Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(23): e2400734, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38622892

RESUMO

Heavy-metal-free III-V colloidal quantum dots (QDs) exhibit promising attributes for application in optoelectronics. Among them, InAs QDs are demonstrating excellent optical performance with respect to absorption and emission in the near-infrared spectral domain. Recently, InAs QDs attained a substantial improvement in photoluminescence quantum yield, achieving 70% at a wavelength of 900 nm through the strategic overgrowth of a thick ZnSe shell atop the InAs core. In the present study, light-emitting diodes (LEDs) based on this type of InAs/ZnSe QDs are fabricated, reaching an external quantum efficiency (EQE) of 13.3%, a turn-on voltage of 1.5V, and a maximum radiance of 12 Wsr-1m-2. Importantly, the LEDs exhibit an extensive emission dynamic range, characterized by a nearly linear correlation between emission intensity and current density, which can be attributed to the efficient passivation provided by the thick ZnSe shell. The obtained results are comparable to state-of-the-art PbS QD LEDs. Furthermore, it should be stressed not only that the fabricated LEDs are fully RoHS-compliant but also that the emitting InAs QDs are prepared via a synthetic route based on a non-pyrophoric, cheap, and commercially available as precursor, namely tris(dimethylamino)-arsine.

2.
Heliyon ; 10(6): e27289, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38510030

RESUMO

This article addresses the issues of unreasonable water scheduling and high costs in coal mine shafts, proposing a hierarchical optimization scheduling strategy. Taking the water quality and quantity of a certain mining area in Inner Mongolia as the research object, it designs the objective function with the highest reuse efficiency and the lowest reuse cost of mine water resources, and establishes the constraint conditions of water quality and quantity for each water-using unit. In response to the problem that traditional genetic algorithms are prone to local optima, an adaptive autobiographical operator is proposed and improved based on Metropolis principle of simulated annealing algorithm. The improved algorithm is applied to the calculation of the scheduling model, and the results show that the recovery cost in the heating season is reduced by 66779.36 CNY/month, a decrease of 10.34%; the recovery cost in the non-heating season is reduced by 61469.28 CNY/month, a decrease of 9.91%. At the same time, the heating season and the non-heating season have reduced by 136.99 h/month and 154.52 h/month respectively, significantly reducing the recovery cost and time.

3.
J Am Chem Soc ; 145(33): 18329-18339, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37608781

RESUMO

We have approached the synthesis of colloidal InAs nanocrystals (NCs) using amino-As and ligands that are different from the commonly employed oleylamine (OA). We found that carboxylic and phosphonic acids led only to oxides, whereas tri-n-octylphosphine, dioctylamine, or trioctylamine (TOA), when employed as the sole ligands, yielded InAs NCs with irregular sizes and a broad size distribution. Instead, various combinations of TOA and OA delivered InAs NCs with good control over the size distribution, and the TOA:OA volume ratio of 4:1 generated InAs tetrapods with arm length of 5-6 nm. Contrary to tetrapods of II-VI materials, which have a zinc-blende core and wurtzite arms, these NCs are entirely zinc-blende, with arms growing along the ⟨111⟩ directions. They feature a narrow excitonic peak at ∼950 nm in absorption and a weak photoluminescence emission at 1050 nm. Our calculations indicated that the bandgap of the InAs tetrapods is mainly governed by the size of their core and not by their arm lengths when these are longer than ∼3 nm. Nuclear magnetic resonance analyses revealed that InAs tetrapods are mostly passivated by OA with only a minor fraction of TOA. Molecular dynamics simulations showed that OA strongly binds to the (111) facets whereas TOA weakly binds to the edges and corners of the NCs and their combined use (at high TOA:OA volume ratios) promotes growth along the ⟨111⟩ directions, eventually forming tetrapods. Our work highlights the use of mixtures of ligands as a means of improving control over InAs NCs size and size distribution.

4.
Int J Nanomedicine ; 18: 3429-3442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383221

RESUMO

Introduction: As the most common malignant tumor in the world, the prognosis of patients with advanced lung cancer remains poor even after treatment. There are many prognostic marker assays available, but there is still more room for the development of high-throughput and sensitive detection of circulating tumor DNA (ctDNA). Surface-enhanced Raman spectroscopy (SERS), a spectroscopic detection method that has received wide attention in recent years, can achieve exponential amplification of Raman signals by using different metallic nanomaterials. Integrating SERS with signal amplification strategy into the microfluidic chip and applying it to ctDNA detection is expected to be an effective tool for the prognosis of lung cancer treatment effect in the future. Methods: To construct a high-throughput SERS microfluidic chip integrated with enzyme-assisted signal amplification (EASA) and catalytic hairpin self-assembly (CHA) signal amplification strategies, using hpDNA-functionalized Au nanocone arrays (AuNCAs) as capture substrates and cisplatin-treated lung cancer mice to simulate the detection environment for sensitive detection of ctDNA in serum of lung cancer patients after treatment. Results: The SERS microfluidic chip constructed by this scheme, with two reaction zones, can simultaneously and sensitively detect the concentrations of four prognostic ctDNAs in the serum of three lung cancer patients with a limit of detection (LOD) as low as the aM level. The results of the ELISA assay are consistent with this scheme, and its accuracy is guaranteed. Conclusion: This high-throughput SERS microfluidic chip has high sensitivity and specificity in the detection of ctDNA. This could be a potential tool for prognostic assessment of lung cancer treatment efficacy in future clinical applications.


Assuntos
Neoplasias Pulmonares , Microfluídica , Animais , Camundongos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Prognóstico , Análise Espectral Raman , Modelos Animais de Doenças , Ouro
5.
ACS Energy Lett ; 8(6): 2789-2798, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37324538

RESUMO

We illustrate here the high photocatalytic activity of sustainable lead-free metal halide nanocrystals (NCs), namely, Cs3Sb2Br9 NCs, in the reduction of p-substituted benzyl bromides in the absence of a cocatalyst. The electronic properties of the benzyl bromide substituents and the substrate affinity to the NC surface determine the selectivity in C-C homocoupling under visible light irradiation. This photocatalyst can be reused for at least three cycles and preserves its good performance with a turnover number of ca. 105,000.

6.
Adv Mater ; 35(38): e2303621, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37243572

RESUMO

InAs-based nanocrystals can enable restriction of hazardous substances (RoHS) compliant optoelectronic devices, but their photoluminescence efficiency needs improvement. We report an optimized synthesis of InAs@ZnSe core@shell nanocrystals allowing to tune the ZnSe shell thickness up to seven mono-layers (ML) and to boost the emission, reaching a quantum yield of ≈70% at ≈900 nm. It is demonstrated that a high quantum yield can be attained when the shell thickness is at least ≈3ML. Notably, the photoluminescence lifetimeshows only a minor variation as a function of shell thickness, whereas the Auger recombination time (a limiting aspect in technological applications when fast) slows down from 11 to 38 ps when increasing the shell thickness from 1.5 to 7MLs. Chemical and structural analyses evidence that InAs@ZnSe nanocrystals do not exhibit any strain at the core-shell interface, likely due to the formation of an InZnSe interlayer. This is supported by atomistic modeling, which indicates the interlayer as being composed of In, Zn, Se and cation vacancies, alike to the In2 ZnSe4 crystal structure. The simulations reveal an electronic structure consistent with that of type-I heterostructures, in which localized trap states can be passivated by a thick shell (>3ML) and excitons are confined in the core.

7.
ACS Energy Lett ; 7(11): 3788-3790, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36398094

RESUMO

We demonstrate efficient, stable, and fully RoHS-compliant near-infrared (NIR) light-emitting diodes (LEDs) based on InAs/ZnSe quantum dots (QDs) synthesized by employing a commercially available amino-As precursor. They have a record external quantum efficiency of 5.5% at 947 nm and an operational lifetime of ∼32 h before reaching 50% of their initial luminance. Our findings offer a new solution for developing RoHS-compliant light-emitting technologies based on Pb-free colloidal QDs.

8.
Chem Mater ; 34(19): 8603-8612, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36248232

RESUMO

In this work, we report the hot-injection synthesis of Cs3ZnCl5 colloidal nanocrystals (NCs) with tunable amounts of Cu+ and Mn2+ substituent cations. All the samples had a rodlike morphology, with a diameter of ∼14 nm and a length of ∼30-100 nm. Alloying did not alter the crystal structure of the host Cs3ZnCl5 NCs, and Cu ions were mainly introduced in the oxidation state +1 according to X-ray photoelectron and electron paramagnetic resonance spectroscopies. The spectroscopic analysis of unalloyed, Cu-alloyed, Mn-alloyed, and Cu, Mn coalloyed NCs indicated that (i) the Cs3ZnCl5 NCs have a large band gap of ∼5.35 eV; (ii) Cu(I) aliovalent alloying leads to an absorption shoulder/peak at ∼4.8 eV and cyan photoluminescence (PL) peaked at 2.50 eV; (iii) Mn(II) isovalent alloying leads to weak Mn PL, which intensifies remarkably in the coalloyed samples, prompted by an energy transfer (ET) process between the Cu and Mn centers, favored by the overlap between the lowest (6A1 → 4T1) transition for tetrahedrally coordinated Mn2+ and the PL profile from Cu(I) species in the Cs3ZnCl5 NCs. The efficiency of this ET process reaches a value of 61% for the sample with the highest extent of Mn alloying. The PL quantum yield (QY) values in these Cu, Mn coalloyed NCs are lower at higher Mn contents. The analysis of the Mn PL dynamics in these samples indicates that this PL drop stems from inter-Mn exciton migration, which increases the likelihood of trapping in defect sites, in agreement with previous studies.

9.
Oxid Med Cell Longev ; 2022: 7887782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148412

RESUMO

Tendon injury repair has been a clinical challenge, and little is known about tendon healing scar generation, repair, and regeneration mechanisms. To explore the cellular composition of tendon tissue and analyze cell populations and signaling pathways associated with tendon repair, in this paper, single-cell sequencing data was used for data mining and seven cell subsets were annotated in the tendon tissue, including fibroblasts, tenocytes, smooth muscle cells, endothelial cells, macrophages, T cells, and plasma cells. According to cell group interaction network analysis, pattern 4 composed of macrophages was an important communication pattern in tendon injury. Furthermore, the heterogeneity of M1 macrophages in tendons, the correlation of KEGG enriched pathway with inflammatory response, and the core regulatory role of the transcription factor NFKB and REL were observed; in addition, the heterogeneity of T cell isoforms in tendons was found and indicated that different isotypes of T cells involve in different roles of tendon injury and repair. This study demonstrated the heterogeneity of M1 macrophages and T cells in the tendon tissue, being involved in different physiological processes such as tendon injury and healing, providing new thinking insights and basis for subsequent clinical treatment of tendon injury.


Assuntos
Traumatismos dos Tendões , Transcriptoma , Células Endoteliais/metabolismo , Humanos , Isoformas de Proteínas/metabolismo , Traumatismos dos Tendões/genética , Traumatismos dos Tendões/metabolismo , Fatores de Transcrição , Transcriptoma/genética
10.
J Am Chem Soc ; 144(23): 10515-10523, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35648676

RESUMO

The most developed approaches for the synthesis of InAs nanocrystals (NCs) rely on pyrophoric, toxic, and not readily available tris-trimethylsilyl (or tris-trimethylgermil) arsine precursors. Less toxic and commercially available chemicals, such as tris(dimethylamino)arsine, have recently emerged as alternative As precursors. Nevertheless, InAs NCs made with such compounds need to be further optimized in terms of size distribution and optical properties in order to meet the standard reached with tris-trimethylsilyl arsine. To this aim, in this work we investigated the role of ZnCl2 used as an additive in the synthesis of InAs NCs with tris(dimethylamino)arsine and alane N,N-dimethylethylamine as the reducing agent. We discovered that ZnCl2 helps not only to improve the size distribution of InAs NCs but also to passivate their surface acting as a Z-type ligand. The presence of ZnCl2 on the surface of the NCs and the excess of Zn precursor used in the synthesis enable the subsequent in situ growth of a ZnSe shell, which is realized by simply adding the Se precursor to the crude reaction mixture. The resulting InAs@ZnSe core@shell NCs exhibit photoluminescence emission at ∼860 nm with a quantum yield as high as 42±4%, which is a record for such heterostructures, given the relatively high mismatch (6%) between InAs and ZnSe. Such bright emission was ascribed to the formation, under our peculiar reaction conditions, of an In-Zn-Se intermediate layer between the core and the shell, as indicated by X-ray photoelectron spectroscopy and elemental analyses, which helps to release the strain between the two materials.

11.
Materials (Basel) ; 15(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35161011

RESUMO

Ceramsite particles are an important component of lightweight ceramsite concrete wall panels, and the density of the aggregate is much lower than the density of the slurry. It is generally accepted that there are inhomogeneities in the distribution of ceramsite particles in wall panels. Ceramsite concrete wallboard material is a research hotspot in the field of fabricated building materials at home and abroad; however, there is no effective way to quantify their inhomogeneity. Based on the application of image recognition technology in concrete homogeneity, a method to quantitatively evaluate the distribution of light aggregates in wall panels was developed. Three commercial lightweight vitrified concrete wall panels were cut into 324 cubes. The four cut surfaces of each specimen were photographed to analyze the proportion of ceramsite particle area, while the density, ultrasonic pulse velocity, and compressive strength of the specimens were tested. The results demonstrated that the image analysis method could effectively describe the homogeneity of the panels. The proportion of particle area of aggregate in the section of the cube had a strong correlation with the compressive strength, ultrasonic pulse velocity, and density, and there was an obvious linear relationship with the height of the plate where the cube was located. Based on this, the correlation equations of the proportion of particle area of aggregate, density, ultrasonic pulse velocity, compressive strength, and the height where the specimen was located were proposed. The quantitative parameters of the relevant properties of the wall panels were also obtained: the maximum difference between the proportion of particle area of the aggregate was 24%, the maximum difference between the density at the top and bottom of the wall panels was 115 kg/m3, and the maximum difference in the strength reached 5 MPa.

12.
Materials (Basel) ; 15(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35161055

RESUMO

With the rapid development of urbanization, many new buildings are erected, and old ones are demolished and/or recycled. Thus, the reuse of building materials and improvements in reuse efficiency have become hot research topics. In recent years, scholars around the world have worked on improving recycle aggregates in concrete and broadening the scope of applications of recycled concrete. This paper reviews the findings of research on the effects of recycled fine aggregates (RFAs) on the permeability, drying shrinkage, carbonation, chloride ion penetration, acid resistance, and freeze-thaw resistance of concrete. The results show that the content of old mortar and the quality of recycled concrete are closely related to the durability of prepared RFA concrete. For example, the drying shrinkage value with a 100% RFA replacement rate is twice that of normal concrete, and the depth of carbonation increases by approximately 110%. Moreover, the durability of RFA concrete decreases as the RFA replacement rate and the water-cement ratio improve. Fortunately, the use of zeolite materials such as fly ash, silica fume, and meta kaolin as surface coatings for RFAs or as external admixtures for RFA concrete had a positive effect on durability. Furthermore, the proper mixing methods and/or recycled aggregates with optimized moisture content can further improve the durability of RFA concrete.

13.
ACS Energy Lett ; 6(6): 2283-2292, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34307878

RESUMO

We synthesize colloidal nanocrystals (NCs) of Rb3InCl6, composed of isolated metal halide octahedra ("0D"), and of Cs2NaInCl6 and Cs2KInCl6 double perovskites, where all octahedra share corners and are interconnected ("3D"), with the aim to elucidate and compare their optical features once doped with Sb3+ ions. Our optical and computational analyses evidence that the photoluminescence quantum yield (PLQY) of all these systems is consistently lower than that of the corresponding bulk materials due to the presence of deep surface traps from under-coordinated halide ions. Also, Sb-doped "0D" Rb3InCl6 NCs exhibit a higher PLQY than Sb-doped "3D" Cs2NaInCl6 and Cs2KInCl6 NCs, most likely because excitons responsible for the PL emission migrate to the surface faster in 3D NCs than in 0D NCs. We also observe that all these systems feature a large Stokes shift (varying from system to system), a feature that should be of interest for applications in photon management and scintillation technologies. Scintillation properties are evaluated via radioluminescence experiments, and re-absorption-free waveguiding performance in large-area plastic scintillators is assessed using Monte Carlo ray-tracing simulations.

14.
Sensors (Basel) ; 21(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203796

RESUMO

This paper proposes a general hierarchical dispatching strategy of mine water, with the aim of addressing the problems of low reuse rate of coal mine water, and insufficient data analysis. First of all, water quality and quantity data of the Narim River No. 2 mine were used as the research object; the maximum reuse rate of mine water and the system operation rate comprised the objective function; and mine water quality information, mine water standard, and mine water treatment speed were the constraints. A multi-objective optimization scheduling mathematical model of water supply system was established. Then, to address the problems of premature convergence and ease of falling into a local optimum in the iterative process of particle swarm optimization, the basic particle swarm optimization was improved. Using detailed simulation research, the superiority of the improved algorithm was verified. Eventually, the mine water grading dispatching strategy proposed in this paper is compared with the traditional dispatching method. The results show that the hierarchical dispatching system can significantly improve the mine water reuse rate and system operating efficiency.

15.
ACS Energy Lett ; 5(6): 1840-1847, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33344767

RESUMO

We devised a hot-injection synthesis to prepare colloidal double-perovskite Cs2NaBiCl6 nanocrystals (NCs). We also examined the effects of replacing Na+ with Ag+ cations by preparing and characterizing Cs2Na1-x Ag x BiCl6 alloy NCs with x ranging from 0 to 1. Whereas Cs2NaBiCl6 NCs were not emissive, Cs2Na1-x Ag x BiCl6 NCs featured a broad photoluminescence band at ∼690 nm, Stokes-shifted from the respective absorption by ≥1.5 eV. The emission efficiency was maximized for low Ag+ amounts, reaching ∼3% for the Cs2Na0.95Ag0.05BiCl6 composition. Density functional theory calculations coupled with spectroscopic investigations revealed that Cs2Na1-x Ag x BiCl6 NCs are characterized by a complex photophysics stemming from the interplay of (i) radiative recombination via trapped excitons localized in spatially connected AgCl6-BiCl6 octahedra; (ii) surface traps, located on undercoordinated surface Bi centers, behaving as phonon-assisted nonradiative decay channels; and (iii) a thermal equilibrium between trapping and detrapping processes. These results offer insights into developing double-perovskite NCs with enhanced optoelectronic efficiency.

16.
Nanoscale ; 12(10): 6111-6120, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32129398

RESUMO

Multinary copper-based chalcogenide nanocrystals (NCs) as light-driven photocatalysts have attracted extensive research interest due to their great potential for generating sustainable energy without causing environmental concerns. However, systematic studies on the growth mechanism and related photocatalytic activities involving different valent metal ions (either M2+ or N3+) as foreign cations and monoclinic Cu1.94S NCs as the 'parent lattice' have rarely been carried out. In this work, we report an effective seed-mediated method for the synthesis of heterostructured Cu1.94S-MS NCs (M = Zn, Cd and Mn) and alloyed CuNS2 NCs (N = In and Ga). A typical cation exchange process took place prior to the growth of heterostructured NCs, while further inter-cation diffusion occurred only for the alloyed NCs. When compared with Cu1.94S NCs, all the heterostructured Cu1.94S-MS NCs and CuGaS2 NCs showed enhanced photocatalytic activities toward hydrogen production by water splitting, owing to their tailored optical band gaps and energy level alignments. Although optically favored, CuInS2 ANCs were not comparable to others due to their low conduction band minimum for the reduction of H2O to H2.

17.
Chem Mater ; 32(13): 5897-5903, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-33814699

RESUMO

We report here the synthesis of undoped and Cu-doped Cs2ZnCl4 nanocrystals (NCs) in which we could tune the concentration of Cu from 0.7 to 7.5%. Cs2ZnCl4 has a wide band gap (4.8 eV), and its crystal structure is composed of isolated ZnCl4 tetrahedra surrounded by Cs+ cations. According to our electron paramagnetic resonance analysis, in 0.7 and 2.1% Cu-doped NCs the Cu ions were present in the +1 oxidation state only, while in NCs at higher Cu concentrations we could detect Cu(II) ions (isovalently substituting the Zn(II) ions). The undoped Cs2ZnCl4 NCs were non emissive, while the Cu-doped samples had a bright intragap photoluminescence (PL) at ∼2.6 eV mediated by band-edge absorption. Interestingly, the PL quantum yield was maximum (∼55%) for the samples with a low Cu concentration ([Cu] ≤ 2.1%), and it systematically decreased when further increasing the concentration of Cu, reaching 15% for the NCs with the highest doping level ([Cu] = 7.5%). The same (∼2.55 eV) emission band was detected under X-ray excitation. Our density functional theory calculations indicated that the PL emission could be ascribed only to Cu(I) ions: these ions promote the formation of trapped excitons, through which an efficient emission takes place. Overall, these Cu-doped Cs2ZnCl4 NCs, with their high photo- and radio-luminescence emission in the blue spectral region that is free from reabsorption, are particularly suitable for applications in ionizing radiation detection.

18.
Nanoscale ; 11(1): 158-169, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30525146

RESUMO

Multinary copper-based chalcogenides exhibit significant performance in photocatalytic hydrogen evolution due to their suitable optical bandgap for visible light absorption and environmentally friendly character. Herein, high-quality wurtzite CuGaS2 (CGS) nanocrystals (NCs) were synthesized by using a one-step heating-up process without any injection, and the morphology could be tuned from one-dimensional (1D) to two-dimensional (2D) by precise choice of surface ligands and gallium precursors. The formation mechanism of CGS NCs was studied comprehensively by means of the temporal-evolution of the morphology, crystal structure and optical absorption results. The reaction started from djurleite Cu31S16 NCs, and then proceeded with the formation of Cu31S16-CGS heteronanostructures (HNS), and finally the transformation from HNS to monophasic CGS nanorods took place with prolonging of the synthesis time. The optical bandgap and the energy level of the different-dimensional CGS NCs exhibited a strong dependence on the morphology change, which correlated with the percentage of the exposed {001} and {100} facets. The theoretical calculation based on density functional theory (DFT) revealed that the (001) surface facilitated the charge transport rather than the (100) surface, which was consistent with the electrochemical impedance spectroscopy (EIS) results. As a result, the 2D CGS nanoplates with more exposed {001} facets exhibited an attractive photocatalytic hydrogen production activity under simulated solar illumination as compared to 1D and quasi-2D counterparts. This study demonstrates that control over the dimension of I-III-V group semiconductor NCs could lead to a significant improvement of the photocatalytic hydrogen evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA