RESUMO
BACKGROUND: Inflammation-induced intestinal barrier dysfunction is not only a pathological feature of Crohn's disease (CD) but also an important therapeutic target. Sclareol (SCL) is a nontoxic natural plant compound with anti-inflammatory effect, but its role in CD has not been established. METHODS: In vivo studies of mice with TNBS-induced colitis were carried out to evaluate the effects of SCL on CD-like colitis and intestinal barrier function. In vitro, a TNF-α-induced colonic organoid model was established to test the direct effect of SCL on inflammation-induced intestinal barrier injure and inflammatory response. The Nrf2/NF-κB/MLCK signalling was analysed to explore the mechanism of SCL. RESULTS: In vivo, SCL largely alleviated the colitis in TNBS mice, as evidenced by improvements in the weight loss, colitis symptoms, endoscopic score, macroscopic histological score, and histological inflammation score. Moreover, SCL significantly improved intestinal barrier dysfunction, manifested as reduced intestinal permeability and decreased intestinal bacterial translocation in TNBS mice. Importantly, SCL antagonised the intestinal mucosal inflammation while protecting tight junctions in TNBS mice. In vitro, SCL largely depressed pro-inflammatory cytokines levels and improved intestinal epithelial permeability in a TNF-α-induced colonic organoid model. In the context of CD, the protective effects of SCL against inflammation and intestinal barrier damage are at least partially results from the Nrf2 signalling activation and the NF-κB/MLCK signalling inhibition. CONCLUSIONS: SCL improved intestinal barrier dysfunction and alleviated CD-like colitis, possibly through modulation of Nrf2/NF-κB/MLCK signalling. In view of SCL's safety profile, there is hope that it will be useful in the clinic.
Assuntos
Colite , Doença de Crohn , Mucosa Intestinal , Fator 2 Relacionado a NF-E2 , NF-kappa B , Transdução de Sinais , Ácido Trinitrobenzenossulfônico , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Doença de Crohn/tratamento farmacológico , Doença de Crohn/patologia , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Camundongos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Humanos , Masculino , Modelos Animais de Doenças , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Quinase de Cadeia Leve de Miosina/metabolismo , Camundongos Endogâmicos C57BL , Permeabilidade/efeitos dos fármacos , Colo/patologia , Colo/efeitos dos fármacos , Diterpenos/uso terapêutico , Diterpenos/farmacologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Adult lung resident stem/progenitor cells, including P63+ progenitor cells, have demonstrated the capacity for regeneration of lung epithelium in preclinical models. Here, we report a clinical trial of intrapulmonary P63+ progenitor cell transplantation in 28 participants with stage II to IV chronic obstructive pulmonary disease (COPD). Autologous P63+ progenitor cells were isolated from the airway basal layer of participants in the intervention group via bronchoscopic brushing, cultured for 3 to 5 weeks, and then transplanted back into the lungs via bronchoscopy at 0.7 × 106 to 5.2 × 106 cells per kilogram of body weight. Twenty patients were evaluable at the end of the study (intervention group, n = 17; control group, n = 3). No grade 3 to 5 adverse events (AEs) or serious AEs occurred. Although bronchoscopy-associated AEs were recorded in participants in the intervention group, other AEs were not substantial different between groups. Twenty-four weeks after transplantation, participants in the intervention group displayed improvement in gas transfer capacity [diffusing capacity of the lung for carbon monoxide (DLCO) change from baseline: +18.2%], whereas the control group experienced a decrease (DLCO change from baseline: -17.4%; P = 0.008). Furthermore, participants in the intervention group showed >30-meter increase in walking distance within 6 minutes. Transcriptomic analysis of progenitor cells isolated from responding and nonresponding individuals in the intervention group showed that higher expression of P63 was associated with treatment efficacy. In conclusion, transplantation of cultured P63+ lung progenitor cells was safe and might represent a potential therapeutic strategy for COPD.
Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Transplante Autólogo , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Epitélio/metabolismo , Células-Tronco/metabolismoRESUMO
OBJECTIVES: Crohn's disease (CD) mesenteric adipose tissue (MAT) inflammation affects enteritis through the interaction between the mesentery and intestine, and we previously found that poorly differentiated mesenteric adipocytes were related to its inflammatory features. Pygopus2 (Pygo2) is a key negative regulator of adipocyte differentiation. We aimed to determine whether Pygo2 participates in CD mesenteric lesions and whether Pygo2 knockdown would be beneficial in a CD model (Il-10-/- mice). METHODS: Pygo2 expression in MAT from control and CD patients and Il-10-/- mice was measured by immunohistochemistry. Lentiviral transfection was used to regulate Pygo2 expression in Il-10-/- mice, and the effects on mesenteric adipocyte differentiation, inflammation, and dysfunction during spontaneous colitis, as well as the possible mechanism, were investigated. RESULTS: Pygo2 expression was increased in MAT from CD patients and Il-10-/- mice, and its expression correlated with poor adipocyte differentiation and inflammation. Pygo2 knockdown significantly ameliorated colitis in Il-10-/- mice. Moreover, the downregulation of Pygo2 gene expression could promote adipocyte differentiation and inhibit adipocyte inflammation in vivo and in vitro, and the effects were at least partly mediated by the Axis inhibition protein 2 (Axin2)/glycogen synthase kinase 3 beta (GSK3ß) pathway. CONCLUSIONS: The increase in Pygo2 may be related to mesenteric adipocyte poor differentiation and inflammatory features of CD, and Pygo2 inhibition could alleviate CD-like colitis by improving mesenteric lesions by regulating the Axin2/GSK3ß pathway.
Assuntos
Colite , Doença de Crohn , Adipócitos/metabolismo , Animais , Proteína Axina/metabolismo , Colite/genética , Colite/metabolismo , Colite/patologia , Doença de Crohn/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-10/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Mesentério/metabolismo , Mesentério/patologia , CamundongosRESUMO
BACKGROUND AND AIMS: Hypertrophic mesenteric adipose tissue [htMAT] is involved in the disease progression of Crohn's disease [CD] through expressing proinflammatory adipokines from dysfunctional adipocytes by unknown mechanism. Adipocyte function is affected by dynamic adipose tissue extracellular matrix [ECM] remodelling that is mainly mediated by macrophages, and our study aimed to reveal whether aberrant ECM remodelling was present in CD-htMAT and its effects on adipocyte dysfunction, as well as the mechanism. METHODS: ECM remodelling was examined in MAT samples from CD patients and controls. Mice with dinitrobenzene sulphonic acid [DNBS]-induced colitis were used in vivo study, and lipopolysaccharide [LPS]-induced remodelling behaviour in macrophages was examined in vitro. Macrophages or TLR4 inhibition were used to analyse ECM remodelling mechanisms and their effects on adipocyte function. RESULTS: Aberrant ECM remodelling: was observed in CD-htMAT, which was characterised by a widened and deformed ECM structure accompanied by dysregulated matrix synthesis and degradation; served as a reservoir for inflammatory factors/cells dominated by macrophages; and was involved in adipocyte dysfunction. In addition, macrophages were the main source of ECM remodelling regulatory factors with activation of Toll-like receptor 4 [TLR4] in htMAT. In vivo, macrophage depletion or TLR4 inhibition largely attenuated mesenteric ECM remodelling while improving mesenteric adipocyte dysfunction during chronic enteritis. In vitro, antagonizing TLR4 significantly inhibited LPS-induced macrophage ECM remodelling behavior. CONCLUSIONS: The aberrant ECM remodelling in CD-htMAT contributed to mesenteric adipocyte dysfunction, which may be caused at least partly by TLR4-mediated macrophage remodelling behavior. Inhibiting ECM remodelling may be a potential therapeutic strategy for CD.
Assuntos
Doença de Crohn , Animais , Camundongos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Doença de Crohn/metabolismo , Matriz Extracelular/metabolismo , Hipertrofia , Macrófagos/metabolismo , Receptor 4 Toll-LikeRESUMO
There is a population of p63+/Krt5+ distal airway stem cells (DASCs) quiescently located in the airway basal epithelium of mammals, responding to injury and airway epithelial regeneration. They hold the ability to differentiate into multiple pulmonary cell types and can repopulate the epithelium after damage. The current study aims at gaining further insights into the behavior and characteristics of the DASCs isolated from the patient lung and exploring their clinical translational potential. Human DASCs were brushed off through the bronchoscopic procedure and expanded under the pharmaceutical-grade condition. Their phenotype stability in long-term cell culture was analyzed, followed by safety evaluation and tumorigenic analysis using multiple animal models including rodents and nonhuman primate. The chimerism of the human-mouse lung model indicated that DASC pedigrees could give rise to multiple epithelial types, including type I alveolar cells as well as bronchiolar secretory cells, to regenerate the distal lung. Taken together, the results suggested that DASC transplantation could be a promising therapeutic approach for unmet needs in respiratory medicine including the COVID-19-related diseases.
RESUMO
OBJECTIVES: Chronic obstructive pulmonary disease (COPD) is characterized by irreversible lung tissue damage including chronic bronchitis and emphysema, which could further develop into respiratory failure. Many studies have revealed a potential regenerative function of the distal airway stem/progenitor cells (DASCs) after lung injury. MATERIALS AND METHODS: Mouse and human DASCs were expanded, analysed, and engrafted into injured mouse lungs. Single-cell analyses were performed to reveal the differentiation path of the engrafted cells. Finally, human DASCs were transplanted into COPD mice induced by porcine pancreatic elastase (PPE) and lipopolysaccharide (LPS) administration. RESULTS: We showed that isolated mouse and human DASCs could be indefinitely expanded and were able to further differentiate into mature alveolar structures in vitro. Single-cell analysis indicated that the engrafted cells expressed typical cellular markers of type I alveolar cells as well as the specific secreted proteins. Interestingly, transplantation of human DASCs derived from COPD patients into the lungs of NOD-SCID mice with COPD injury repaired the tissue damage and improved the pulmonary function. CONCLUSIONS: The findings demonstrated that functional lung structure could be reconstituted by intrapulmonary transplantation of DASCs, suggesting a potential therapeutic role of DASCs transplantation in treatment for chronic obstructive pulmonary disease.
Assuntos
Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/terapia , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Feminino , Xenoenxertos , Humanos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Células-Tronco/patologiaRESUMO
Impaired glutamate homeostasis is a key characteristic of the neurobiology of drug addiction in rodent models and contributes to the vulnerability to relapse to drug seeking. Although disrupted astrocytic and presynaptic regulation of glutamate release has been considered to constitute with impaired glutamate homeostasis in rodent model of drug relapse, the involvement of endocannabinoids (eCBs) in this neurobiological process has remained largely unknown. Here, using cocaine self-administration in rats, we investigated the role of endocannabinoids in impaired glutamate homeostasis in the core of nucleus accumbens (NAcore), which was indicated by augmentation of spontaneous synaptic glutamate release, downregulation of metabotropic glutamate receptor 2/3 (mGluR2/3), and mGluR5-mediated astrocytic glutamate release. We found that the endocannabinoid, anandamide (AEA), rather than 2-arachidonoylglycerol elicited glutamate release through presynaptic transient receptor potential vanilloid 1 (TRPV1) and astrocytic cannabinoid type-1 receptors (CB1Rs) in the NAcore of saline-yoked rats. In rats with a history of cocaine self-administration and extinction training, AEA failed to alter synaptic glutamate release in the NAcore, whereas CB1R-mediated astrocytic glutamate release by AEA remained functional. In order to induce increased astrocytic glutamate release via exogenous AEA, (R)-methanandamide (methAEA, a metabolically stable form of AEA) was chronically infused in the NAcore via osmotic pumps during extinction training. Restoration of mGluR2/3 function and mGluR5-mediated astrocytic glutamate release was observed after chronic methAEA infusion. Additionally, priming or cue-induced reinstatement of cocaine seeking was inhibited in methAEA-infused rats. These results demonstrate that enhancing endocannabinoid signaling is a potential pathway to restore glutamate homeostasis and may represent a promising therapeutic strategy for preventing cocaine relapse.
Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Preparações Farmacêuticas , Animais , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Endocanabinoides , Extinção Psicológica , Ácido Glutâmico , Homeostase , Núcleo Accumbens , Ratos , Ratos Sprague-Dawley , Recidiva , AutoadministraçãoRESUMO
OBJECTIVES: The high mortality of severe 2019 novel coronavirus disease (COVID-19) cases is mainly caused by acute respiratory distress syndrome (ARDS), which is characterized by increased permeability of the alveolar epithelial barriers, pulmonary oedema and consequently inflammatory tissue damage. Some but not all patients showed full functional recovery after the devastating lung damage, and so far there is little knowledge about the lung repair process. We focused on crucial roles of lung progenitor cells in alveolar cell regeneration and epithelial barrier re-establishment and aimed to uncover a possible mechanism of lung repair after severe SARS-CoV-2 infection. MATERIALS AND METHODS: Bronchoalveolar lavage fluid (BALF) of COVID-19 patients was analysed by single-cell RNA-sequencing (scRNA-seq). Transplantation of a single KRT5+ cell-derived cell population into damaged mouse lung and time-course scRNA-seq analysis was performed. RESULTS: In severe (or critical) COVID-19 patients, there is a remarkable expansion of TM4SF1+ and KRT5+ lung progenitor cells. The two distinct populations of progenitor cells could play crucial roles in alveolar cell regeneration and epithelial barrier re-establishment, respectively. The transplanted KRT5+ progenitors could long-term engraft into host lung and differentiate into HOPX+ OCLN+ alveolar barrier cell which restored the epithelial barrier and efficiently prevented inflammatory cell infiltration. CONCLUSIONS: This work uncovered the mechanism by which various lung progenitor cells work in concert to prevent and replenish alveoli loss post-severe SARS-CoV-2 infection.
Assuntos
COVID-19/metabolismo , Pulmão/virologia , SARS-CoV-2/patogenicidade , Análise de Célula Única , Células-Tronco/virologia , Animais , Antígenos de Superfície/metabolismo , COVID-19/virologia , Humanos , Camundongos Endogâmicos C57BL , Análise de Célula Única/métodosAssuntos
Betacoronavirus , Infecções por Coronavirus/metabolismo , Regulação da Expressão Gênica , Peptidil Dipeptidase A/genética , Pneumonia Viral/metabolismo , RNA/genética , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/genética , Humanos , Pandemias , Peptidil Dipeptidase A/biossíntese , Pneumonia Viral/epidemiologia , Pneumonia Viral/genética , RNA/metabolismo , SARS-CoV-2RESUMO
Severe pulmonary infection is a major threat to human health accompanied by substantial medical costs, prolonged inpatient requirements, and high mortality rates. New antimicrobial therapeutic strategies are urgently required to address the emergence of antibiotic resistance and persistent bacterial infections. In this study, we show that the constitutive expression of a native antimicrobial peptide LL-37 in transgenic mice aids in clearing Pseudomonas aeruginosa (PAO1), a major pathogen of clinical pulmonary infection. Orthotopic transplantation of adult mouse distal airway stem cells (DASCs), genetically engineered to express LL-37, into injured mouse lung foci enabled large-scale incorporation of cells and long-term release of the host defense peptide, protecting the mice from bacterial pneumonia and hypoxemia. Further, correlates of DASCs in adult humans were isolated, expanded, and genetically engineered to demonstrate successful construction of an anti-infective artificial lung. Together, our stem cell-based gene delivery therapeutic platform proposes a new strategy for addressing recurrent pulmonary infections with future translational opportunities.
Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Escherichia coli , Pneumopatias/microbiologia , Infecções por Pseudomonas , Transplante de Células-Tronco , Animais , Feminino , Pneumopatias/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa , Ratos , Ratos Sprague-Dawley , CatelicidinasRESUMO
BACKGROUND: This study is aimed at characterizing the human distal airway stem cells (DASCs) and assessing their therapeutic potential in patients with chronic, degenerative lung diseases. These findings will provide a comprehensive understanding for further clinical applications utilizing autologous airway stem cells as therapeutic intervention in respiratory diseases. METHODS: DASCs were isolated from healthy subjects or patients diagnosed with bronchiectasis, chronic obstructive pulmonary diseases (COPD), or interstitial lung disease (ILD). Differentiation capacity, a key property of the stem cells, was studied using a novel monolayer differentiation system. The differentiated cells were evaluated for alveolar and bronchial cell marker expression, and the quantified expression level of differentiated cells was further examined for their relationship with age and pulmonary function of the subjects. RESULTS AND CONCLUSIONS: Differentiation of DASCs and tracheal stem cells (TSCs) yielded an alveolus-like structure and a tube-shaped structure, respectively, with distinct marker gene expression. Additionally, single-cell-derived clones showed diverse differentiation fates, even if the clones arise from identical or different individuals. More importantly, the alveolar differentiation potency was higher in DASCs derived from patients than from healthy people. The differentiation efficiency of DASCs also correlates with age in patients with bronchiectasis and ILD.
RESUMO
BACKGROUND: Idiopathic pulmonary fibrosis is characterized by loss of lung epithelial cells and inexorable progression of fibrosis with no effective and approved treatments. The distal airway stem/progenitor cells (DASCs) have been shown to have potent regenerative capacity after lung injury. In this work, we aimed to define the role of mouse DASCs (mDASCs) in response to bleomycin-induced lung fibrosis in mice. METHODS: The mDASCs were isolated, expanded in vitro, and labeled with GFP by lentiviral infection. The labeled mDASCs were intratracheally instilled into bleomycin-induced pulmonary fibrosis mice on day 7. Pathological change, collagen content, α-SMA expression, lung function, and mortality rate were assessed at 7, 14, and 21 days after bleomycin administration. Tissue section and direct fluorescence staining was used to show the distribution and differentiation of mDASCs in lung. RESULTS: The transplanted mDASCs could incorporate, proliferate, and differentiate into type I pneumocytes in bleomycin-injured lung. They also inhibited fibrogenesis by attenuating the deposition of collagen and expression of α-SMA. In addition, mDASCs improved pulmonary function and reduce mortality in bleomycin-induced pulmonary fibrosis mice. CONCLUSIONS: The data strongly suggest that mDASCs could ameliorate bleomycin-induced pulmonary fibrosis by promotion of lung regeneration and inhibition of lung fibrogenesis.
Assuntos
Bleomicina/toxicidade , Fibrose Pulmonar Idiopática/terapia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/terapia , Células-Tronco/fisiologia , Actinas/genética , Actinas/metabolismo , Animais , Western Blotting , Diferenciação Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Imunofluorescência , Hidroxiprolina/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/metabolismo , Células-Tronco/citologiaRESUMO
BACKGROUND: The hallmark characteristics of the murine model of drug addiction include the escalation of cocaine consumption and compulsive punishment-resistant drug seeking. In this study, we evaluated the motivation for drug seeking in cocaine self-administering rats exposed to an escalated dosing regimen that endeavored to mimic the characteristic of escalating drug intake in human addicts. Tropisetron is a 5-HT3 receptor antagonist and α7-nicotinic receptor partial agonist. Utilizing rats trained on the escalated-dosing regimen, we examined the effects of tropisetron on control over compulsive drug-seeking behavior that was defined as footshock-resistant lever pressing. METHODS: Rats were trained to self-administer cocaine with incremental-infusion doses (from 0.6 to 2.4 mg/kg/infusion) across training sessions (3 h/session) or with a long-access paradigm (i.e., 0.6 mg/kg/infusion, 6 h/d training session). The drug-seeking motivations of 2 groups were estimated by the patterns of drug intake and progressive-ratio schedule. The compulsivity for drug seeking of the group with an escalated dose was further evaluated using the footshock-associated seeking-taking chain task. RESULTS: The rats trained on the dose-escalated protocol achieved the same levels of motivated drug seeking as those subjected to a long-access paradigm, as indicated by cocaine intake per training session and breakpoints on a progressive ratio schedule. Tropisetron attenuated compulsive behavior of rats when pressing of the seeking lever potentially led to footshock. Intriguingly, tropisetron did not change the motivation to seek cocaine when footshock was absent. Tropisetron had no effect on locomotor activities or saccharin self-administration. CONCLUSIONS: These results demonstrate that tropisetron restored control over compulsive cocaine seeking, and they indicate that 5-HT3/α7-nicotinic receptors may be potential therapeutic targets for relieving compulsive drug seeking.
Assuntos
Cocaína/antagonistas & inibidores , Comportamento de Procura de Droga/efeitos dos fármacos , Tropizetrona/farmacologia , Animais , Cocaína/farmacologia , Relação Dose-Resposta a Droga , Eletrochoque , Masculino , Ratos , Esquema de Reforço , AutoadministraçãoRESUMO
A major issue in thermochronology and U-Th-Pb dating is the effect of radiation damage, created by α-recoils from α-decay events, on the diffusion of radiogenic elements (e.g., He and Pb) in host mineral. Up until now, thermal events have been considered as the only source of energy for the recovery of radiation-damage. However, irradiation, such as from the α-particle of the α-decay event, can itself induce damage recovery. Quantification of radiation-induced recovery caused by α-particles during α-decay events has not been possible, as the recovery process at the atomic-scale has been difficult to observe. Here we present details of the dynamics of the amorphous-to-crystalline transition process during α-particle irradiations using in situ transmission electron microscopy (TEM) and consecutive ion-irradiations: 1 MeV Kr2+ (simulating α-recoil damage), followed by 400 keV He+ (simulating α-particle annealing). Upon the He+ irradiation, partial recrystallization of the original, fully-amorphous Durango apatite was clearly evident and quantified based on the gradual appearance of new crystalline domains in TEM images and new diffraction maxima in selected area electron diffraction patterns. Thus, α-particle induced annealing occurs and must be considered in models of α-decay event damage and its effect on the diffusion of radiogenic elements in geochronology and thermochronology.