RESUMO
OBJECTIVE: The asymptomatic nature of tuberculosis (TB) during its latent phase, combined with limitations in current diagnostic methods, makes accurate diagnosis challenging. This study aims to identify TB diagnostic biomarkers by integrating gene expression screening with machine learning, evaluating their diagnostic potential and correlation with immune cell infiltration. METHODS: We analyzed GSE19435, GSE19444, and GSE54992 datasets to identify differentially expressed genes (DEGs). GO and KEGG enrichment characterized gene functions. Three machine learning algorithms identified potential biomarkers, validated with GSE83456, GSE62525, and RT-qPCR on clinical samples. Immune cell infiltration was analyzed and verified with blood data. RESULTS: 249 DEGs were identified, with PDE7A and DOK3 emerging as potential biomarkers. RT-qPCR confirmed their expression, showing AUCs above 0.75 and a combined AUC of 0.926 for TB diagnosis. Immune infiltration analysis revealed strong correlations between PDE7A, DOK3, and immune cells. CONCLUSION: PDE7A and DOK3 show strong diagnostic potential for TB, closely linked to immune cell infiltration, and may serve as promising biomarkers and therapeutic targets.
RESUMO
There is a significant trend towards the integration of natural substances with bio-polymers for fully bio-based functional composites. Polylactic acid is regarded as a promising biodegradable polymer for replacing synthetic polymers. Differing from the case of natural fiber, the incompatibility of polylactic acid with bio-based molecules prevents it from being used to fabricate high-quality sustainable composites. This work presents a simultaneous ultraviolet shielding and antibacterial finishing process of polylactic acid combined with bioactive baicalin and an eco-friendly ester, which is highlighted for (a) the lack of synthetic chemicals involved in such process, (b) adsorption enhancement achieved at a mild temperature, and (c) marginal color change on treated polylactic acid. A response surface methodology was adopted to analyze the impacts of various factors on the baicalin quantity in polylactic acid, and to optimize the treatment condition. The uptake ratio of baicalin in polylactic acid was drastically promoted from 8.5 mg/g to 21.1 mg/g using methyl cinnamate. The response surface methodology based on a central composite design experiment indicated that the usage of baicalin was the most significant factor followed by methyl cinnamate and temperature. After optimization, a very faint color depth of 1.2 was apparent, but UPF 50+ and 92% bacterial reduction could be achieved. In all, the success in strengthening of the functionalities of polylactic acid extends the applications of polylactic acid products.
RESUMO
The opportunistic human pathogen Pseudomonas aeruginosa (P. aeruginosa) poses a significant threat to human health, causing sepsis, inflammation, and pneumonia, so it is crucial to devise an expeditious detection platform for the P. aeruginosa. In this work, bis (2- (3, 5- dimethylphenyl) quinoline- C2, N') (acetylacetonato) iridium (III) Ir (dmpq)2 (acac) with excellent electrochemiluminescence (ECL) and fluorescence (FL) and magnetic nanoparticles were encapsulated in silica spheres. The luminescent units exhibited equal ECL and FL properties compared with single iridium complexes, and enabled rapid separation, which was of vital significance for the establishment of biosensors with effective detection. In addition, the luminescent units were further reacted with the DNA with quenching units to obtain the signal units, and the ECL/FL dual-mode biosensor was employed with the CRISPR/Cas12a system to further improve its specific recognition ability. The ECL detection linear range of as-proposed biosensor in this work was 100 fM-10 nM with the detection limit of 73 fM (S/N = 3), and FL detection linear range was 1 pM-10 nM with the detection limit of 0.126 pM (S/N = 3). Importantly, the proposed dual-mode biosensor exhibited excellent repeatability and stability in the detection of P. aeruginosa in real samples, underscoring its potential as an alternative strategy for infection prevention and safeguarding public health and safety in the future.
Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Irídio , Limite de Detecção , Medições Luminescentes , Pseudomonas aeruginosa , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/genética , Técnicas Biossensoriais/métodos , Irídio/química , Humanos , Técnicas Eletroquímicas/métodos , Infecções por Pseudomonas/diagnóstico , Infecções por Pseudomonas/microbiologia , Nanopartículas de Magnetita/química , Fluorescência , Complexos de Coordenação/químicaRESUMO
Enhancing the hydrophilicity and UV protective property of poly(ethylene terephthalate) (PET) fabric are two significant ways to upgrade its quality and enlarge the applicable area. Biobased finishes are greatly welcomed for the fabrication of sustainable textiles; however, their application on PET fabric is still challenging compared with the case of natural fabric. This study presents a strategy that immobilizes epigallocatechin gallate (EGCG) onto PET fabric using citric acid (CA) for durably hydrophilic and UV-proof properties with negligible color change. A controllable surface-activating method integrating alkaline and deep eutectic solvent (DES) is customized for the PET fabric to promote the reactions among PET, CA, and EGCG. The hydrophilic, antistatic, and UV protective properties of functionalized PET fabric were explored. Results show that the hydrophilicity of the PET fabric after direct EGCG treatment increases but drops sharply after first-round washing due to weak interactions. The combined alkaline/DES pretreatment increases the number of hydrophilic groups and the roughness of PET fibers. After EGCG modification, the moisture regain (MR) of PET fabric increases from 0.41 to 0.64%. The contact angle and electrostatic charge half-life (T1/2) decreases from >120 to 23°, and from >60 to 0.13 s, respectively. The MR and T1/2 are well retained after a 10-cycle washing. In addition, the UV protective factor of the PET fabric increases from 18 to 36. A very slight yellowing phenomenon occurs on the PET fabric after the treatment. In all, this research attempts to integrate a biobased finishing agent and an eco-friendly cross-linker on synthetic fiber for durable functions, which is transferrable to the sustainable fabrication of other polymeric materials such as fibers or films.
Assuntos
Catequina , Ácido Cítrico , Interações Hidrofóbicas e Hidrofílicas , Polietilenotereftalatos , Têxteis , Raios Ultravioleta , Catequina/química , Catequina/análogos & derivados , Polietilenotereftalatos/química , Ácido Cítrico/química , Propriedades de SuperfícieRESUMO
Community-acquired pneumonia (CAP) is a major cause of death in children under 5 years old globally. With Streptococcus pneumoniae (S. pneumoniae) and Mycoplasma pneumoniae (M. pneumoniae) being the main pathogens linked to CAP that requires hospitalization, there is an urgent need for a straightforward, cost-efficient, and highly accurate diagnostic method for immediate and early detection of CAP. In this work, benzo[1,2-c;4,5-c']bis([1,2,5]thiadiazole) (BBT) as π-bridge spacer with the donor unit of poly(9,9-dioctylfluorene) (PF) and the acceptor unit of dithienylbenzoselenadiazole (DBS) has been successfully copolymerized to unprecedentedly prepare novel D-π-A selenium-based polymer dots with efficient NIR electrochemiluminescence (named as Se-Pdots in this work). Se-Pdots exclusively generated excellent anodic ECL in the two-component coreaction system comprising TPrA and K2S2O8. Moreover, a potential-resolved ECL biosensor to simultaneously detect S. pneumoniae and M. pneumoniae has also been successfully constructed based on this novel Se-based NIR Pdots as an anodic emitter with CdS QDs as a cathodic emitter. Under optimal conditions, the biosensor has a wide linear range for S. pneumoniae (10-15 to 10-9 M) and M. pneumoniae (10-15 to 10-9 M), with low detection limits for S. pneumoniae (0.56 fM) and M. pneumoniae (0.96 fM). The proposed ECL biosensor provides a simple, sensitive, and reliable method for the simultaneous detection of CAP pathogens in clinical applications.
Assuntos
Compostos de Cádmio , Técnicas Eletroquímicas , Medições Luminescentes , Mycoplasma pneumoniae , Polímeros , Pontos Quânticos , Selênio , Streptococcus pneumoniae , Sulfetos , Pontos Quânticos/química , Streptococcus pneumoniae/isolamento & purificação , Compostos de Cádmio/química , Polímeros/química , Sulfetos/química , Selênio/química , Mycoplasma pneumoniae/isolamento & purificação , Eletrodos , Humanos , Limite de DetecçãoRESUMO
BACKGROUND: Lipid metabolism and regulated cell death (RCD) play a role in the remodeling of tumor immune microenvironment and regulation of cancer progression. Since the underlying immune mechanisms of colon cancer remain elusive, this study aims to identify potential therapeutic target genes. METHODS: Differential genes related to lipid metabolism and RCD in COAD patients were identified using R language and online tools. Based on the expression of genes, two groups were classified using consensus clustering. CIBERSORT and ssGSEA were used to detect immune infiltration in both groups. Prognostic signature genes for colon cancer were screened using machine learning algorithms. KEGG, GO and GSEA for gene pathway enrichment. In addition, interacting genes in the immune module were obtained using a weighted gene co-expression network (WGCNA). Finally, expression and mutation of key in colon cancer genes were detected using TIMER, HPR, cBioPortal website and qPCR. RESULTS: The consensus clustering analysis revealed that 231 relevant differential genes were highly associated with immune infiltration. A series of machine learning and website analyses identified AGT as a hub gene linked to lipid metabolism and regulated cell death, which is overexpressed in colon cancer. CONCLUSION: AGT, as a signature gene of lipid metabolism and regulated cell death, plays a critical role in the development of COAD and is associated with tumor immune infiltration.
Assuntos
Neoplasias do Colo , Regulação Neoplásica da Expressão Gênica , Metabolismo dos Lipídeos , Microambiente Tumoral , Humanos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Metabolismo dos Lipídeos/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Prognóstico , Morte Celular/genética , Biomarcadores Tumorais/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , TranscriptomaRESUMO
Conventional magnetoelectric generators are regarded as effective devices for harvesting concentrated hydraulic power but are ineffective for dispersed hydropower (e.g., raindrops) due to their bulkiness and immobility. Here, we propose a superhydrophobic magnetoelectric generator (MSMEG) based on an elastic magnetic film that can efficiently convert the energy of lightweight water droplets into electricity. The MSMEG consists of five parts: a superhydrophobic magnetic material-based film (SMMF), a coil, a NdFeB magnet, an acrylic housing, and an expandable polystyrene (EPS) base. The SMMF with coil can deform/recover when droplets impact/leave the MSMEG, resulting in a peak current, peak charge density, and peak power density of â¼13.02 mA, â¼1826.5 mC/m2, and â¼1413.0 mW/m2, respectively, with a load resistance of 47 Ω. Related working mechanism is analyzed through Maxwell numerical simulation, which is used for further guidance on increasing the electrical output of the MSMEG. Furthermore, the MSMEG can quickly charge a commercial capacitor with 2.7 V/1 F to 1.18 V within 200 s and power diverse electronic devices (e.g., light emitting diodes (LEDs), fans) with constant excitation by water droplets. We believe that such an MSMEG is expected to provide a promising strategy for efficiently harvesting dispersed raindrop energy.
RESUMO
Electromagnetic generators are conventionally used to harvest energy from large water bodies, but they are ineffective for harvesting low hydro-energy, such as raindrops or fogs, due to their bulky, heavy and immovable. Unfortunately, developing new strategies that are lightweight, small, and have high conversion efficiency to convert such low hydro-energy into electricity remains a challenge. Herein, a flexible droplet-based hybrid electricity generator (DHEG) consisting of a droplet-based electricity generator (DEG) and an electromagnetic generator (EMG) is proposed to convert the dual energy of water droplets into electricity simultaneously. The DHEG is assembled by facilely merging DEG and EMG using conductive elastic multi-walled carbon nanotubes/polydimethylsiloxane (MWCNTs/PDMS) film. The MWCNTs/PDMS film can not only serve as a bottom electrode for switching on the DEG, but also as an elastic component for the EMG to vibrate the coil when impacted by water droplets. Activated by a single 58.2 µL droplet falling from a height of 50 cm, the peak voltage, current and power generated by the DHEG are ≈84.6 V, ≈19.85 mA, and ≈595.8 µW, respectively. The energy conversion efficiency of the DHEG is up to ≈13.8%. This flexible hybrid generator may provide a promising strategy for effectively harvesting energy from raindrops.
RESUMO
Human herpesvirus type 6A (HHV-6A) can cause a series of immune and neurological diseases, and the establishment of a sensitive biosensor for the rapid detection of HHV-6A is of great significance for public health and safety. Herein, a bis-tridentate iridium complex (BisLT-Ir-NHC) comprising the N-heterocyclic carbene (NHC) ligand as a novel kind of efficient ECL luminophore has been unprecedently reported. Based on its excellent ECL properties, a new sensitive ECL-based sandwich immunosensor to detect the HHV-6A virus was successfully constructed by encapsulating BisLT-Ir-NHC into silica nanoparticles and embellishing ECL sensing interface with MXene@Au-CS. Notably, the immunosensor illustrated in this work not only had a wide linear range of 102 to 107 cps/µL but also showed outstanding recoveries (98.33-105.11%) in real human serum with an RSD of 0.85-3.56%. Undoubtedly, these results demonstrated the significant potential of the bis-tridentate iridium(III) complex containing an NHC ligand in developing ECL-based sensitive analytical methods for virus detection and exploring novel kinds of efficient iridium-based ECL luminophores in the future.
Assuntos
Complexos de Coordenação , Técnicas Eletroquímicas , Herpesvirus Humano 6 , Irídio , Medições Luminescentes , Metano/análogos & derivados , Irídio/química , Humanos , Imunoensaio/métodos , Ligantes , Complexos de Coordenação/química , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Metano/química , Compostos Heterocíclicos/químicaRESUMO
Obacunone, a natural triterpenoid, is an active component of the herbs Dictamnus dasycarpus Turcz. and Phellodendron amurense Rupr, and an indicator of the herbs' quality. Owing to its multiple health benefits, several studies have investigated the multi-targeting potential action mechanisms of obacunone. To summarize recent developments on the pharmacological actions of obacunone and focus on the underlying molecular mechanisms and signaling networks, we searched PubMed, Europe PMC, Wiley Online Library, Web of Science, Google Scholar, Wanfang Medical Network, and China National Knowledge Infrastructure for articles published prior to March 2024. Existing research indicates obacunone has great potential to become a promising therapeutic option against tumors, fibrotic diseases, bone and cholesterol metabolism diseases, and infections of pathogenic microorganisms, among others. The paper contributes to providing up-to-date references for further research and clinical applications of obacunone.
Assuntos
Compostos Fitoquímicos , Triterpenos , Humanos , Triterpenos/farmacologia , Triterpenos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Animais , Transdução de Sinais/efeitos dos fármacos , Neoplasias/tratamento farmacológicoRESUMO
Bipolar disorder (BD) is a severe mental disorder with various hypotheses regarding its pathogenesis. This article provides a summary of numerous studies on the variations in inflammatory cytokine levels in patients with BD and the effects of treatment with antipsychotics, mood stabilizers, and antidepressants on these levels. In addition, patients with autoimmune diseases who use anti-inflammatory monoclonal antibodies experience symptoms, such as depression, anxiety, and insomnia. These pieces of evidence suggest a potential association between immune inflammation and BD and offer new possibilities for therapy. Building upon this relationship, the authors propose an innovative approach for treating BD through individualized and precise therapy using anti-inflammatory monoclonal antibody drugs. To support this proposal, the authors compile information on pharmacological effects and relevant studies, including trials of various anti-inflammatory therapeutic monoclonal antibody drugs (e.g. infliximab, tocilizumab, and canakinumab) for the potential treatment of BD and its associated side effects in psychiatry. The authors categorize these anti-inflammatory monoclonal antibody drugs into levels I-IV through a comprehensive analysis of their advantages and disadvantages. Their potential is examined, and the need for further exploration of their pharmaceutical effects is established.
RESUMO
The microscopic origin of high-temperature superconductivity in cuprates remains unknown. It is widely believed that substantial progress could be achieved by better understanding of the pseudogap phase, a normal non-superconducting state of cuprates1,2. In particular, a central issue is whether the pseudogap could originate from strong pairing fluctuations3. Unitary Fermi gases4,5, in which the pseudogap-if it exists-necessarily arises from many-body pairing, offer ideal quantum simulators to address this question. Here we report the observation of a pair-fluctuation-driven pseudogap in homogeneous unitary Fermi gases of lithium-6 atoms, by precisely measuring the fermion spectral function through momentum-resolved microwave spectroscopy and without spurious effects from final-state interactions. The temperature dependence of the pairing gap, inverse pair lifetime and single-particle scattering rate are quantitatively determined by analysing the spectra. We find a large pseudogap above the superfluid transition temperature. The inverse pair lifetime exhibits a thermally activated exponential behaviour, uncovering the microscopic virtual pair breaking and recombination mechanism. The obtained large, temperature-independent single-particle scattering rate is comparable with that set by the Planckian limit6. Our findings quantitatively characterize the pseudogap in strongly interacting Fermi gases and they lend support for the role of preformed pairing as a precursor to superfluidity.
RESUMO
The establishment of rapid target identification and analysis methods for antibiotic resistance genes (ARGs) is urgently needed. In this study, we unprecedently designed a target-catalyzed hairpin assembly (CHA) electrochemiluminescent (ECL) biosensor for the ultrasensitive detection of ampicillin resistance genes (ARGAMP) based on a novel, efficient near-infrared ruthenium carbene complex/TPrA/PEI ternary ECL system with low oxidation potential. The ternary NIR-ECL system illustrated in this work displayed double ECL intensity in comparison with their corresponding traditional binary ECL system. The as-prepared ECL biosensor illustrated in this work demonstrates highly selective and sensitive determination of ARGAMP from 1 fM to 1 nM and a low detection limit of 0.23 fM. Importantly, it also exhibits good accuracy and stabilities to identify ARGAMP in plasmid and bacterial genome DNA, which demonstrates its excellent reliability and great potential in detecting ARGAMP in real environmental samples.
Assuntos
Técnicas Biossensoriais , Metano/análogos & derivados , Rutênio , Técnicas Eletroquímicas/métodos , Reprodutibilidade dos Testes , Resistência a Ampicilina , Medições Luminescentes/métodos , DNA , Técnicas Biossensoriais/métodos , Limite de DetecçãoRESUMO
The current study aimed to explore the protective factors and underlying mechanisms associated with loneliness and psychological distress among older Chinese adults within the framework of a longitudinal design. This investigation specifically focused on the mediating role of attitudes toward own aging (ATOA) in the relationship between social support and the experience of loneliness and psychological distress (comprising depression, anxiety, and stress) amidst the backdrop of the COVID-19 pandemic. A cohort of 345 elderly individuals (mean age = 83.84 years, standard deviation = 8.49 years; 55.1% females) participated in this research endeavor. The participants were required to complete self-report instruments measuring their perceived levels of social support at Time 1 (T1), attitudes towards own aging, ATOA at Time 2 (T2), and their experiences of loneliness, and psychological distress (including depression, anxiety, and stress) at T1 and Time 3 (T3). The data collection timeline encompassed baseline data collection at T1 in September 2020, a subsequent six-month follow-up at T2 in March 2021, and a one-year follow up at T3 in September 2021. The findings of this investigation unveiled a negative predictive relationship between social support at T1 and psychological distress (encompassing depression, anxiety, and stress) at T3. Furthermore, it was discerned that ATOA at T2 acted as a mediating mechanism, elucidating the longitudinal association between social support at T1 and the manifestation of loneliness and psychological distress (including depression, anxiety, and stress) at T3. The discussion section of this paper delves into an exploration of the limitations and implications inherent in these conclusions, particularly concerning their relevance to potential intervention strategies.
Assuntos
Solidão , Angústia Psicológica , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Solidão/psicologia , Pandemias , Estudos Longitudinais , Envelhecimento/psicologia , Apoio Social , Depressão/epidemiologia , Depressão/psicologia , China/epidemiologiaRESUMO
The development of advanced nanofluidic membranes with better ion selectivity, efficient energy conversion and high output power density remains challenging. Herein, we prepared nanofluidic hybrid membranes based on TEMPO oxidized cellulose nanofibers (T-CNF) and manganese-based metal organic framework (MOF) using a simple in situ synthesis method. Incorporated T-CNF endows the MOF/T-CNF hybrid membrane with a high cation selectivity up to 0.93. Nanoporous MOF in three-dimensional interconnected nanochannels provides massive ion transport pathways. High transmembrane ion flux and low ion permeation energy barrier are correlated with a superior energy conversion efficiency (36 %) in MOF/T-CNF hybrid membrane. When operating under 50-fold salinity gradient by mixing simulated seawater and river water, the MOF/T-CNF hybrid membrane achieves a maximum power density value of 1.87 W m-2. About 5-fold increase in output power density was achieved compared to pure T-CNF membrane. The integration of natural nanofibers with high charge density and nanoporous MOF materials is demonstrated an effective and novel strategy for the enhancement of output power density of nanofluidic membranes, showing the great potential of MOF/T-CNF hybrid membranes as efficient nanofluidic osmotic energy generators.
Assuntos
Celulose Oxidada , Estruturas Metalorgânicas , Nanofibras , Celulose , Transporte de ÍonsRESUMO
The detection of the U94 gene in human herpesvirus 6 is crucial for early diagnosis of HHV-6 infections, which could induce acute febrile illness in infants. In this work, the first ultrasensitive electrochemiluminescence (ECL) biosensor for detecting U94 gene in Human Herpesvirus 6 was successfully designed by utilizing efficient novel metal-organic framework (MOF)-based ECL nanoemitters comprising iridium(III) complexes (Ir-ZIF-8-NH2) synthesized via one-pot coordination reaction strategy as an ECL indicator and a target-catalyzed hairpin assembly (CHA) signal amplification strategy. The as-prepared ECL indicator Ir-ZIF-8-NH2 exhibited an approximately 2.7-fold ECL intensity compared with its small molecular analogue of emissive iridium(III) complex named IrppymIM formed by in situ coordination reaction between iridium(III) solvent complex and imidazole ligands. In addition, a target-catalyzed hairpin assembly (CHA) strategy was employed to further improve the sensitivity of the proposed ECL biosensor, which demonstrated a wide linear range from 1 fM to 1 µM and the limit of detection as low as 0.113 fM (S/N = 3). Significantly, this biosensor was successfully applied to detect U94 gene in plasmids and real virus samples. The recoveries were in the range of 97.0-109.0% for plasmids and 95.7-107.5% for real virus samples with a relative standard deviation (RSD) of 1.87-2.53%. These satisfactory experimental results from the proposed ECL biosensor in this work would inevitably promote the development of new time/cost-effective and sensitive methods to detect HHV-6 with a major global health threat and substantial burden on healthcare in the future.
Assuntos
Técnicas Biossensoriais , Herpesvirus Humano 6 , Estruturas Metalorgânicas , Humanos , Herpesvirus Humano 6/genética , Irídio , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Limite de DetecçãoRESUMO
Latent fingerprint (LFP) powders are crucial in the detection of LFPs in forensic science. However, it is often plagued by poor image resolution and low contrast. Herein, enhanced LFP fluorescence (FL) visualizations are achieved by doping Eu(III) coordination compound Eu(TTA)3phen directly into SiO2 microspheres instead of Eu(III) ions. Using the synthesized Eu(TTA)3phen-SiO2 microspheres, the fine characteristic structure of LFP can be seen and recognized under 365 nm irradiation, up to Level 3. However, the Eu3+-SiO2 microspheres were difficult to recognize the Level 2,3 fingerprint structure. The difference between the ridge and furrow gray values of Eu(TTA)3phen-SiO2 microspheres is 2.1 times that of Eu3+-SiO2 microspheres. The coordination effect increased the asymmetry around Eu(III) ions, resulting in the ultrasensitive 5D0â7F2 transition, thus increasing the FL intensity, and the uniform doping of the Eu(III) coordination compound into SiO2 also reduced the surface FL quenching due to shielding from oxygen. Under this dual effect, the LFP performance of Eu(TTA)3phen-SiO2 microspheres has been significantly improved. We believe that this novel and easy LFP visualization method is a promising routine in specific target detection including criminal investigation, customhouse check-in, and drug control.
RESUMO
As a kind of anthracycline, doxorubicin (DOX) is commonly used as an antitumor drug, but its clinical application has been greatly hindered due to its severe cardiotoxicity. Hence, in this study, we investigated the role of catalpol (CTP) and its effect on DOX-induced cardiotoxicity.The cardiac function of mice was evaluated by assessing lactate dehydrogenase, creatine kinase isoenzyme, heart weight to body weight, and heart weight/tibia length levels. Histopathological changes were observed using hematoxylin and eosin staining, and the terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to examine myocardial apoptosis. Superoxide dismutase (SOD) activity, glutathione (GSH), and malondialdehyde (MDA) levels were measured to confirm the changes in oxidative stress. Western blotting showed the levels of autophagy- and pathway-related proteins. Expression of autophagy marker LC3 was examined using immunofluorescence staining.CTP alleviated DOX-induced cardiac damage in mice. We further observed upregulated SOD and GSH levels, and downregulated MDA level after the CTP treatment in DOX-treated mice, indicating the protective role of CTP against oxidative injury. DOX-induced myocardial apoptosis was also inhibited by CTP treatment in mice. In addition, CTP decreased the levels of Beclin1 and LC3II/LC3I, increased the levels of P62, and activated the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway in DOX-treated mice.CTP ameliorated DOX-induced cardiotoxicity by inhibiting oxidative stress, myocardial apoptosis, and autophagy via the AKT-mTOR pathway.
Assuntos
Cardiotoxicidade , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cardiotoxicidade/etiologia , Doxorrubicina/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Serina-Treonina Quinases TOR/uso terapêutico , Miocárdio/patologia , Estresse Oxidativo , Autofagia , Superóxido Dismutase/metabolismo , Apoptose/fisiologia , Miócitos Cardíacos/metabolismo , Mamíferos/metabolismoRESUMO
Psychological stress has been recognized as a contributing factor to worsened prognosis in patients with cardiac failure following myocardial infarction (MI). Although the ventrolateral part of the ventromedial hypothalamus (VMHVL) has been implicated in emotional distress, its involvement in post-MI cardiac dysfunction remains largely unexplored. This study was designed to investigate the effect of the VMHVL activation in the MI rat model and its underlying mechanisms. Our findings demonstrate that activation of VMHVL neurons enhances the activity of the cardiac sympathetic nervous system through the paraventricular nucleus (PVN) and superior cervical ganglion (SCG). This activation leads to an elevation in catecholamine levels, which subsequently modulates myosin function and triggers the release of anti-inflammatory factors, to exacerbate the post-MI cardiac prognosis. The denervation of the superior cervical ganglion (SGN) effectively blocked the cardiac sympathetic effects induced by the VMHVL activation, and ameliorated the cardia fibrosis and dysfunction. Therefore, our study identified the role of the "VMHVL-PVN-SCG" sympathetic pathway in the post-MI heart, and proposed SGN as a promising strategy in mitigating cardiac prognosis in stressful rats.
Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Ratos , Animais , Infarto do Miocárdio/metabolismo , Coração , Sistema Nervoso Simpático/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismoRESUMO
Titanium and its alloys have become the most excellent structure materials for naval seawater pipelines due to their high strength and good corrosion resistance. However, marine biofouling poses a serious threat to titanium alloy piping systems because of their good biocompatibility. Recently, the biomimetic antifouling coating, a novel antifouling method, has received great attention. Here, based on this biomimetic idea, we develop a nontoxic antifouling slippery surface (AFSS) using silicone oil, silane coupling agent, nanosilica, nanoceramic coating, epoxy resin, and capsaicin. The developed AFSS has excellent slippery performance for various droplets, good durability, and a superior self-cleaning property. Additionally, the antifouling performance of the AFSS was significantly enhanced, as confirmed by the reduced adhesion of proteins (70.7%), bacteria (97.2%), and algae (97.7%) compared to the ordinary titanium alloy. With these excellent properties, the AFSS was expected to be a promising candidate for protecting titanium alloy piping systems from marine biofouling.