Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 584: 112161, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280475

RESUMO

BACKGROUND: Atherosclerosis (AS) is commonly regarded as a key driver accounted for the leading causes of morbidity and mortality among cardiovascular and cerebrovascular diseases. A growing body of evidence indicates that autophagy in macrophages involved in AS might be a potential therapeutic target. C1q/TNF-related protein 9 (CTRP9) has been proven to delay the progression of cardiovascular diseases. However, the relations between CTRP9 and Sirt1, as well as their effects on macrophages autophagy have not been fully explored. METHODS: Macrophages were differentiated from mononuclear cells collected from peripheral blood samples of healthy donors. The in vitro AS models were constructed by ox-LDL treatment. Cell viability was determined by CCK-8 assay. Immunofluorescence assay of LC3 was implemented for evaluating autophagy activity. Oil Red O staining was performed for lipid accumulation detection. ELISA, cholesterol concentration assay and cholesterol efflux analysis were conducted using commercial kits. Cycloheximide assay was implemented for revealing protein stability. RT-qPCR was used for mRNA expression detection, and western blotting was performed for protein level monitoring. RESULTS: CTRP9 attenuated impaired cell viability, autophagy inhibition and increased lipid accumulation induced by ox-LDL. Moreover, CTRP9 maintained Sirt1 protein level through enhancing its stability through de-ubiquitination, which was mediated by upregulated USP22 level. CRTP9 exerted its protective role in promoting autophagy and reducing lipid accumulation through the USP22/Sirt1 axis. CONCLUSION: Collectively, CTRP9 alleviates lipid accumulation and facilitated the macrophages autophagy by upregulating USP22 level and maintaining Sirt1 protein expression, thereby exerting a protective role in AS progression in vitro.


Assuntos
Aterosclerose , Sirtuína 1 , Humanos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Complemento C1q/genética , Complemento C1q/metabolismo , Complemento C1q/farmacologia , Macrófagos/metabolismo , Lipoproteínas LDL/farmacologia , Colesterol/metabolismo , Aterosclerose/metabolismo , Autofagia , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA