RESUMO
OBJECTIVE: To prepare polylactic acid microneedles (PLAMNs) with sustained antibacterial effect to avoid skin infection caused by traditional MNs-based biosensors. METHODS: Silver nanoparticles (AgNPs) were synthesized using an in-situ reduction process with polydopamine (PDA). PLAMNs were fabricated using the hot-melt method. A series of pressure tests and puncture experiments were conducted to confirm the physicochemical properties of PLAMNs. Then AgNPs were modified on the surface of PLAMNs through in-situ reduction of PDA, resulting in the formation of PLAMNs@PDA-AgNPs. The in vitro antibacterial efficacy of PLAMNs@PDA-AgNPs was evaluated using agar diffusion assays and bacterial liquid co-culture approach. Wound healing and simulated long-term application were performed to assess the in vivo antibacterial effectiveness of PLAMNs@PDA-AgNPs. RESULTS: The MNs array comprised 169 tiny needle tips in pyramidal rows. Strength and puncture tests confirmed a 100% puncture success rate for PLAMNs on isolated rat skin and tin foil. SEM analysis revealed the integrity of PLAMNs@PDA-AgNPs with the formation of new surface substances. EDS analysis indicated the presence of silver elements on the surface of PLAMNs@PDA-AgNPs, with a content of 14.44%. Transepidermal water loss (TEWL) testing demonstrated the rapid healing of micro-pores created by PLAMNs@PDA-AgNPs, indicating their safety. Both in vitro and in vivo tests confirmed antibacterial efficacy of PLAMNs@PDA-AgNPs. CONCLUSIONS: In conclusion, the sustained antibacterial activity exhibited by PLAMNs@PDA-AgNPs offers a promising solution for addressing skin infections associated with MN applications, especially when compared to traditional MN-based biosensors. This advancement offers significant potential for the field of MN technology.
Assuntos
Nanopartículas Metálicas , Poliésteres , Prata , Ratos , Animais , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade MicrobianaRESUMO
Background: Cinnamic acid and its derivatives have gained significant attention in recent medicinal research due to their broad spectrum of pharmacological properties. However, the effects of these compounds on xanthine oxidase (XO) have not been systematically investigated, and the inhibitory mechanism remains unclear.
Objectives: The objective of this study was to screen 18 compounds and identify the XO inhibitor with the strongest inhibitory effect. Furthermore, we aimed to study the inhibitory mechanism of the identified compound.
Methods: The effects of the inhibitors on XO were evaluated using kinetic analysis, docking simulations, and in vivo study. Among the compounds tested, 4-NA was discovered as the first XO inhibitor and exhibited the most potent inhibitory effects, with an IC50 value of 23.02 ± 0.12 µmol/L. The presence of the nitro group in 4-NA was found to be essential for enhancing XO inhibition. The kinetic study revealed that 4-NA inhibited XO in a reversible and noncompetitive manner. Moreover, fluorescence spectra analysis demonstrated that 4-NA could spontaneously form complexes with XO, referred to as 4-NA-XO complexes, with the negative values of â³H and ΔS.
Results: This suggests that hydrogen bonds and van der Waals forces play crucial roles in the binding process. Molecular docking studies further supported the kinetic analysis and provided insight into the optimal binding conformation, indicating that 4-NA is located at the bottom outside the catalytic center through the formation of three hydrogen bonds. Furthermore, animal studies confirmed that the inhibitory effects of 4-NA on XO resulted in a significant reduction of serum uric acid level in hyperuricemia mice.
Conclusion: This work elucidates the mechanism of 4-NA inhibiting XO, paving the way for the development of new XO inhibitors.
.Assuntos
Hiperuricemia , Xantina Oxidase , Camundongos , Animais , Simulação de Acoplamento Molecular , Xantina Oxidase/química , Xantina Oxidase/metabolismo , Ácido Úrico , Cinética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/químicaRESUMO
Microneedles (MNs) have recently garnered extensive interest concerning direct interstitial fluid (ISF) extraction or their integration into medical devices for continuous biomarker monitoring, owing to their advantages of painlessness, minimal invasiveness, and ease of use. However, micropores created by MN insertion may provide pathways for bacterial infiltration into the skin, causing local or systemic infection, especially with long-term in situ monitoring. To address this, we developed a novel antibacterial sponge MNs (SMNs@PDA-AgNPs) by depositing silver nanoparticles (AgNPs) on polydopamine (PDA)-coated SMNs. The physicochemical properties of SMNs@PDA-AgNPs were characterized regarding morphology, composition, mechanical strength, and liquid absorption capacity. The antibacterial effects were evaluated and optimized through agar diffusion assays in vitro. Wound healing and bacterial inhibition were further examined in vivo during MN application. Finally, the ISF sampling ability and biosafety of SMNs@PDA-AgNPs were assessed in vivo. The results demonstrate that antibacterial SMNs enable direct ISF extraction while preventing infection risks. SMNs@PDA-AgNPs could potentially be used for direct sampling or combined with medical devices for real-time diagnosis and management of chronic diseases.
RESUMO
Ellagic acid (EA), which is widely distributed in many foods, has been found to possess inhibitory activity against xanthine oxidase (XO). However, there is ongoing debate about the difference in XO inhibitory activity between EA and allopurinol. Additionally, the inhibitory kinetics and mechanism of EA on XO are still unclear. Herein, the authors systematically studied the inhibitory effects of EA on XO. The authors' findings showed that EA is a reversible inhibitor with mixed-type inhibition, and its inhibitory activity is weaker than allopurinol. Fluorescence quenching experiments suggested that the generation of EA-XO complex was exothermic and spontaneous. In silico analysis further confirmed that EA entered the XO catalytic centre. Furthermore, the authors verified the anti-hyperuricemia effect of EA in vivo. This study elucidates the inhibition kinetics and mechanism of EA on XO, and lays a theoretical foundation for the further development of drugs and functional foods containing EA for the treatment of hyperuricemia.
Assuntos
Alopurinol , Hiperuricemia , Humanos , Alopurinol/farmacologia , Alopurinol/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Xantina Oxidase/metabolismo , Xantina Oxidase/uso terapêutico , Ácido Elágico/farmacologia , Ácido Elágico/uso terapêutico , Cinética , Hiperuricemia/tratamento farmacológicoRESUMO
Retinal degeneration, such as age-related macular degeneration (AMD), is a leading cause of blindness worldwide. A myriad of approaches have been undertaken to develop regenerative medicine-based therapies for AMD, including stem cell-based therapies. Rodents as animal models for retinal degeneration are a foundation for translational research, due to the broad spectrum of strains that develop retinal degeneration diseases at different stages. However, mimicking human therapeutic delivery of subretinal implants in rodents is challenging, due to anatomical differences such as lens size and vitreous volume. This surgical protocol aims to provide a guided method for transplanting implants into the subretinal space in rats. A user-friendly comprehensive description of the critical steps has been included. This protocol has been developed as a cost-efficient surgical procedure for reproducibility across different preclinical studies in rats. Proper miniaturization of a human-sized implant is required prior to conducting the surgical experiment, which includes adjustments to the dimensions of the implant. An external approach is used instead of an intravitreal procedure to deliver the implant to the subretinal space. Using a small sharp needle, a scleral incision is performed in the temporal superior quadrant, followed by paracentesis to reduce intraocular pressure, thereby minimizing resistance during the surgical implantation. Next, a balanced salt solution (BSS) injection through the incision is carried out to achieve focal retinal detachment (RD). Lastly, insertion and visualization of the implant into the subretinal space are conducted. Post-operative assessment of the subretinal placement of the implant includes imaging by spectral domain optical coherence tomography (SD-OCT). Imaging follow-ups ascertain the subretinal stability of the implant, before the eyes are harvested and fixated for histological analysis.
Assuntos
Degeneração Macular , Degeneração Retiniana , Humanos , Ratos , Animais , Degeneração Retiniana/cirurgia , Degeneração Retiniana/patologia , Reprodutibilidade dos Testes , Modelos Animais de Doenças , Degeneração Macular/terapia , Tomografia de Coerência Óptica/métodosRESUMO
Cell-based therapies face challenges, including poor cell survival, immune rejection, and integration into pathologic tissue. We conducted an open-label phase 1/2a clinical trial to assess the safety and preliminary efficacy of a subretinal implant consisting of a polarized monolayer of allogeneic human embryonic stem cell-derived retinal pigmented epithelium (RPE) cells in subjects with geographic atrophy (GA) secondary to dry age-related macular degeneration. Postmortem histology from one subject with very advanced disease shows the presence of donor RPE cells 2 years after implantation by immunoreactivity for RPE65 and donor-specific human leukocyte antigen (HLA) class I molecules. Markers of RPE cell polarity and phagocytosis suggest donor RPE function. Further histologic examination demonstrated CD34+ structures beneath the implant and CD4+, CD68+, and FoxP3+ cells in the tissue. Despite significant donor-host HLA mismatch, no clinical signs of retinitis, vitreitis, vasculitis, choroiditis, or serologic immune response were detected in the deceased subject or any other subject in the study. Subretinally implanted, HLA-mismatched donor RPE cells survive, express functional markers, and do not elicit clinically detectable intraocular inflammation or serologic immune responses even without long-term immunosuppression.
Assuntos
Atrofia Geográfica , Degeneração Macular , Próteses e Implantes , Atrofia Geográfica/terapia , Células-Tronco Embrionárias Humanas/patologia , Humanos , Degeneração Macular/patologia , Degeneração Macular/terapia , Próteses e Implantes/efeitos adversos , Epitélio Pigmentado da Retina/patologiaRESUMO
Retinal pigment epithelium (RPE) replacement therapy is evolving as a feasible approach to treat age-related macular degeneration (AMD). In many preclinical studies, RPE cells are transplanted as a cell suspension into immunosuppressed animal eyes and transplant effects have been monitored only short-term. We investigated the long-term effects of human Induced pluripotent stem-cell-derived RPE (iPSC-RPE) transplants in an immunodeficient Royal College of Surgeons (RCS) rat model, in which RPE dysfunction led to photoreceptor degeneration. iPSC-RPE cultured as a polarized monolayer on a nanoengineered ultrathin parylene C scaffold was transplanted into the subretinal space of 28-day-old immunodeficient RCS rat pups and evaluated after 1, 4, and 11 months. Assessment at early time points showed good iPSC-RPE survival. The transplants remained as a monolayer, expressed RPE-specific markers, performed phagocytic function, and contributed to vision preservation. At 11-months post-implantation, RPE survival was observed in only 50% of the eyes that were concomitant with vision preservation. Loss of RPE monolayer characteristics at the 11-month time point was associated with peri-membrane fibrosis, immune reaction through the activation of macrophages (CD 68 expression), and the transition of cell fate (expression of mesenchymal markers). The overall study outcome supports the therapeutic potential of RPE grafts despite the loss of some transplant benefits during long-term observations.
Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Epitélio Pigmentado da Retina/transplante , Animais , Biomarcadores/metabolismo , Humanos , Implantes Experimentais , Luz , Polímeros , Ratos , Colículos Superiores/efeitos da radiação , Análise de Sobrevida , Visão Ocular/efeitos da radiação , XilenosRESUMO
End-stage age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are two major retinal degenerative (RD) conditions that result in irreversible vision loss. Permanent eye damage can also occur in battlefields or due to accidents. This suggests there is an unmet need for developing effective strategies for treating permanent retinal damages. In previous studies, co-grafted sheets of fetal retina with its retinal pigment epithelium (RPE) have demonstrated vision improvement in rat retinal disease models and in patients, but this has not yet been attempted with stem-cell derived tissue. Here we demonstrate a cellular therapy for irreversible retinal eye injuries using a "total retina patch" consisting of retinal photoreceptor progenitor sheets and healthy RPE cells on an artificial Bruch's membrane (BM). For this, retina organoids (ROs) (cultured in suspension) and polarized RPE sheets (cultured on an ultrathin parylene substrate) were made into a co-graft using bio-adhesives [gelatin, growth factor-reduced matrigel, and medium viscosity (MVG) alginate]. In vivo transplantation experiments were conducted in immunodeficient Royal College of Surgeons (RCS) rats at advanced stages of retinal degeneration. Structural reconstruction of the severely damaged retina was observed based on histological assessments and optical coherence tomography (OCT) imaging. Visual functional assessments were conducted by optokinetic behavioral testing and superior colliculus electrophysiology. Long-term survival of the co-graft in the rat subretinal space and improvement in visual function were observed. Immunohistochemistry showed that co-grafts grew, generated new photoreceptors and developed neuronal processes that were integrated into the host retina. This novel approach can be considered as a new therapy for complete replacement of a degenerated retina.
RESUMO
Age-related macular degeneration (AMD) is the primary cause of blindness in adults over 60 years of age, and clinical trials are currently assessing the therapeutic potential of retinal pigmented epithelial (RPE) cell monolayers on implantable scaffolds to treat this disease. However, challenges related to the culture, long-term storage, and long-distance transport of such implants currently limit the widespread use of adherent RPE cells as therapeutics. Here we report a xeno-free protocol to cryopreserve a confluent monolayer of clinical-grade, human embryonic stem cell-derived RPE cells on a parylene scaffold (REPS) that yields viable, polarized, and functional RPE cells post-thaw. Thawed cells exhibit ≥ 95% viability, have morphology, pigmentation, and gene expression characteristic of mature RPE cells, and secrete the neuroprotective protein, pigment epithelium-derived factor (PEDF). Stability under liquid nitrogen (LN2) storage has been confirmed through one year. REPS were administered immediately post-thaw into the subretinal space of a mammalian model, the Royal College of Surgeons (RCS)/nude rat. Implanted REPS were assessed at 30, 60, and 90 days post-implantation, and thawed cells demonstrate survival as an intact monolayer on the parylene scaffold. Furthermore, immunoreactivity for the maturation marker, RPE65, significantly increased over the post-implantation period in vivo, and cells demonstrated functional attributes similar to non-cryopreserved controls. The capacity to cryopreserve adherent cellular therapeutics permits extended storage and stable transport to surgical sites, enabling broad distribution for the treatment of prevalent diseases such as AMD.
Assuntos
Criopreservação/métodos , Células Epiteliais/transplante , Degeneração Macular/terapia , Epitélio Pigmentado da Retina/transplante , Manejo de Espécimes/métodos , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas do Olho/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Fatores de Crescimento Neural/metabolismo , Polímeros , Ratos , Ratos Nus , Medicina Regenerativa/métodos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Serpinas/metabolismo , Alicerces Teciduais , Resultado do Tratamento , XilenosRESUMO
PURPOSE: To characterize histologic changes in the optic nerve and the retina of an end-stage retinitis pigmentosa (RP) patient after long-term implantation with the Argus II retinal prosthesis system. METHODS: Serial cross sections from the patient's both eyes were collected postmortem 6 years after implantation. Optic nerve from both eyes were morphometrically analyzed and compared. Retina underneath and outside the array was analyzed and compared with corresponding regions in the fellow eye. RESULTS: Although the optic nerve of the implant eye demonstrated significantly more overall atrophy than the fellow eye (P < 0.01), the temporal quadrant that retinotopically corresponded to the location of the array did not show additional damage. The total neuron count of the macular area was not significantly different between the two eyes, but the tack locations and their adjacent areas showed significantly fewer neurons than other perimacular areas. There was an increased expression of glial fibrillary acidic protein (GFAP) throughout the retina in the implant eye versus the fellow eye, but there was no significant difference in the cellular retinaldehyde-binding protein (CRALBP) expression. Except for the revision tack site, no significant increase of inflammatory reaction was detected in the implant eye. CONCLUSION: Long-term implantation and electrical stimulation with an Argus II retinal prosthesis system did not result in significant tissue damage that could be detected by a morphometric analysis. TRANSLATIONAL RELEVANCE: This study supports the long-term safety of the Argus II device and encourages further development of bioelectronics devices at the retina-machine interface.
RESUMO
PURPOSE: To create new immunodeficient Royal College of Surgeons (RCS) rats by introducing the defective MerTK gene into athymic nude rats. METHODS: Female homozygous RCS (RCS-p+/RCS-p+) and male nude rats (Hsd:RH-Foxn1mu, mutation in the foxn1 gene; no T cells) were crossed to produce heterozygous F1 progeny. Double homozygous F2 progeny obtained by crossing the F1 heterozygotes was identified phenotypically (hair loss) and genotypically (RCS-p+ gene determined by PCR). Retinal degenerative status was confirmed by optical coherence tomography (OCT) imaging, electroretinography (ERG), optokinetic (OKN) testing, superior colliculus (SC) electrophysiology, and by histology. The effect of xenografts was assessed by transplantation of human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) and human-induced pluripotent stem cell-derived RPE (iPS-RPE) into the eye. Morphological analysis was conducted based on hematoxylin and eosin (H&E) and immunostaining. Age-matched pigmented athymic nude rats were used as control. RESULTS: Approximately 6% of the F2 pups (11/172) were homozygous for RCS-p+ gene and Foxn1mu gene. Homozygous males crossed with heterozygous females resulted in 50% homozygous progeny for experimentation. OCT imaging demonstrated significant loss of retinal thickness in homozygous rats. H&E staining showed photoreceptor thickness reduced to 1-3 layers at 12 weeks of age. Progressive loss of visual function was evidenced by OKN testing, ERG, and SC electrophysiology. Transplantation experiments demonstrated survival of human-derived cells and absence of apparent immune rejection. CONCLUSIONS: This new rat animal model developed by crossing RCS rats and athymic nude rats is suitable for conducting retinal transplantation experiments involving xenografts.
Assuntos
Modelos Animais de Doenças , Células-Tronco Embrionárias Humanas/transplante , Síndromes de Imunodeficiência/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Distrofias Retinianas/terapia , Epitélio Pigmentado da Retina/transplante , Animais , Sobrevivência Celular , Eletrorretinografia , Feminino , Técnicas de Genotipagem , Sobrevivência de Enxerto/fisiologia , Células-Tronco Embrionárias Humanas/fisiologia , Humanos , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/fisiopatologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Fenótipo , Ratos , Ratos Nus , Retina/fisiopatologia , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/fisiopatologia , Epitélio Pigmentado da Retina/fisiologia , Tomografia de Coerência Óptica , c-Mer Tirosina Quinase/genéticaRESUMO
Retinal pigment epithelium (RPE) dysfunction and loss are a hallmark of non-neovascular age-related macular degeneration (NNAMD). Without the RPE, a majority of overlying photoreceptors ultimately degenerate, leading to severe, progressive vision loss. Clinical and histological studies suggest that RPE replacement strategies may delay disease progression or restore vision. A prospective, interventional, U.S. Food and Drug Administration-cleared, phase 1/2a study is being conducted to assess the safety and efficacy of a composite subretinal implant in subjects with advanced NNAMD. The composite implant, termed the California Project to Cure Blindness-Retinal Pigment Epithelium 1 (CPCB-RPE1), consists of a polarized monolayer of human embryonic stem cell-derived RPE (hESC-RPE) on an ultrathin, synthetic parylene substrate designed to mimic Bruch's membrane. We report an interim analysis of the phase 1 cohort consisting of five subjects. Four of five subjects enrolled in the study successfully received the composite implant. In all implanted subjects, optical coherence tomography imaging showed changes consistent with hESC-RPE and host photoreceptor integration. None of the implanted eyes showed progression of vision loss, one eye improved by 17 letters and two eyes demonstrated improved fixation. The concurrent structural and functional findings suggest that CPCB-RPE1 may improve visual function, at least in the short term, in some patients with severe vision loss from advanced NNAMD.
Assuntos
Degeneração Macular/terapia , Células Cultivadas , Feminino , Atrofia Geográfica/terapia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/fisiologia , Humanos , Masculino , Estudos Prospectivos , Epitélio Pigmentado da Retina/citologia , Transplante de Células-Tronco , Tomografia de Coerência ÓpticaRESUMO
Dysfunction and death of retinal pigment epithelium (RPE) and or photoreceptors can lead to irreversible vision loss. The eye represents an ideal microenvironment for stem cell-based therapy. It is considered an "immune privileged" site, and the number of cells needed for therapy is relatively low for the area of focused vision (macula). Further, surgical placement of stem cell-derived grafts (RPE, retinal progenitors, and photoreceptor precursors) into the vitreous cavity or subretinal space has been well established. For preclinical tests, assessments of stem cell-derived graft survival and functionality are conducted in animal models by various noninvasive approaches and imaging modalities. In vivo experiments conducted in animal models based on replacing photoreceptors and/or RPE cells have shown survival and functionality of the transplanted cells, rescue of the host retina, and improvement of visual function. Based on the positive results obtained from these animal experiments, human clinical trials are being initiated. Despite such progress in stem cell research, ethical, regulatory, safety, and technical difficulties still remain a challenge for the transformation of this technique into a standard clinical approach. In this review, the current status of preclinical safety and efficacy studies for retinal cell replacement therapies conducted in animal models will be discussed.
RESUMO
The loess hilly-gully region is a focus region of the "Grain for Green" program in China. Drought is the main problem in the study region. Precipitation and temperature are two indicators that directly characterize climatic drought. A thorough analysis of the precipitation, temperature and drought characteristics of the loess hilly-gully region can clarify the current water and heat conditions in the region to improve regional water resource management and provide a reliable reference for effectively improving water use efficiency. In this study, we fully analyzed the precipitation and temperature characteristics at 11 representative synoptic stations in the loess hilly-gully region over the period from 1957 to 2014 using a combination of trend-free pre-whitening, linear trend estimation, Spearman's rho test, the Mann-Kendall (M-K) trend and abrupt change tests and wavelet analysis. The standardized precipitation evapotranspiration index was calculated and analyzed on different time scales. The following conclusions were drawn: (1) There were significant spatial differences and inter-annual variations in precipitation at the 11 synoptic stations in the study area between 1957 and 2014; the precipitation consistently decreased with fluctuations, and the extent of the decrease varied from a maximum of 17.74 mm/decade to a minimum of 2.92 mm/decade. Except for the downward trends of the autumn and winter mean temperatures at Hequ, the seasonal and annual mean temperatures at the stations showed upward trends, including highly significant upward trends. (2) Alternating drought and wetness occurred in the study area; the wet period mainly appeared in the 1960s, and the main dry period lasted from the late 20th century to 2012. There were fewer dry and wet years than normal years; however, the study area still showed a drying trend, and the severity of the drought was increasing. (3) The annual precipitation and annual mean temperature showed marked cyclical fluctuations at each synoptic station, and the first primary cycle was approximately 28 years. The seasonal precipitation and seasonal temperature showed different cycle lengths; the seasonal cycles of precipitation for spring, summer, autumn and winter were 10, 28, 10 and 26 years long, respectively, and the cycles of the temperature fluctuations for all four seasons were approximately 28 years long.
Assuntos
Mudança Climática , Secas , China , Ecossistema , TemperaturaRESUMO
PURPOSE: A subretinal implant termed CPCB-RPE1 is currently being developed to surgically replace dystrophic RPE in patients with dry age-related macular degeneration (AMD) and severe vision loss. CPCB-RPE1 is composed of a terminally differentiated, polarized human embryonic stem cell-derived RPE (hESC-RPE) monolayer pre-grown on a biocompatible, mesh-supported submicron parylene C membrane. The objective of the present delivery study was to assess the feasibility and 1-month safety of CPCB-RPE1 implantation in Yucatán minipigs, whose eyes are similar to human eyes in size and gross retinal anatomy. METHODS: This was a prospective, partially blinded, randomized study in 14 normal-sighted female Yucatán minipigs (aged 2 months, weighing 24-35 kg). Surgeons were blinded to the randomization codes and postoperative and post-mortem assessments were performed in a blinded manner. Eleven minipigs received CPCB-RPE1 while three control minipigs underwent sham surgery that generated subretinal blebs. All animals except two sham controls received combined local (Ozurdex™ dexamethasone intravitreal implant) and systemic (tacrolimus) immunosuppression or local immunosuppression alone. Correct placement of the CPCB-RPE1 implant was assessed by in vivo optical coherence tomography and post-mortem histology. hESC-RPE cells were identified using immunohistochemistry staining for TRA-1-85 (a human marker) and RPE65 (an RPE marker). As the study results of primary interest were nonnumerical no statistical analysis or tests were conducted. RESULTS: CPCB-RPE1 implants were reliably placed, without implant breakage, in the subretinal space of the minipig eye using surgical techniques similar to those that would be used in humans. Histologically, hESC-RPE cells were found to survive as an intact monolayer for 1 month based on immunohistochemistry staining for TRA-1-85 and RPE65. CONCLUSIONS: Although inconclusive regarding the necessity or benefit of systemic or local immunosuppression, our study demonstrates the feasibility and safety of CPCB-RPE1 subretinal implantation in a comparable animal model and provides an encouraging starting point for human studies.
Assuntos
Células-Tronco Embrionárias Humanas/transplante , Degeneração Macular/cirurgia , Epitélio Pigmentado da Retina/transplante , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Humanos , Degeneração Macular/diagnóstico , Estudos Prospectivos , Epitélio Pigmentado da Retina/citologia , Suínos , Porco Miniatura , Tomografia de Coerência Óptica , Resultado do TratamentoRESUMO
PURPOSE: To determine the safety, survival, and functionality of human embryonic stem cell-derived RPE (hESC-RPE) cells seeded on a polymeric substrate (rCPCB-RPE1 implant) and implanted into the subretinal (SR) space of Royal College of Surgeons (RCS) rats. METHODS: Monolayers of hESC-RPE cells cultured on parylene membrane were transplanted into the SR space of 4-week-old RCS rats. Group 1 (n = 46) received vitronectin-coated parylene membrane without cells (rMSPM+VN), group 2 (n = 59) received rCPCB-RPE1 implants, and group 3 (n = 13) served as the control group. Animals that are selected based on optical coherence tomography screening were subjected to visual function assays using optokinetic (OKN) testing and superior colliculus (SC) electrophysiology. At approximately 25 weeks of age (21 weeks after surgery), the eyes were examined histologically for cell survival, phagocytosis, and local toxicity. RESULTS: Eighty-seven percent of the rCPCB-RPE1-implanted animals showed hESC-RPE survivability. Significant numbers of outer nuclear layer cells were rescued in both group 1 (rMSPM+VN) and group 2 (rCPCB-RPE1) animals. A significantly higher ratio of rod photoreceptor cells to cone photoreceptor cells was found in the rCPCB-RPE1-implanted group. Animals with rCPCB-RPE1 implant showed hESC-RPE cells containing rhodopsin-positive particles in immunohistochemistry, suggesting phagocytic function. Superior colliculus mapping data demonstrated that a significantly higher number of SC sites responded to light stimulus at a lower luminance threshold level in the rCPCB-RPE1-implanted group. Optokinetic data suggested both implantation groups showed improved visual acuity. CONCLUSIONS: These results demonstrate the safety, survival, and functionality of the hESC-RPE monolayer transplantation in an RPE dysfunction rat model.
Assuntos
Células-Tronco Embrionárias/citologia , Polímeros , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/patologia , Transplante de Células-Tronco , Animais , Contagem de Células , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Ratos , Ratos Mutantes , Degeneração Retiniana/cirurgia , Epitélio Pigmentado da Retina/fisiopatologia , Tomografia de Coerência ÓpticaRESUMO
Subretinal fibrosis is an end stage of neovascular age-related macular degeneration, characterized by fibrous membrane formation after choroidal neovascularization. An initial step of the pathogenesis is an epithelial-mesenchymal transition (EMT) of retinal pigment epithelium cells. αB-crystallin plays multiple roles in age-related macular degeneration, including cytoprotection and angiogenesis. However, the role of αB-crystallin in subretinal EMT and fibrosis is unknown. Herein, we showed attenuation of subretinal fibrosis after regression of laser-induced choroidal neovascularization and a decrease in mesenchymal retinal pigment epithelium cells in αB-crystallin knockout mice compared with wild-type mice. αB-crystallin was prominently expressed in subretinal fibrotic lesions in mice. In vitro, overexpression of αB-crystallin induced EMT, whereas suppression of αB-crystallin induced a mesenchymal-epithelial transition. Transforming growth factor-ß2-induced EMT was further enhanced by overexpression of αB-crystallin but was inhibited by suppression of αB-crystallin. Silencing of αB-crystallin inhibited multiple fibrotic processes, including cell proliferation, migration, and fibronectin production. Bone morphogenetic protein 4 up-regulated αB-crystallin, and its EMT induction was inhibited by knockdown of αB-crystallin. Furthermore, inhibition of αB-crystallin enhanced monotetraubiquitination of SMAD4, which can impair its nuclear localization. Overexpression of αB-crystallin enhanced nuclear translocation and accumulation of SMAD4 and SMAD5. Thus, αB-crystallin is an important regulator of EMT, acting as a molecular chaperone for SMAD4 and as its potential therapeutic target for preventing subretinal fibrosis development in neovascular age-related macular degeneration.
Assuntos
Neovascularização de Coroide/metabolismo , Transição Epitelial-Mesenquimal/genética , Fibrose/metabolismo , Degeneração Macular/patologia , Epitélio Pigmentado da Retina/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Animais , Neovascularização de Coroide/genética , Fibronectinas/metabolismo , Humanos , Degeneração Macular/genética , Masculino , Camundongos Knockout , Epitélio Pigmentado da Retina/patologia , Cadeia B de alfa-Cristalina/genéticaRESUMO
Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly in developed countries. AMD is classified as either neovascular (NV-AMD) or non-neovascular (NNV-AMD). Cumulative damage to the retinal pigment epithelium, Bruch's membrane, and choriocapillaris leads to dysfunction and loss of RPE cells. This causes degeneration of the overlying photoreceptors and consequential vision loss in advanced NNV-AMD (Geographic Atrophy). In NV-AMD, abnormal growth of capillaries under the retina and RPE, which leads to hemorrhage and fluid leakage, is the main cause of photoreceptor damage. Although a number of drugs (e.g., anti-VEGF) are in use for NV-AMD, there is currently no treatment for advanced NNV-AMD. However, replacing dead or dysfunctional RPE with healthy RPE has been shown to rescue dying photoreceptors and improve vision in animal models of retinal degeneration and possibly in AMD patients. Differentiation of RPE from human embryonic stem cells (hESC-RPE) and from induced pluripotent stem cells (iPSC-RPE) has created a potentially unlimited source for replacing dead or dying RPE. Such cells have been shown to incorporate into the degenerating retina and result in anatomic and functional improvement. However, major ethical, regulatory, safety, and technical challenges have yet to be overcome before stem cell-based therapies can be used in standard treatments. This review outlines the current knowledge surrounding the application of hESC-RPE and iPSC-RPE in AMD. Following an introduction on the pathogenesis and available treatments of AMD, methods to generate stem cell-derived RPE, immune reaction against such cells, and approaches to deliver desired cells into the eye will be explored along with broader issues of efficacy and safety. Lastly, strategies to improve these stem cell-based treatments will be discussed.
Assuntos
Células-Tronco Embrionárias/citologia , Degeneração Macular/terapia , Epitélio Pigmentado da Retina , Transplante de Células-Tronco/métodos , Técnicas de Cultura de Células , Humanos , Células-Tronco Pluripotentes/citologia , Neovascularização Retiniana/terapia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/transplanteRESUMO
Oxidative stress-mediated injury to the retinal pigment epithelium (RPE) is a major factor involved in the pathogenesis of age-related macular degeneration (AMD), the leading cause of blindness in the elderly. Human embryonic stem cell (hESC)-derived RPE cells are currently being evaluated for their potential for cell therapy in AMD patients through subretinal injection of cells in suspension and subretinal placement as a polarized monolayer. To gain an understanding of how transplanted RPE cells will respond to the highly oxidatively stressed environment of an AMD patient eye, we compared the survival of polarized and nonpolarized RPE cultures following oxidative stress treatment. Polarized, nonpolarized/confluent, nonpolarized/subconfluent hESC-RPE cells were treated with H2O2. Terminal deoxynucleotidyl transferase dUTP nick end labeling stains revealed the highest amount of cell death in subconfluent hESC-RPE cells and little cell death in polarized hESC-RPE cells with H2O2 treatment. There were higher levels of proapoptotic factors (phosphorylated p38, phosphorylated c-Jun NH2-terminal kinase, Bax, and cleaved caspase 3 fragments) in treated nonpolarized RPE-particularly subconfluent cells-relative to polarized cells. On the other hand, polarized RPE cells had constitutively higher levels of cell survival and antiapoptotic signaling factors such as p-Akt and Bcl-2, as well as antioxidants superoxide dismutase 1 and catalase relative to nonpolarized cells, that possibly contributed to polarized cells' higher tolerance to oxidative stress compared with nonpolarized RPE cells. Subconfluent cells were particularly sensitive to oxidative stress-induced apoptosis. These results suggest that implantation of polarized hESC-RPE monolayers for treating AMD patients with geographic atrophy should have better survival than injections of hESC-RPE cells in suspension.
Assuntos
Apoptose , Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Estresse Oxidativo/fisiologia , Epitélio Pigmentado da Retina/citologia , Apoptose/efeitos dos fármacos , Western Blotting , Diferenciação Celular , Polaridade Celular , Células Cultivadas , Células-Tronco Embrionárias/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/toxicidade , Marcação In Situ das Extremidades Cortadas , Oxidantes/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Epitélio Pigmentado da Retina/efeitos dos fármacos , Engenharia Tecidual/métodosRESUMO
Retinal pigmented epithelium (RPE) secretes transforming growth factor beta 1 and 2 (TGF-ß1 and -ß2) cytokines involved in fibrosis, immune privilege, and proliferative vitreoretinopathy (PVR). Since RPE cell polarity may be altered in various disease conditions including PVR and age-related macular degeneration, we determined levels of TGF-ß from polarized human RPE (hRPE) and human stem cell derived RPE (hESC-RPE) as compared to nonpolarized cells. TGF-ß2 was the predominant isoform in all cell culture conditions. Nonpolarized cells secreted significantly more TGF-ß2 supporting the contention that loss of polarity of RPE in PVR leads to rise of intravitreal TGF-ß2. Active TGF-ß2, secreted mainly from apical side of polarized RPE, represented 6-10% of total TGF-ß2. In conclusion, polarity is an important determinant of TGF-ß2 secretion in RPE. Low levels of apically secreted active TGF-ß2 may play a role in the normal physiology of the subretinal space. Comparable secretion of TGF-ß from polarized hESC-RPE and hRPE supports the potential for hESC-RPE in RPE replacement therapies.