Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Front Pharmacol ; 15: 1293980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482052

RESUMO

Autophagy is a conserved, cellular self-degradation system that is essential for maintaining intracellular homeostasis. Increasing evidence suggests that autophagy plays an important dual regulatory role in the development of many human diseases, such as cancer. Recent studies have shown that the autophagy process in tumor cells can be regulated by various stimuli from both intracellular and extracellular environments, including the effects of anesthesia. Anesthetics have been shown to not only have clinical anesthetic and sedative effects but also play important roles in the progression of tumors. The effects of different types of anesthetics on tumors differ. In this review, we summarize the basic information on autophagy, the regulatory function of autophagy in cancer, currently used autophagy-targeted tumor therapy, and the effects of different types of anesthetics on tumor progression. We focus on the molecular mechanisms by which anesthetics exert tumor-inhibiting effects by activating or inhibiting autophagy. Herein, we also explore the potential application of the anesthetic/autophagy system in clinical tumor treatment. These findings provide a theoretical basis for the use of anesthetics during the perioperative period to suppress tumor development and provide insights for autophagy-targeted cancer treatment and drug development.

2.
Biomed Pharmacother ; 167: 115472, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716122

RESUMO

Opioids are widely used in clinical practice by activating opioid receptors (OPRs), but their clinical application is limited by a series of side effects. Researchers have been making tremendous efforts to promote the development and application of opioids. Fortunately, recent studies have identified the additional effects of opioids in addition to anesthesia and analgesia, particularly in terms of organ protection against ischemia-reperfusion (I/R) injury, with unique advantages. I/R injury in vital organs not only leads to cell dysfunction and structural damage but also induces acute and chronic organ failure, even death. Early prevention and appropriate therapeutic targets for I/R injury are crucial for organ protection. Opioids have shown cardioprotective effects for over 20 years, especially remifentanil, a derivative of fentanyl, which is a new ultra-short-acting opioid analgesic widely used in clinical anesthesia induction and maintenance. In this review, we provide current knowledge about the physiological effects related to OPR-mediated organ protection, focusing on the protective effect and mechanism of remifentanil on I/R injury in the heart and other vital organs. Herein, we also explored the potential application of remifentanil in clinical I/R injury. These findings provide a theoretical basis for the use of remifentanil to inhibit or alleviate organ I/R injury during the perioperative period and provide insights for opioid-induced human organ protection and drug development.

3.
Cancer Manag Res ; 15: 547-561, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426392

RESUMO

Long non-coding RNAs (lncRNAs) are non-coding RNAs (ncRNAs) longer than 200nt. They have complex biological functions and take part in multiple fundamental biological processes, such as cell proliferation, differentiation, survival and apoptosis. Recent studies suggest that lncRNAs modulate critical regulatory proteins involved in cancer cell cycle, such as cyclin, cell cycle protein-dependent kinases (CDK) and cell cycle protein-dependent kinase inhibitors (CKI) through different mechanisms. To clarify the role of lncRNAs in the regulation of cell cycle will provide new ideas for design of antitumor therapies which intervene with the cell cycle progression. In this paper, we review the recent studies about the controlling of lncRNAs on cell cycle related proteins such as cyclin, CDK and CKI in different cancers. We further outline the different mechanisms involved in this regulation and describe the emerging role of cell cycle-related lncRNAs in cancer diagnosis and therapy.

4.
Front Immunol ; 14: 1065357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895573

RESUMO

Research over the past two decades has confirmed that noncoding RNAs (ncRNAs), which are abundant in cells from yeast to vertebrates, are no longer "junk" transcripts but functional regulators that can mediate various cellular and physiological processes. The dysregulation of ncRNAs is closely related to the imbalance of cellular homeostasis and the occurrence and development of various diseases. In mammals, ncRNAs, such as long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), have been shown to serve as biomarkers and intervention targets in growth, development, immunity, and disease progression. The regulatory functions of lncRNAs on gene expression are usually mediated by crosstalk with miRNAs. The most predominant mode of lncRNA-miRNA crosstalk is the lncRNA-miRNA-mRNA axis, in which lncRNAs act as competing endogenous RNAs (ceRNAs). Compared to mammals, little attention has been given to the role and mechanism of the lncRNA-miRNA-mRNA axis in teleost species. In this review, we provide current knowledge about the teleost lncRNA-miRNA-mRNA axis, focusing on its physiological and pathological regulation in growth and development, reproduction, skeletal muscle, immunity to bacterial and viral infections, and other stress-related immune responses. Herein, we also explored the potential application of the lncRNA-miRNA-mRNA axis in the aquaculture industry. These findings contribute to an enhanced understanding of ncRNA and ncRNA-ncRNA crosstalk in fish biology to improve aquaculture productivity, fish health and quality.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Biomarcadores/metabolismo , Mamíferos/metabolismo
5.
Front Pharmacol ; 13: 1053556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532760

RESUMO

In the last two decades, natural active substances have attracted great attention in developing new antitumor drugs, especially in the marine environment. A series of marine-derived compounds or derivatives with potential antitumor effects have been discovered and developed, but their mechanisms of action are not well understood. Emerging studies have found that several tumor-related signaling pathways and molecules are involved in the antitumor mechanisms of marine-derived agents, including noncoding RNAs (ncRNAs). In this review, we provide an update on the regulation of marine-derived agents associated with ncRNAs on tumor cell proliferation, apoptosis, cell cycle, invasion, migration, drug sensitivity and resistance. Herein, we also describe recent advances in marine food-derived ncRNAs as antitumor agents that modulate cross-species gene expression. A better understanding of the antitumor mechanisms of marine-derived agents mediated, regulated, or sourced by ncRNAs will provide new biomarkers or targets for potential antitumor drugs from preclinical discovery and development to clinical application.

7.
Front Pharmacol ; 13: 964771, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059940

RESUMO

Macrophages work with monocytes and dendritic cells to form a monocyte immune system, which constitutes a powerful cornerstone of the immune system with their powerful antigen presentation and phagocytosis. Macrophages play an essential role in infection, inflammation, tumors and other pathological conditions, but these cells also have non-immune functions, such as regulating lipid metabolism and maintaining homeostasis. Propofol is a commonly used intravenous anesthetic in the clinic. Propofol has sedative, hypnotic, anti-inflammatory and anti-oxidation effects, and it participates in the body's immunity. The regulation of propofol on immune cells, especially macrophages, has a profound effect on the occurrence and development of human diseases. We summarized the effects of propofol on macrophage migration, recruitment, differentiation, polarization, and pyroptosis, and the regulation of these propofol-regulated macrophage functions in inflammation, infection, tumor, and organ reperfusion injury. The influence of propofol on pathology and prognosis via macrophage regulation is also discussed. A better understanding of the effects of propofol on macrophage activation and function in human diseases will provide a new strategy for the application of clinical narcotic drugs and the treatment of diseases.

8.
Stem Cell Res Ther ; 13(1): 299, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841025

RESUMO

BACKGROUND: Most castration-resistant prostate cancers (CRPCs) have a luminal phenotype with high androgen receptor (AR) and prostate-specific antigen (PSA) expression. Currently, it is difficult to culture castration-resistant luminal cells with AR and PSA expression. METHODS: We formulated a custom-made medium and isolated primary cells from the prostate of adult wild-type (WT) and TRAMP mice. The cells were characterized by immunofluorescence staining, transcriptomic analysis, and qRT-PCR verification. Their self-renewal and differentiation potential in vitro and in vivo were examined. We treated the cells with androgen deprivation and enzalutamide and performed immunofluorescence staining and western blotting to analyze their expression of AR and PSA. RESULTS: We isolated a novel type of castration-resistant intermediate prostate stem cells (CRIPSCs) from adult WT and TRAMP mice. The mouse CRIPSCs proliferated rapidly in two-dimensional (2D) culture dishes and can be cultured for more than six months. The mouse CRIPSCs expressed luminal markers (AR, PSA, and Dsg4), basal markers (CK5 and p63), Psca, and the intermediate cell marker (Ivl). Transcriptomic analysis showed that the mouse CRIPSCs had upregulated signaling pathways related to cancer development and drug resistance. In the long-term culture, TRAMP CRIPSCs had higher expression of the genes related to stem cells and cancers than WT mice. Both WT and TRAMP CRIPSCs formed organoids in Matrigel. WT CRIPSCs did not form prostate tissues when transplanted in vivo without urogenital sinus mesenchyme (UGM) cells. In contrast, TRAMP CRIPSCs formed prostate ducts in NOG mice without UGM  cells and differentiated into luminal, basal, and neuroendocrine cells. Androgens regulated AR translocation between the nucleus and cytoplasm in the mouse CRIPSCs. Treatment of androgen deprivation  (ADT) and enzalutamide reduced AR expression in WT and TRAMP CRIPSCs; however, this treatment promoted PSA expression in TRAMP, while not WT CRIPSCs, similar to the clinical observations of CRPC. CONCLUSIONS: Our study established a method for isolating and expanding mouse CRIPSCs in 2D culture dishes. Mouse CRIPSCs had markers of basal and luminal cells, including AR and PSA, and can differentiate into prostate organoids and tissues. TRAMP CRIPSCs had elevated PSA expression upon ADT and enzalutamide treatment. Our method can be translated into clinical settings for CRPC precision medicine.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Antagonistas de Androgênios/uso terapêutico , Androgênios/metabolismo , Animais , Castração , Desmogleínas , Humanos , Masculino , Camundongos , Nitrilas , Próstata/metabolismo , Antígeno Prostático Específico/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Células-Tronco/metabolismo
9.
Mol Ther Oncolytics ; 25: 98-120, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35506150

RESUMO

The tumor microenvironment (TME) is a well-recognized system that plays an essential role in tumor initiation, development, and progression. Intense intercellular communication between tumor cells and other cells (especially macrophages) occurs in the TME and is mediated by cell-to-cell contact and/or soluble messengers. Emerging evidence indicates that noncoding RNAs (ncRNAs) are critical regulators of the relationship between cells within the TME. In this review, we provide an update on the regulation of ncRNAs (primarily micro RNAs [miRNAs], long ncRNAs [lncRNAs], and circular RNAs [circRNAs]) in the crosstalk between macrophages and tumor cells in hepatocellular carcinoma (HCC). These ncRNAs are derived from macrophages or tumor cells and act as oncogenes or tumor suppressors, contributing to tumor progression not only by regulating the physiological and pathological processes of tumor cells but also by controlling macrophage infiltration, activation, polarization, and function. Herein, we also explore the options available for clinical therapeutic strategies targeting crosstalk-related ncRNAs to treat HCC. A better understanding of the relationship between macrophages and tumor cells mediated by ncRNAs will uncover new diagnostic biomarkers and pharmacological targets in cancer.

10.
Mol Ther Oncolytics ; 21: 242-254, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34095462

RESUMO

Circular RNAs (circRNAs) are a large class of noncoding RNAs that are emerging as critical regulators of various cellular processes that are involved in the physiopathological mechanism of many human diseases, such as cardiovascular disease, atherosclerosis, diabetes mellitus, and carcinogenesis. Autophagy is a conserved and catabolic cellular process that degrades unfolded, misfolded, or damaged protein aggregates or organelles to maintain cellular homeostasis under physiological and pathological conditions. Increasing evidence has shown a link between circRNAs and autophagy that is closely related to the occurrence and development of human diseases, including cancer. In this review, we highlight recent advances in understanding the functions and mechanisms of circRNAs in the regulation of autophagy in cancer. These autophagy-related circRNAs contribute to cancer development and progression in various types of human cancer by activating or inhibiting autophagy. Cumulative research on the relationship between circRNAs and autophagy regulation provides critical insight into the essential role that circRNAs play in carcinogenesis and suggests new targets for tumor therapy.

11.
Cancer Res ; 81(15): 4027-4040, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33985974

RESUMO

Triple-negative breast cancer (TNBC) exhibits a high mortality rate and is the most aggressive subtype of breast cancer. As previous studies have shown that histone deacetylases (HDAC) may represent molecular targets for TNBC treatment, we screened a small library of synthetic molecules and identified a potent HDAC inhibitor (HDACi), YF438, which exerts effective anti-TNBC activity both in vitro and in vivo. Proteomic and biochemical studies revealed that YF438 significantly downregulated mouse double minute 2 homolog (MDM2) expression. In parallel, loss of MDM2 expression or blocking MDM2 E3 ligase activity rendered TNBC cells less sensitive to YF438 treatment, revealing an essential role of MDM2 E3 ligase activity in YF438-induced inhibition of TNBC. Mechanistically, YF438 disturbed the interaction between HDAC1 and MDM2, induced the dissociation of MDM2-MDMX, and subsequently increased MDM2 self-ubiquitination to accelerate its degradation, which ultimately inhibited growth and metastasis of TNBC cells. In addition, analysis of clinical tissue samples demonstrated high expression levels of MDM2 in TNBC, and MDM2 protein levels closely correlated with TNBC progression and metastasis. Collectively, these findings show that MDM2 plays an essential role in TNBC progression and targeting the HDAC1-MDM2-MDMX signaling axis with YF438 may provide a promising therapeutic option for TNBC. Furthermore, this novel underlying mechanism of a hydroxamate-based HDACi in altering MDM2 highlights the need for further development of HDACi for TNBC treatment. SIGNIFICANCE: This study uncovers the essential role of MDM2 in TNBC progression and suggests that targeting the HDAC1-MDM2-MDMX axis with a hydroxamate-based HDACi could be a promising therapeutic strategy for TNBC.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Animais , Feminino , Humanos , Camundongos , Transfecção
12.
Int J Biol Sci ; 17(1): 134-150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390839

RESUMO

Autophagy is a conserved catabolic process involving the degradation and recycling of damaged biomacromolecules or organelles through lysosomal-dependent pathways and plays a crucial role in maintaining cell homeostasis. Consequently, abnormal autophagy is associated with multiple diseases, such as infectious diseases, neurodegenerative diseases and cancer. Currently, autophagy is considered to be a dual regulator in cancer, functioning as a suppressor in the early stage while supporting the growth and metastasis of cancer cells in the later stage and may also produce therapeutic resistance. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level by silencing targeted mRNA. MiRNAs have great regulatory potential for several fundamental biological processes, including autophagy. In recent years, an increasing number of studies have linked miRNA dysfunction to the growth, metabolism, migration, metastasis, and responses of cancer cells to therapy. Therefore, the study of autophagy-related miRNAs in cancer will provide insights into cancer biology and lead to the development of novel anti-cancer strategies. In the present review, we summarise the current knowledge of miRNA dysregulation during autophagy in cancer, focusing on the relationship between autophagy and miRNAs, and discuss their involvement in cancer biology and cancer treatment.


Assuntos
Autofagia , MicroRNAs/metabolismo , Neoplasias/metabolismo , Animais , Humanos , Neoplasias/terapia
13.
Front Med (Lausanne) ; 8: 770138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35141241

RESUMO

Keratoconus (KC) is an etiologically heterogeneous corneal ectatic disorder. To systematically display the pathogenesis of keratoconus (KC), this study reviewed all the reported genes involved in KC, and performed an enrichment analysis of genes identified at the genome, transcription, and protein levels respectively. Combined analysis of multi-level results revealed their shared genes, gene ontology (GO), and pathway terms, to explore the possible pathogenesis of KC. After an initial search, 80 candidate genes, 2,933 transcriptional differential genes, and 947 differential proteins were collected. The candidate genes were significantly enriched in extracellular matrix (ECM) related terms, Wnt signaling pathway and cytokine activities. The enriched GO/pathway terms of transcription and protein levels highlight the importance of ECM, cell adhesion, and inflammatory once again. Combined analysis of multi-levels identified 13 genes, 43 GOs, and 12 pathways. The pathogenic relationships among these overlapping factors maybe as follows. The gene mutations/variants caused insufficient protein dosage or abnormal function, together with environmental stimulation, leading to the related functions and pathways changes in the corneal cells. These included response to the glucocorticoid and reactive oxygen species; regulation of various signaling (P13K-AKT, MAPK and NF-kappaB), apoptosis and aging; upregulation of cytokines and collagen-related enzymes; and downregulation of collagen and other ECM-related proteins. These undoubtedly lead to a reduction of extracellular components and induction of cell apoptosis, resulting in the loosening and thinning of corneal tissue structure. This study, in addition to providing information about the genes involved, also provides an integrated insight into the gene-based etiology and pathogenesis of KC.

14.
Front Oncol ; 10: 577636, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072610

RESUMO

Ser/Arg-rich (SR) proteins are RNA-binding proteins known as constitutive and alternative splicing (AS) regulators that regulate multiple aspects of the gene expression program. Ser/Arg-rich splicing factor 3 (SRSF3) is the smallest member of the SR protein family, and its level is controlled by multiple factors and involves complex mechanisms in eukaryote cells, whereas the aberrant expression of SRSF3 is associated with many human diseases, including cancer. Here, we review state-of-the-art research on SRSF3 in terms of its function, expression, and misregulation in human cancers. We emphasize the negative consequences of the overexpression of the SRSF3 oncogene in cancers, the pathways underlying SRSF3-mediated transformation, and implications of potential anticancer drugs by downregulation of SRSF3 expression for cancer therapy. Cumulative research on SRSF3 provides critical insight into its essential part in maintaining cellular processes, offering potential new targets for anti-cancer therapy.

15.
Biomark Res ; 8: 38, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32905346

RESUMO

Spliceosome mutations have become the most interesting mutations detected in human cancer in recent years. The spliceosome, a large, dynamic multimegadalton small nuclear ribonucleoprotein composed of small nuclear RNAs associated with proteins, is responsible for removing introns from precursor mRNA (premRNA) and generating mature, spliced mRNAs. SF3B1 is the largest subunit of the spliceosome factor 3b (SF3B) complex, which is a core component of spliceosomes. Recurrent somatic mutations in SF3B1 have been detected in human cancers, including hematological malignancies and solid tumors, and indicated to be related to patient prognosis. This review summarizes the research progress of SF3B1 mutations in cancer, including SF3B1 mutations in the HEAT domain, the multiple roles and aberrant splicing events of SF3B1 mutations in the pathogenesis of tumors, and changes in mutated cancer cells regarding sensitivity to SF3B small-molecule inhibitors. In addition, the potential of SF3B1 or its mutations to serve as biomarkers or therapeutic targets in cancer is discussed. The accumulated knowledge about SF3B1 mutations in cancer provides critical insight into the integral role the SF3B1 protein plays in mRNA splicing and suggests new targets for anticancer therapy.

16.
RNA Biol ; 16(2): 233-248, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30628514

RESUMO

The development of chemotherapeutic drugs resistance such as doxorubicin (DOX) and cisplatin (DDP) is the major barrier in gastric cancer therapy. Emerging evidences reveal that microRNAs (miRNAs) contribute to chemosensitivity. In this study, we investigated the role of miR-633, an oncogenic miRNA, in gastric cancer chemoresistance. In gastric cancer tissue and cell lines, miR-633 expression was highly increased and correlated with down regulation of Fas-associated protein with death domain (FADD). Inhibition of miR-633 significantly increased FADD protein level and enhanced DOX/DDP induced apoptosis in vitro. MiR-633 antagomir administration remarkably decreased tumor growth in combination with DOX in vivo, suggesting that miR-633 targets FADD to block gastric cancer cell death. We found that the promoter region of miR-633 contained putative binding sites for forkhead box O 3 (Foxo3a), which can directly repress miR-633 transcription. In addition, we observed that DOX-induced nuclear accumulation of Foxo3a leaded to the suppression of miR-633 transcription. Together, our study revealed that miR-633/FADD axis played a significant role in the chemoresistance and Foxo3a regulated this pathway in gastric cancer. Thus, miR-633 antagomir resensitized gastric cancer cells to chemotherapy drug and had potentially therapeutic implication.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Proteína de Domínio de Morte Associada a Fas/genética , Proteína Forkhead Box O3/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Adulto , Idoso , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Interferência de RNA , Transcrição Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mol Ther Nucleic Acids ; 12: 405-419, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195778

RESUMO

Gastric cancer is one of the most prevalent tumor types in the world. Chemotherapy is the most common choice for cancer treatment. However, chemotherapy resistance and adverse side effects limit its clinical applications. Aberrant expression of long noncoding RNAs (lncRNAs) has been found in various stages of gastric cancer development and progression. In this study, we identified that an oncogenic lncRNA, long intergenic non-protein-coding RNA D63785 (lncR-D63785), is highly expressed in gastric cancer tissues and cells. Silencing of lncR-D63785 inhibited cell proliferation, cell migration and invasion in gastric cancer cell lines and reduced tumor volume and size in mice. We found that the expression of lncR-D63785 was inversely correlated with microRNA 422a (miR-422a) expression, which was involved in the downregulation of expression of myocyte enhancer factor-2D (MEF2D) and drug sensitivity. Knockdown of lncR-D63785 increased the expression of miR-422a and the sensitivity of gastric cancer cells to apoptosis induced by the anticancer drug doxorubicin (DOX). This indicates that lncR-D63785 acts as a competitive endogenous RNA (ceRNA) of miR-422a and promotes chemoresistance by blocking miR-422-dependent suppression of MEF2D. Together, our results suggest that the therapeutic suppression of lncR-D63785 alone or in combination with chemotherapeutic agents may be a promising strategy for treating gastric cancer.

18.
J Cell Biochem ; 119(11): 9474-9482, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30074255

RESUMO

Thyroid dysgenesis (TD) accounts for most cases of congenital hypothyroidism. Although mutations in thyroid hormone receptor ß (THRB) have been identified in TD, the mutational spectrum of THRB and phenotype-genotype correlations have not been fully elucidated. In this study, we aimed to find mutations of THRB, examine the functions of these mutations, and attempt to elucidate the relationship between THRB and TD. Thus, we screened the exons of THRB in 280 patients with TD and 200 normal subjects in samples collected from China. We performed cell morphology assays, MTT assays, flow cytometric analyses, and a quantitative reverse-transcription polymerase chain reaction in human thyroid follicular epithelial cells (Nthy-ori cell line) to examine the impact of THRB mutations. In two unrelated patients, two novel missense mutations, c.76G>A (p.D26N) and c.107G>A (p.C36Y), were identified in THRB. Functional studies suggested that the C36Y mutant caused changes in morphology, inhibiting cell proliferation and promoting apoptosis in a human thyroid cell line. In addition, we found that messenger RNA expressions of thyroglobulin (TG) and the Na+ /I- symporter (NIS) were decreased in a time-dependent manner in mutant THRB compared with the wild type. To our knowledge, this is the first study to document the prevalence of THRB mutations and the genotype-phenotype spectrum of TD in a Chinese population. We characterized the function of a C36Y mutation, which reduced cell proliferation and increased cell death in thyroid epithelial cells. This study provides further evidence for genetic THRB defects and disease mechanisms in TD.


Assuntos
Análise Mutacional de DNA/métodos , Receptores beta dos Hormônios Tireóideos/genética , Criança , Pré-Escolar , Hipotireoidismo Congênito/genética , Feminino , Humanos , Masculino , Mutação/genética , Simportadores/genética , Simportadores/metabolismo , Tireoglobulina/genética , Tireoglobulina/metabolismo , Disgenesia da Tireoide/genética , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia
19.
Oncotarget ; 9(27): 19443-19458, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29721215

RESUMO

Gastric cancer is one of the most common cancers and is the second leading cause of cancer mortality worldwide. Therefore, it is urgent to explore new molecular biomarkers for early diagnosis, early treatment and prognosis for gastric cancer patients. Recently, increasing evidence has shown that epigenetic changes, such as aberrant DNA methylation, histone modifications, and noncoding RNAs (ncRNAs) expression, play substantial roles in the development and progression of malignancies. Among these changes, long non-coding RNAs (lncRNAs), a novel class of ncRNAs, are emerging as highly versatile actors in a variety of cellular processes by regulating gene expression at the epigenetic level as well as at the transcriptional and post-transcriptional levels. Hundreds of lncRNAs become dysregulated in the various pathological processes of gastric cancer, and multiple lncRNAs have been reported to function as tumor-suppressors or oncogenes, although the underlying mechanisms are still under investigation. Here, we provide an overview of the epigenetic regulation of chromatin and the molecular functions of lncRNAs; we focus on lncRNA-mediated epigenetic regulation of cancer-related gene expression in gastric cancer, as well as discuss the clinical implications of lncRNAs on epigenetic-related cancer treatments, which may contribute helpful approaches for the development of new potential strategies for future diagnosis and therapeutic intervention in human cancers.

20.
Cell Death Dis ; 9(6): 607, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789536

RESUMO

Gastric cancer (GC) is one of the most common malignancy and the third leading cancer-related death in China. Long noncoding RNAs (lncRNAs) have been implicated in numerous tumors, including GC, however, the mechanism of many functional lncRNAs is still unclear. In this study, we identified the abundantly expressed lncRNA, RP11-290F20.3, in GC cells and patient tumor tissues. We named this lncRNA as GC-related lncRNA1 (GCRL1), which could regulate gastric cell proliferation and metastasis, both in vitro and in vivo. Mechanistically, miRNA-885-3p (miR-885-3p) could inhibit the cell proliferation and metastasis in GC by negatively regulating the expression of cyclin-dependent kinase 4 (CDK4) at the post-transcriptional level. Further, GCRL1 promoted the cell proliferation and metastasis by sponging miR-885-3p and hence, positively regulating CDK4 in GC cells. Taken together, our results demonstrate a novel regulatory axis of malignant cell proliferation and invasion in GC, comprising GCRL1, miR-885-3p, and CDK4, which may serve as a potential therapeutic target in GC.


Assuntos
Quinase 4 Dependente de Ciclina/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Invasividade Neoplásica , Metástase Neoplásica , RNA Longo não Codificante/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA