Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
CNS Neurosci Ther ; 30(1): e14408, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37564004

RESUMO

AIMS: Adenosine 2A receptor (A2A R) is widely expressed in the brain and plays important roles in neuroinflammation, and the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a crucial component of the innate immune system while the regulation of A2A R on it in the central nervous system (CNS) has not been clarified. METHODS: The effects of microglial A2A R on NLRP3 inflammasome assembly and activation were investigated in wild-type, A2A R- or NLRP3-knockout primary microglia with pharmacological treatment. Microglial A2A R or NLRP3 conditional knockout mice were used to interrogate the effects of this regulation on neuroinflammation posttraumatic brain injury (TBI). RESULTS: We found that A2A R directly interacted with NLRP3 and facilitated NLRP3 inflammasome assembly and activation in primary microglia while having no effects on mRNA levels of inflammasome components. Inhibition of the interaction via A2A R agonist or knockout attenuated inflammasome assembly and activation in vitro. In the TBI model, microglial A2A R and NLRP3 were co-expressed at high levels in microglia next to the peri-injured cortex, and abrogating of this interaction by microglial NLRP3 or A2A R conditional knockout attenuated the neurological deficits and neuropathology post-TBI via reducing the NLRP3 inflammasome activation. CONCLUSION: Our results demonstrated that inhibition of the interaction between A2A R and NLRP3 in microglia could mitigate the NLRP3 inflammasome assembly and activation and ameliorate the neuroinflammation post-TBI. It provides new insights into the effects of A2A R on neuroinflammation regulation post-TBI and offers a potential target for the treatment of NLRP3 inflammasome-related CNS diseases.


Assuntos
Lesões Encefálicas Traumáticas , Inflamassomos , Animais , Camundongos , Adenosina/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Inflamassomos/metabolismo , Camundongos Knockout , Microglia , Doenças Neuroinflamatórias , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
2.
Chin J Traumatol ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37679245

RESUMO

Adenosine exerts its dual functions of homeostasis and neuromodulation in the brain by acting at mainly the two G-protein coupled receptors, called A1 and A2A receptors. The adenosine A2A receptor (A2AR) antagonists have clinically pursued for the last two decades, leading to final approval of the istradefylline, an A2AR antagonist, for the treatment of OFF-Parkinson's disease (PD) patients. The approval paves the way to develop novel therapeutic methods for A2AR antagonists to address two major unmet medical needs in PD and traumatic brain injury (TBI), namely neuroprotection or improving cognition. In this review, we first consider the evidence for aberrantly increased adenosine signaling in PD and TBI and the sufficiency of the increased A2AR signaling to trigger neurotoxicity and cognitive impairment. We further discuss the increasing preclinical data on the reversal of cognitive deficits in PD and TBI by A2AR antagonists through control of degenerative proteins and synaptotoxicity, and on protection against TBI and PD pathologies by A2AR antagonists through control of neuroinflammation. Moreover, we provide the supporting evidence from multiple human prospective epidemiological studies which revealed an inverse relation between the consumption of caffeine and the risk of developing PD and cognitive decline in aging population and Alzheimer's disease patients. Collectively, the convergence of clinical, epidemiological and experimental evidence supports the validity of A2AR as a new therapeutic target and facilitates the design of A2AR antagonists in clinical trial for disease-modifying and cognitive benefit in PD and TBI patients.

3.
Int Rev Neurobiol ; 170: 225-265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37741693

RESUMO

Accumulating evidence has revealed the adenosine 2A receptor is a key tuner for neuropathological and neurobehavioral changes following traumatic brain injury by experimental animal models and a few clinical trials. Here, we highlight recent data involving acute/sub-acute and chronic alterations of adenosine and adenosine 2A receptor-associated signaling in pathological conditions after trauma, with an emphasis of traumatic brain injury, including neuroinflammation, cognitive and psychiatric disorders, and other severe consequences. We expect this would lead to the development of therapeutic strategies for trauma-related disorders with novel mechanisms of action.


Assuntos
Lesões Encefálicas Traumáticas , Transtornos Mentais , Animais , Humanos , Adenosina , Modelos Animais
4.
Exp Neurol ; 364: 114378, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36907351

RESUMO

The formation of fear memory is crucial in emotional disorders such as PTSD and anxiety. Traumatic brain injury (TBI) can cause emotional disorders with dysregulated fear memory formation; however, their cross-interaction remains unclear and hurdled the treatment against TBI-related emotional disorders. While adenosine A2A receptor(A2AR) contributes to the physiological regulation of fear memory, this study aimed to evaluate the A2AR role and possible mechanisms in post-TBI fear memory formation using a craniocerebral trauma model, genetically modified A2AR mutant mice, and pharmacological A2AR agonist CGS21680 and antagonist ZM241385. Our finding showed (i) TBI enhanced mice freezing levels (fear memory) at seven days post-TBI; (ii) The A2AR agonist CGS21680 enhanced the post-TBI freezing levels; conversely, the A2AR antagonist ZM241385 reduced mice freezing level; further (iii) Genetic knockdown of neuronal A2AR in the hippocampal CA1, CA3, and DG regions reduced post-TBI freezing levels, while A2AR knockout in DG region yielded the most reduction in fear memory; finally, (iv) AAV-CaMKII-Cre virus-mediated DG deletion of A2AR on excitatory neurons led to a significant decreased freezing levels post-TBI. These findings indicate that brain trauma increases fear memory retrieval post-TBI, and A2AR on DG excitatory neurons plays a crucial role in this process. Importantly, inhibition of A2AR attenuates fear memory enhancement, which provides a new strategy to prevent fear memory formation/enhancement after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Receptor A2A de Adenosina , Camundongos , Animais , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Hipocampo/metabolismo , Medo , Neurônios/metabolismo , Camundongos Endogâmicos C57BL
5.
Gene Ther ; 30(1-2): 75-87, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132206

RESUMO

Traumatic brain injury (TBI) survivors suffer from long-term disability and neuropsychiatric sequelae due to irreparable brain tissue destruction. However, there are still few efficient therapies to promote neurorestoration in damaged brain tissue. This study aimed to investigate whether the pro-oncogenic gene ski can promote neurorestoration after TBI. We established a ski-overexpressing experimental TBI mouse model using adenovirus-mediated overexpression through immediate injection after injury. Hematoxylin-eosin staining, MRI-based 3D lesion volume reconstruction, neurobehavioral tests, and analyses of neuronal regeneration and astrogliosis were used to assess neurorestorative efficiency. The effects of ski overexpression on the proliferation of cultured immature neurons and astrocytes were evaluated using imaging flow cytometry. The Ski protein level increased in the perilesional region at 3 days post injury. ski overexpression further elevated Ski protein levels up to 14 days post injury. Lesion volume was attenuated by approximately 36-55% after ski overexpression, with better neurobehavioral recovery, more newborn immature and mature neurons, and less astrogliosis in the perilesional region. Imaging flow cytometry results showed that ski overexpression elevated the proliferation rate of immature neurons and reduced the proliferation rate of astrocytes. These results show that ski can be considered a novel neurorestoration-related gene that effectively promotes neurorestoration, facilitates neuronal regeneration, and reduces astrogliosis after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Gliose , Camundongos , Animais , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Neurônios/metabolismo , Lesões Encefálicas Traumáticas/terapia , Encéfalo/metabolismo , Regeneração
6.
Sheng Li Xue Bao ; 74(4): 505-512, 2022 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-35993201

RESUMO

The purpose of the present study was to investigate the effect of glutamate scavenger oxaloacetate (OA) combined with CGS21680, an adenosine A2A receptor (A2AR) agonist, on acute traumatic brain injury (TBI), and to elucidate the underlying mechanisms. C57BL/6J mice were subjected to moderate-level TBI by controlled cortical impact, and then were treated with OA, CGS21680, or OA combined with CGS21680 at acute stage of TBI. At 24 h post TBI, neurological severity score, brain water content, glutamate concentration in cerebrospinal fluid (CSF), mRNA and protein levels of IL-1ß and TNF-α, mRNA level and activity of glutamate oxaloacetate aminotransferase (GOT), and ATP level of brain tissue were detected. The results showed that neurological deficit, brain water content, glutamate concentration in CSF, and the inflammatory cytokine IL-1ß and TNF-α production were exacerbated in CGS21680 treated mice. Administrating OA suppressed the rise of both glutamate concentration in CSF and brain water content, and elevated the ATP level of cerebral tissue. More interestingly, neurological deficit, brain edema, glutamate concentration, IL-1ß and TNF-α levels were ameliorated significantly in mice treated with OA combined with CGS21680. The combined treatment exhibited better therapeutic effects than single OA treatment. We also observed that GOT activity was enhanced in single CGS21680 treatment group, and both the GOT mRNA level and GOT activity were up-regulated in early-stage combined treatment group. These results suggest that A2AR can improve the efficiency of GOT and potentiate the ability of OA to metabolize glutamate. This may be the mechanism that A2AR activation in combination group augmented the neuroprotective effect of OA rather than aggravated the brain damages. Taken together, the present study provides a new insight for the clinical treatment of TBI with A2AR agonists and OA.


Assuntos
Agonistas do Receptor A2 de Adenosina , Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Ácido Oxaloacético , Receptor A2A de Adenosina , Agonistas do Receptor A2 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/uso terapêutico , Trifosfato de Adenosina , Animais , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Ácido Glutâmico , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ácido Oxaloacético/farmacologia , Ácido Oxaloacético/uso terapêutico , RNA Mensageiro , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Fator de Necrose Tumoral alfa/genética , Água
7.
Behav Brain Res ; 433: 113997, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35803544

RESUMO

Effective treatment for cognitive dysfunction after traumatic brain injury (TBI) is lacking in clinical practice. Increased brain-derived neurotrophic factor (BDNF) expression in cognitive circuits can significantly alleviate cognitive dysfunction in animal models of TBI. Selective 5-hydroxytryptamine receptor 6 (5-HT6R) agonists significantly increase BDNF expression and improve cognitive function. Therefore, we evaluated the protective effect of a highly selective 5-HT6R agonist, WAY-181187, on cognitive dysfunction after TBI. We established a controlled cortical impact model of moderate TBI in rats and performed drug intervention for five consecutive days. Rats had spatial reference memory impairment in the Morris water maze one and four weeks after TBI. BDNF expression in the medial prefrontal cortex (mPFC) and hippocampus decreased two and five weeks after TBI. Additionally, five weeks after TBI, decreases in neuronal dendritic spine density and the proportion of thin, mushroom-shaped dendritic spines and an increased proportion of stubby-type dendritic spines were observed. WAY-181187 administration (3 mg/kg) for five consecutive days after TBI significantly alleviated cognitive dysfunction at one and four weeks (P < 0.001 and P < 0.01), upregulated BDNF expression in the mPFC and hippocampus at two (P < 0.01 and P < 0.05) and five (P < 0.01 and P < 0.001) weeks and increased the dendritic spine density and the proportions of thin, mushroom-shaped dendrites in the mPFC (P < 0.05, P < 0.001 and P < 0.01) and hippocampus (P < 0.05, P < 0.001 and P < 0.05) at five weeks after TBI. Our results confirm that WAY-181187 administration (3 mg/kg) in the acute phase alleviated cognitive dysfunction after TBI, possibly by upregulating BDNF expression in the mPFC and hippocampus, enhancing neuroplasticity.


Assuntos
Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Aprendizagem em Labirinto , Ratos , Serotonina/metabolismo
8.
Neurosci Lett ; 769: 136431, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34974110

RESUMO

NLRP3 inflammasome plays a crucial role in the innate immune system. Our group previously reported that the microglial adenosine 2A receptor (A2AR) regulates canonical neuroinflammation, which is affected by the glutamate concentration. However, the regulatory effect of A2AR on NLRP3 inflammasome and the effects of glutamate concentration remain unknown. Therefore, we aimed to investigate the regulatory effect of microglial A2AR on NLRP3 inflammasome assembly and activation as well as the effects of glutamate concentration on the inflammasome assembly and activation. Experiments were conducted on magnetically sorted primary microglia from P14 mice. The results showed that pharmacological A2AR activation ameliorated NLRP3 activation under no or low glutamate concentrations, but this effect was reversed by high glutamate concentrations. Moreover, the mRNA levels of NLRP3 inflammasome-related genes were not affected by A2AR activation or the glutamate concentration. We further demonstrated that A2AR activation inhibited the interaction between NLRP3 and caspase 1 under no or low glutamate concentrations while promoting their interaction under high glutamate concentrations. The oligomerization of ASC also showed a similar trend. In conclusion, our findings proved that the high glutamate concentration could reverse the inhibition of A2AR on NLRP3 inflammasome activation by modulating its assembly, which provides new insights into the regulatory effect of A2AR on neuroinflammation under different pathological conditions.


Assuntos
Ácido Glutâmico/metabolismo , Inflamassomos/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Células Cultivadas , Ácido Glutâmico/farmacologia , Camundongos , Microglia/efeitos dos fármacos , Multimerização Proteica
9.
J Neuroinflammation ; 18(1): 241, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666797

RESUMO

BACKGROUND: Cognitive impairment in the late stage of traumatic brain injury (TBI) is associated with the NOD-, LRR and pyrin domain-containing protein 3 (NLRP3) inflammasome, which plays an important role in neuroinflammation. Although classical inflammatory pathways have been well-documented in the late stage of TBI (4-8 weeks post-injury), the mechanism by which the NLRP3 inflammasome impairs cognition is still unclear. METHODS: Mice lacking the gene encoding for NLRP3 (NLRP3-knockout mice) and their wild-type littermates were used in a controlled cortical impact model of TBI. Levels of NLRP3 inflammasome and inflammatory factors such as IL-1ß and HMGB1 were detected in post-injury hippocampal tissue, as well as long-term potentiation. Behaviors were assessed by T-maze test, novel object recognition, and nesting tests. Glycyrrhizin was used to antagonize HMGB1. Calcium imaging were performed on primary neuronal cultures. RESULTS: By using the NLRP3-knockout TBI model, we found that the continuous activation of the NLRP3 inflammasome and high mobility group box 1 (HMGB1) release were closely related to cognitive impairment. We also found that inhibition of HMGB1 improved LTP reduction and cognitive function by increasing the phosphorylation level of the NMDAR1 subunit at serine 896 while reducing NLRP3 inflammasome activation. CONCLUSION: NLRP3 inflammasome damages memory in the late stage of TBI primarily through HMGB1 upregulation and provides an explanation for the long-term progression of cognitive dysfunction.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Disfunção Cognitiva/metabolismo , Proteína HMGB1/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Técnicas de Cocultura , Disfunção Cognitiva/patologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos
10.
Front Aging Neurosci ; 13: 721474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539383

RESUMO

Tau hyperphosphorylation is a characteristic alteration present in a range of neurological conditions, such as traumatic brain injury (TBI) and neurodegenerative diseases. Treatments targeting high-mobility group box protein 1 (HMGB1) induce neuroprotective effects in these neuropathologic conditions. However, little is known about the interactions between hyperphosphorylated tau and HMGB1 in neuroinflammation. We established a model of TBI with controlled cortical impacts (CCIs) and a tau hyperphosphorylation model by injecting the virus encoding human P301S tau in mice, and immunofluorescence, western blotting analysis, and behavioral tests were performed to clarify the interaction between phosphorylated tau (p-tau) and HMGB1 levels. We demonstrated that p-tau and HMGB1 were elevated in the spatial memory-related brain regions in mice with TBI and tau-overexpression. Animals with tau-overexpression also had significantly increased nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome activation, which manifested as increases in apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), activating caspase-1 and interleukin 1 beta (IL-1ß) levels. In addition, NLRP3-/- mice and the HMGB1 inhibitor, glycyrrhizin, were used to explore therapeutic strategies for diseases with p-tau overexpression. Compared with wild-type (WT) mice with tau-overexpression, downregulation of p-tau and HMGB1 was observed in NLRP3-/- mice, indicating that HMGB1 alterations were NLRP3-dependent. Moreover, treatment with glycyrrhizin at a late stage markedly reduced p-tau levels and improved performance in the Y- and T-mazes and the ability of tau-overexpressing mice to build nests, which revealed improvements in spatial memory and advanced hippocampal function. The findings identified that p-tau has a triggering role in the modulation of neuroinflammation and spatial memory in an NLRP3-dependent manner, and suggest that treatment with HMGB1 inhibitors may be a better therapeutic strategy for tauopathies.

11.
Cell Biosci ; 11(1): 158, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34380548

RESUMO

BACKGROUND: In the central nervous system (CNS), three types of myelin-associated inhibitors (MAIs) exert major inhibitory effects on nerve regeneration: Nogo-A, myelin-associated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp). MAIs have two co-receptors, Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PirB). Existing studies confirm that inhibiting NgR only exerted a modest disinhibitory effect in CNS. However, the inhibitory effects of PirB on nerve regeneration after binding to MAIs are controversial too. We aimed to further investigate the effect of PirB knockdown on the neuroprotection and axonal regeneration of retinal ganglion cells (RGCs) after optic nerve injury in rats. METHODS: The differential expression of PirB in the retina was observed via immunofluorescence and western blotting after 1, 3, and 7 days of optic nerve injury (ONI). The retina was locally transfected with adeno-associated virus (AAV) PirB shRNA, then, the distribution of virus in tissues and cells was observed 21 days after AAV transfection to confirm the efficiency of PirB knockdown. Level of P-Stat3 and expressions of ciliary neurotrophic factor (CNTF) were detected via western blotting. RGCs were directly labeled with cholera toxin subunit B (CTB). The new axons of the optic nerve were specifically labeled with growth associated protein-43 (GAP43) via immunofluorescence. Flash visual evoked potential (FVEP) was used to detect the P1 and N1 latency, as well as N1-P1, P1-N2 amplitude to confirm visual function. RESULTS: PirB expression in the retina was significantly increased after ONI. PirB knockdown was successful and significantly promoted P-Stat3 level and CNTF expression in the retina. PirB knockdown promoted the regeneration of optic nerve axons and improved the visual function indexes such as N1-P1 and P1-N2 amplitude. CONCLUSIONS: PirB is one of the key molecules that inhibit the regeneration of the optic nerve, and inhibition of PirB has an excellent effect on promoting nerve regeneration, which allows the use of PirB as a target molecule to promote functional recovery after ONI.

12.
Neurochem Int ; 149: 105145, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34324942

RESUMO

The heteromeric complexes of adenosine 2A receptor (A2AR) and N-methyl-D-aspartate receptor (NMDAR) have recently been confirmed in cell experiments, while its in situ detection at the subcellular level of brain tissue has not yet been achieved. Proximity Ligation Assay (PLA) enables the detection of low-abundance proteins and their interactions at the cellular level with high specificity and sensitivity, while Transmission electron microscope (TEM) is an excellent tool for observing subcellular structures. To develop a highly efficient and reproducible technique for in situ detection of protein interactions at subcellular levels, in this study, we modified the standard PLA sample preparation method to make the samples suitable for analysis by transmission electron microscopy. Using this technique, we successfully detected the heteromers of A2AR and NMDAR1, the essential subunit of NMDA receptor on the hippocampal synaptic structure in mice. Our results show that the distribution of this heteromer is different in different hippocampal subregions. This technique holds the potential for being a reliable method to detect protein interactions at the subcellular level and unravel their unknown functions.


Assuntos
Hipocampo/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Receptor A2A de Adenosina/ultraestrutura , Receptores de N-Metil-D-Aspartato/ultraestrutura , Sinapses/ultraestrutura , Animais , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/fisiologia , Receptor A2A de Adenosina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
13.
Cell Prolif ; 54(2): e12971, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33349993

RESUMO

OBJECTIVES: The present study clarified the role and signalling pathway of Ski in regulating proliferation and apoptosis in fibroblasts under high-glucose (HG) conditions. MATERIALS AND METHODS: The proliferation and apoptosis of rat primary fibroblasts were assessed using EdU incorporation and TUNEL assays. The protein and phosphorylation levels of the corresponding factors were measured using immunofluorescence staining and Western blotting. Immunoprecipitation was used to determine the interactions between Ski and FoxO1 or Ski and HDAC1. The Ski protein was overexpressed via recombinant adenovirus transfection, and FoxO1 and HDAC1 were knocked down using targeted small-interfering RNA. RESULTS: The present study found that HG inhibited fibroblast proliferation, increased apoptosis and reduced Ski levels in rat primary fibroblasts. Conversely, increasing Ski protein levels alleviated HG-induced proliferation inhibition and apoptosis promotion. Increasing Ski protein levels also increased Ski binding to FoxO1 to decrease FoxO1 acetylation, and interfering with FoxO1 caused loss of the regulatory effect of Ski in fibroblasts under HG. Increasing Ski protein levels decreased FoxO1 acetylation via HDAC1-mediated deacetylation. CONCLUSIONS: Therefore, these findings confirmed for the first time that Ski regulated fibroblast proliferation and apoptosis under HG conditions via the FoxO1 pathway.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glucose/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Acetilação/efeitos dos fármacos , Animais , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Fosforilação/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Smad2 , Proteína Smad3/metabolismo
14.
J Cancer ; 11(20): 5929-5940, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922535

RESUMO

Background: TGF-ß1 promotes cell proliferation in only some tumors and exerts bidirectional regulatory effects on the proliferation of fibroblasts. This study intends to explore whether the mechanism is related to increased expression of Ski. Methods: Cell proliferation of the fibrosarcoma cell line L929 was assessed with an ELISA BrdU kit. The mRNA and protein expression levels of the corresponding factors were measured by RT-qPCR, immunohistochemistry or Western blotting in vitro and in vivo. Additionally, c-Ski was knocked down using RNAi. The expression of Ski in human dermatofibrosarcoma protuberans (DFSP) specimens was measured by immunohistochemistry. Results: TGF-ß1 promoted the continued proliferation of L929 cells in a dose-dependent manner, with increased c-Ski expression levels. Conversely, inhibition of c-Ski significantly abrogated this unidirectional effect, significantly inhibited the decrease in p21 protein levels and did not affect the increase in p-Smad2/3 levels upon TGF-ß1 treatment. Similarly, inhibition of c-Ski significantly abrogated the growth-promoting effect of TGF-ß1 on xenograft tumors. Furthermore, we found that high expression of Ski in DFSP was correlated with a low degree of tumor differentiation. Conclusions: Our data reveal that high c-Ski expression is a cause of TGF-ß1-promoted proliferation in fibrosarcoma tumor cells and show that inhibiting Ski expression might be effective for treating tumors with high Ski levels.

15.
J Cell Mol Med ; 24(12): 7000-7014, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32394486

RESUMO

Spatial recognition memory impairment is an important complication after traumatic brain injury (TBI). We previously found that spatial recognition memory impairment can be alleviated in adenosine A2A receptor knockout (A2A R KO) mice after TBI, but the mechanism remains unclear. In the current study, we used manganese-enhanced magnetic resonance imaging and the Y-maze test to determine whether the electrical activity of neurons in the retrosplenial cortex (RSC) was reduced and spatial recognition memory was impaired in wild-type (WT) mice after moderate TBI. Furthermore, spatial recognition memory was damaged by optogenetically inhibiting the electrical activity of RSC neurons in WT mice. Additionally, the electrical activity of RSC neurons was significantly increased and spatial recognition memory impairment was reduced in A2A R KO mice after moderate TBI. Specific inhibition of A2A R in the ipsilateral RSC alleviated the impairment in spatial recognition memory in WT mice. In addition, A2A R KO improved autophagic flux in the ipsilateral RSC after injury. In primary cultured neurons, activation of A2A R reduced lysosomal-associated membrane protein 1 and cathepsin D (CTSD) levels, increased phosphorylated protein kinase A and phosphorylated extracellular signal-regulated kinase 2 levels, reduced transcription factor EB (TFEB) nuclear localization and impaired autophagic flux. These results suggest that the impairment of spatial recognition memory after TBI may be associated with impaired autophagic flux in the RSC and that A2A R activation may reduce lysosomal biogenesis through the PKA/ERK2/TFEB pathway to impair autophagic flux.


Assuntos
Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Autofagia , Lesões Encefálicas Traumáticas/complicações , Giro do Cíngulo/patologia , Giro do Cíngulo/fisiopatologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Memória Espacial/efeitos dos fármacos , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Giro do Cíngulo/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/patologia , Biogênese de Organelas
16.
Neurosci Bull ; 36(9): 972-984, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32445021

RESUMO

In the central nervous system (CNS), three types of myelin-associated inhibitors (MAIs) have major inhibitory effects on nerve regeneration. They include Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein. MAIs possess two co-receptors, Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PirB). Previous studies have confirmed that the inhibition of NgR only results in a modest increase in regeneration in the CNS; however, the inhibitory effects of PirB with regard to nerve regeneration after binding to MAIs remain controversial. In this study, we demonstrated that PirB is expressed in primary cultures of retinal ganglion cells (RGCs), and the inhibitory effects of the three MAIs on the growth of RGC neurites are not significantly decreased after direct PirB knockdown using adenovirus PirB shRNA. Interestingly, we found that retinal Müller cells expressed PirB and that its knockdown enhanced the regeneration of co-cultured RGC neurites. PirB knockdown also activated the JAK/Stat3 signaling pathway in Müller cells and upregulated ciliary neurotrophic factor levels. These findings indicate that PirB plays a novel role in retinal Müller cells and that its action in these cells may indirectly affect the growth of RGC neurites. The results also reveal that PirB in Müller cells affects RGC neurite regeneration. Our findings provide a novel basis for the use of PirB as a target molecule to promote nerve regeneration.


Assuntos
Células Ependimogliais , Neuritos , Receptores Imunológicos/fisiologia , Regeneração , Células Ganglionares da Retina , Animais , Células Ependimogliais/fisiologia , Neuritos/fisiologia , Cultura Primária de Células , Ratos Sprague-Dawley , Células Ganglionares da Retina/fisiologia
17.
Neurosci Bull ; 36(7): 761-777, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32277382

RESUMO

Neurons, especially axons, are metabolically demanding and energetically vulnerable during injury. However, the exact energy budget alterations that occur early after axon injury and the effects of these changes on neuronal survival remain unknown. Using a classic mouse model of optic nerve-crush injury, we found that traumatized optic nerves and retinas harbor the potential to mobilize two primary energetic machineries, glycolysis and oxidative phosphorylation, to satisfy the robustly increased adenosine triphosphate (ATP) demand. Further exploration of metabolic activation showed that mitochondrial oxidative phosphorylation was amplified over other pathways, which may lead to decreased retinal ganglion cell (RGC) survival despite its supplement to ATP production. Gene set enrichment analysis of a microarray (GSE32309) identified significant activation of oxidative phosphorylation in injured retinas from wild-type mice compared to those from mice with deletion of phosphatase and tensin homolog (PTEN), while PTEN-/- mice had more robust RGC survival. Therefore, we speculated that the oxidation-favoring metabolic pattern after optic nerve-crush injury could be adverse for RGC survival. After redirecting metabolic flux toward glycolysis (magnifying the Warburg effect) using the drug meclizine, we successfully increased RGC survival. Thus, we provide novel insights into a potential bioenergetics-based strategy for neuroprotection.


Assuntos
Sobrevivência Celular , Lesões por Esmagamento , Metabolismo Energético , Glicólise , Traumatismos do Nervo Óptico , Células Ganglionares da Retina/metabolismo , Animais , Axônios , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nervo Óptico , Traumatismos do Nervo Óptico/metabolismo
18.
Expert Opin Ther Targets ; 24(7): 707-717, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32308059

RESUMO

BACKGROUND: Adenosine 2A receptor (A2AR) is involved in many physiological and pathological functions and serves as an important drug target. Inhibition of A2AR may alleviate symptoms associated with a variety of neuropsychiatric disorders. However, the currently used A2AR antagonists have specificity limitations. RESEARCH DESIGN AND METHODS: A Fab fragment (Fab2838) of an A2AR mouse monoclonal antibody can specifically bind to A2AR to form a complex and inhibit the activity of its receptor. We constructed the vector AntiA2AR, a small-molecule peptide that binds to and inhibits A2AR based on Fab2838. RESULTS: Experiments in HEK293T cells showed that peptide AntiA2AR of 29 peptides was the most effective among the synthesized peptides in inhibiting the A2AR downstream signal cAMP/PKA/CREB. In neurons, the AntiA2AR reversed the calcium flow change induced by the A2AR agonist CGS21680 (1 µM). Furthermore, AntiA2AR expression in the mice striatum weakened the p-PKA/p-CREB signal, enhanced locomotor abilities and increased time spent in the center area in the home-cage observation experiment and increased anxiolytic behavior in the elevated-plus maze test. CONCLUSIONS: Antagonistic peptide AntiA2AR can effectively block the A2AR signaling pathway. This provides a new strategy for the specific inhibition of A2AR and provides information needed for drug development.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Anticorpos Monoclonais/farmacologia , Peptídeos/farmacologia , Receptor A2A de Adenosina/efeitos dos fármacos , Antagonistas do Receptor A2 de Adenosina/síntese química , Animais , Comportamento Animal/efeitos dos fármacos , Desenvolvimento de Medicamentos , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/síntese química , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Oncol Lett ; 19(3): 1735-1740, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32194666

RESUMO

Gastrointestinal stromal tumors (GISTs) are the most commonly diagnosed primary mesenchymal tumors of the gastrointestinal tract and 30% of GISTs are associated with a high recurrence risk or metastasis. The current risk classification criteria of the National Comprehensive Cancer Network are based on tumor size, mitotic activity and localization. Investigating additional biomarkers associated with clinical risk may aid in the diagnosis of GIST and improves prediction of patient prognosis. In the present study, the value of using the expression levels of the oncoprotein ski as a prognostic predictor for GISTs was investigated. The results demonstrated that high ski expression levels were correlated with high risk and recurrence rates and indicated poor prognosis regarding median disease-free survival. Overall, the present study suggests that ski expression levels may serve as a predictor for clinical risk and prognosis of patients with GISTs.

20.
J Neuroinflammation ; 16(1): 235, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31771656

RESUMO

BACKGROUND: Vacuolar sorting protein 35 (VPS35), a critical component of retromer, is essential for selective endosome-to-Golgi retrieval of membrane proteins. It is highly expressed in microglial cells, in addition to neurons. We have previously demonstrated microglial VPS35's functions in preventing hippocampal, but not cortical, microglial activation, and in promoting adult hippocampal neurogenesis. However, microglial VPS35's role in the cortex in response to ischemic stroke remains largely unclear. METHODS: We used mice with VPS35 cKO (conditional knockout) in microglial cells and examined and compared their responses to ischemic stroke with control mice. The brain damage, cell death, changes in glial cells and gene expression, and sensorimotor deficits were assessed by a combination of immunohistochemical and immunofluorescence staining, RT-PCR, Western blot, and neurological functional behavior tests. RESULTS: We found that microglial VPS35 loss results in an increase of anti-inflammatory microglia in mouse cortex after ischemic stroke. The ischemic stroke-induced brain injury phenotypes, including brain damage, neuronal death, and sensorimotor deficits, were all attenuated by microglial VPS35-deficiency. Further analysis of protein expression changes revealed a reduction in CX3CR1 (CX3C chemokine receptor 1) in microglial VPS35-deficient cortex after ischemic stroke, implicating CX3CR1 as a potential cargo of VPS35 in this event. CONCLUSION: Together, these results reveal an unrecognized function of microglial VPS35 in enhancing ischemic brain injury-induced inflammatory microglia, but suppressing the injury-induced anti-inflammatory microglia. Consequently, microglial VPS35 cKO mice exhibit attenuation of ischemic brain injury response.


Assuntos
Isquemia Encefálica/metabolismo , Polaridade Celular/fisiologia , Microglia/metabolismo , Córtex Sensório-Motor/metabolismo , Acidente Vascular Cerebral/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Morte Celular/fisiologia , Modelos Animais de Doenças , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Camundongos , Camundongos Knockout , Destreza Motora/fisiologia , Córtex Sensório-Motor/patologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA