bottom of the water columns. These findings are valuable for elucidating As fate and toxicity mediated by microbially driven Fe/S redox in AMD environments.

15.
J Econ Entomol ; 114(1): 284-297, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33151323

RESUMO

The white-backed planthopper, Sogatella furcifera (Horváth), causes substantial damage to crops by direct feeding or virus transmission, especially southern rice black-streaked dwarf virus, which poses a serious threat to rice production. Cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, has high efficacy against rice planthoppers, including imidacloprid-resistant populations. However, information about the influence of cycloxaprid on S. furcifera (Hemiptera: Delphacidae) at the molecular level is limited. Here, by de novo transcriptome sequencing and assembly, we constructed two transcriptomes of S. furcifera and profiled the changes in gene expression in response to cycloxaprid at the transcription level. We identified 157,906,456 nucleotides and 131,601 unigenes using the Illumina technology from cycloxaprid-treated and untreated S. furcifera. In total, 38,534 unigenes matched known proteins in at least one database, accounting for 29.28% of the total unigenes. The number of coding DNA sequences was 28,546 and that of amino acid sequences in the coding region was 22,299. In total, 15,868 simple sequence repeats (SSRs) were identified. The trinucleotide repeats accounted for 45.1% (7,157) of the total SSRs and (AAG/CTT)n were the most frequent motif. There were 359 differentially expressed genes that might have been induced by cycloxaprid. There were 131 upregulated and 228 downregulated genes. Twenty-two unigenes might be involved in resistance against cycloxaprid, such as cytochrome P450, glutathione S-transferase (GST), acid phosphatase (ACP), and cadherin. Our study provides vital information on cycloxaprid-induced resistance mechanisms, which will be useful to analyze the molecular mechanisms of cycloxaprid resistance and may lead to the development of novel strategies to manage S. furcifera.


Assuntos
Hemípteros , Compostos Heterocíclicos com 3 Anéis , Animais , Hemípteros/genética , Oryza , Piridinas , Transcriptoma
16.
Hortic Res ; 7(1): 196, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328454

RESUMO

Senescence leads to declines in fruit quality and shortening of shelf life. It is known that low temperatures (LTs) efficiently delay fruit senescence and that high temperatures (HTs) accelerate senescence. However, the molecular mechanism by which temperature affects senescence is unclear. Herein, through multiomics analyses of fruits subjected to postharvest HT, LT, and room temperature treatments, a total of 56 metabolic compounds and 700 mRNAs were identified to be associated with fruit senescence under HT or LT conditions. These compounds could be divided into antisenescent (I→III) and prosenescent (IV→VI) types. HT affected the expression of 202 mRNAs to enhance the biosynthesis of prosenescent compounds of types V and VI and to inhibit the accumulation of antisenescent compounds of types II and III. LT affected the expression of 530 mRNAs to promote the accumulation of antisenescent compounds of types I and II and to impede the biosynthesis of prosenescent compounds of types IV and V. Moreover, 16 microRNAs were isolated in response to HT or LT conditions and interacted with the mRNAs associated with fruit senescence under HT or LT conditions. Transient transformation of pear fruit showed that one of these microRNAs, Novel_188, can mediate fruit senescence by interacting with its target Pbr027651.1. Thus, both HT and LT conditions can affect fruit senescence by affecting microRNA-mRNA interactions, but the molecular networks are different in pear fruit.

17.
Plant Sci ; 278: 12-19, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30471725

RESUMO

Homeobox transcription factors belong to a superfamily that has been widely studied in plant growth and development, but little is known regarding their role in fruit development and ripening. Using a genome-wide expression analysis of homeobox (HB) genes and quantitative real-time PCR, a HD-ZIP II member, PpHB.G7, which presented higher levels of expression in ripening fruits than in developing fruits in all of the tested cultivars, was isolated from peach. Transient transformations showed that PpHB.G7 affects ethylene production and the expression of ethylene biosynthesis genes (PpACS1 and PpACO1). Both dual-luciferase and yeast one-hybrid assays confirmed that PpHB.G7 interacts with the promoters of PpACS1 and PpACO1. Thus, PpHB.G7 mediates ethylene biosynthesis by stimulating PpACS1 and PpACO1 activities. Furthermore, we also found that the other eight HB genes were differentially expressed in the developing fruits, with seven of these genes belonging to the HD-ZIP family. These results suggest that the HB genes in the HD-ZIP family play important roles in fruit development and ripening.


Assuntos
Etilenos/biossíntese , Proteínas de Homeodomínio/fisiologia , Proteínas de Plantas/fisiologia , Prunus persica/metabolismo , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Prunus persica/genética , Prunus persica/crescimento & desenvolvimento , Análise de Sequência de Proteína
18.
Res Microbiol ; 169(10): 590-597, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30179696

RESUMO

For the first time, synchrotron radiation (SR) -based carbon K-edge X-ray absorption near edge structure (XANES) spectroscopy in-situ characterization was conducted to evaluate the evolution of superficial (about 10 nm) organic components of extracellular polymeric substances (EPS) of thermoacidophilic archaeon Acidianus manzaensis YN-25 acclimated with different energy substrates (FeS2, CuFeS2, S0, FeSO4). The atomic force microscopy (AFM) morphology scanning showed that the strain acclimated with different energy substrates varied a lot in EPS amount. XANES results showed clear associations between the energy substrates and the changes in organic composition in terms of typical function groups (CO, CO and CN). The chalcopyrite- and pyrite-acclimated cells contained higher proportion of proteins but less proportion of polysaccharides than the S0-acclimated cells. The FeSO4-acclimated cells contained the highest proportion of proteins, while the S0-acclimated cells contained more lipids and polysaccharides. The results of linear-combination and peak fitting of the K-edge XANES for the extracellular superficial organic component C is consistent with the trend in comparison with the results of FTIR and spectrophotometric determination, but there are significant differences in the values. These differences are caused by the inconsistencies of measurement depth between XANES and the latter two characterization methods.


Assuntos
Acidianus/citologia , Acidianus/metabolismo , Compostos Ferrosos/metabolismo , Acidianus/química , Acidianus/crescimento & desenvolvimento , Biopolímeros/química , Biopolímeros/metabolismo , Compostos Ferrosos/química , Temperatura Alta , Microscopia de Força Atômica , Espectroscopia por Absorção de Raios X
19.
Physiol Plant ; 164(3): 320-336, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29603750

RESUMO

Fruit swelling determines fruit size and usually occurs in two distinct time periods in peach. However, little is known about the gene regulation of fruit swelling. In this study, measurements of longitudinal and transverse diameters in developing and ripening peach fruits unveiled two periods of fruit swelling: the first swelling ends at approximately 65 days after flower blooming (DAFB) and the second swelling starts at approximately 75 DAFB. Comparisons of diameters sizes and development periods among cultivars and accessions revealed a cooperative regulation of swelling velocity and swelling duration, which leads to final determination of fruit size. Furthermore, RNA-sequencing was conducted for fruits at the initial swelling, non-swelling interval between the two swellings (hereafter, 'the interval'), second swelling and ripening stages. A total of 110 and 128 differentially expressed genes were screened from fruits in the first and second swelling, respectively. Besides, the nine most differentially expressed genes located within the reported quantitative trait locations (QTLs) of fruit size in peach were detected in both the first and second swelling stages. Those genes have been reported to be involved in mediating cell size, which indicates the occurrence of both cell proliferation and cell expansion in each of the two major periods of fruit swelling. In addition, a potential gene regulation network is proposed herein and could be used to elucidate the molecular mechanism of peach fruit swellings mediated by multiple key genes.


Assuntos
Frutas/metabolismo , Prunus/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Prunus/genética , Locos de Características Quantitativas/genética
20.
J Econ Entomol ; 110(4): 1785-1793, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854654

RESUMO

As a newer cis-nitromethylene neonicotinoid pesticide at present, cycloxaprid has good industrialization prospects, including the management of imidacloprid-resistant populations, because this chemical have an excellent efficiency against rice planthoppers. Sogatella furcifera (Horváth) is the most economically important pest of rice worldwide and has developed resistance to many insecticides. This study focused on the expression change of these resistance genes, induced by cycloxaprid, involved in metabolic detoxification and receptor protein. Twenty-two differentially expressed genes (DEGs) that may be related with the insecticide resistance were found in the transcriptome of S. furcifera, including 2 cytochrome P450 genes, 2 glutathione S-transferase (GST) genes, 1 acid phosphatase (ACP) gene, 12 decarboxylase genes, 2 glycolipid genes, 1 cadherin gene, and 2 glycosyltransferase genes, which were up- or downregulated in response to an exposure of cycloxaprid. Furthermore, two P450 genes (CYP4 and CYP6 family, respectively), two decarboxylase genes, and one glycosyltransferase gene were validated by qRT-PCR. Expression differences of these genes verified successfully by qRT-PCR in response to different concentrations and times treated with cycloxaprid could explain the insecticide resistance mechanism under cycloxaprid stress in S. furcifera.


Assuntos
Genes de Insetos/efeitos dos fármacos , Hemípteros/genética , Compostos Heterocíclicos com 3 Anéis/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia , Piridinas/farmacologia , Animais , Feminino , Hemípteros/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA