Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 939: 173636, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821278

RESUMO

Low-molecular-weight (LMW) organic acids are among the most abundant water-soluble organic compounds, but their gas-particle partitioning mechanism remains unclear. In the present study, LMW organic acids were measured using a URG 9000D Ambient Ion Monitor in suburban Shanghai. The average concentrations of formic acid, acetic acid, oxalic acid, and methanesulfonic acid (MSA) in PM2.5 were 405 ± 116, 413 ± 11, 475 ± 266, and 161 ± 54 ng m-3, respectively. The particle fraction exceeded 30 % for formic acid and acetic acid. Model predictions underestimated the particle-phase monocarboxylic acids (MCAs) from the factor of 102 at the highest RH to 107 at the lowest RH. The average measured intrinsic Henry's law constants (Hmea) for formic acid, acetic acid, oxalic acid, and MSA were 3.8 × 107, 4.5 × 107, 8.7 × 108, and 3.4 × 107 mol L-1 atm-1, respectively, approximately four orders of magnitude higher than their literature-based intrinsic Henry's law constants (Hlit) for MCAs and approximately four orders of magnitude lower than Hlit, MSA. The ratio of Hmea /Hlit for MCAs ranged over three orders of magnitude, depending on relative humidity. The strong deviations at low RHs are attributed to the dominance of absorption by the organic phase. The discrepancy at the highest RH possibly relates to surfactant effects and dimer formation. We used Hmea as a model input for the first time to estimate the phase partitioning of particulate MCAs, finding that >80 % of MCAs resided in the organic phase under dry conditions. We propose parameterizing Hmea as model input to predict the multiphase partitioning of MCAs.

2.
Sci Total Environ ; 931: 172918, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38697522

RESUMO

The source apportionment and main formation pathway of nitrate aerosols in China are not yet fully understood. In this study, PM2.5 samples were collected in Shanghai in the summer and winter of 2019. Water-soluble inorganic ions and isotopic signatures of stable nitrogen (δ15N-NO3-) and stable oxygen (δ18O-NO3-) in PM2.5 were determined. The results showed that NO3- was less important in summer (NO3-/SO42- = 0.4 ± 0.8), while it became the dominant species in winter (52.1 %). The average values of δ15N-NO3- and δ18O-NO3- in summer were + 2.0 ± 6.1 ‰ and 63.3 ± 9.4 ‰ respectively, which were significantly lower than those in winter (+7.2 ± 3.4 ‰ and 88.3 ± 12.1 ‰), indicating discrepancies between NOx sources and nitrate formation pathways. Both δ15N-NO3- and δ18O-NO3- were elevated at night, demonstrating that N2O5 hydrolysis contributed to the nocturnal nitrate increase even in summer. The contribution of the OH oxidation pathway to nitrate aerosols averaged at 70.5 ± 17.0 % in summer and N2O5 hydrolysis dominated the nitrate production in winter (approximately 80 %). On average, vehicle exhaust, coal combustion, natural gas burning, and soil emission contributed 50.7 %, 21.5 %, 15.9 %, and 11.9 %, respectively, to nitrate aerosols in summer, and contributed 56.8 %, 23.9 %, 13.6 %, and 5.7 %, respectively, to nitrate production in winter. Notably, natural gas burning is a non-negligible source of nitrate aerosols in Shanghai. In contrast to an inverse correlation between δ15N-NO3- and PM2.5, the value of δ18O-NO3- was positively correlated with nitrate concentration and aerosol liquid water content (ALWC) in winter, suggesting that explosive growth of nitrate was driven by continuous accumulation of N-depleted NOx and rapid N2O5 hydrolysis under calm and humid conditions. To continuously improve air quality, priority control should be given to vehicle emissions as the dominant source of NOx and volatile organic compounds (VOCs) in Shanghai.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA