Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Neurobiol Stress ; 32: 100666, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39224830

RESUMO

Post-traumatic stress disorder (PTSD) is a severe stress-dependent psychiatric disorder characterized by impairment of fear memory extinction; however, biological markers to determine impaired fear memory extinction in PTSD remain unclear. In male mice with PTSD-like behaviors elicited by single prolonged stress (SPS), 19 differentially expressed proteins in the hippocampus were identified compared with controls. Among them, a biological macromolecular protein named deleted in colorectal cancer (DCC) was highly upregulated. Specific overexpression of DCC in the hippocampus induced similar impairment of long-term potentiation (LTP) and fear memory extinction as observed in SPS mice. The impairment of fear memory extinction in SPS mice was improved by inhibiting the function of hippocampal DCC using a neutralizing antibody. Mechanistic studies have shown that knocking down or inhibiting µ-calpain in hippocampal neurons increased DCC expression and induced impairment of fear memory extinction. Additionally, SPS-triggered impairment of hippocampal LTP and fear memory extinction could be rescued through activation of the Rac1-Pak1 signaling pathway. Our study provides evidence that calpain-mediated regulation of DCC controls hippocampal LTP and fear memory extinction in SPS mice, which likely through activation of the Rac1-Pak1 signaling pathway.

3.
Int J Biol Macromol ; 277(Pt 4): 134437, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39116965

RESUMO

Large-leaf Yellow tea (LYT) is a traditional beverage from Camellia Sinensis (L.) O. Kuntze in China and has unusual health-regulating functions. This investigation explored the structural characteristics of a polysaccharide extracted from LYT, which possesses anti-inflammatory activity. The polysaccharide HDCP-2, obtained through ethanol fractional precipitation and then DEAE-52 anion exchange column, followed by DPPH radical scavenging screening, exhibited a yield of 0.19 %. The HPGPC method indicated that the molecular weight of HDCP-2 is approximately 2.9 × 104 Da. Analysis of the monosaccharide composition revealed that HDCP-2 consisted of mannose, glucose, xylose, and galacturonic acid, and their molar ratio is approximately 0.4:0.5:1.2:0.7. The structure motif of HDCP-2 was probed carefully through methylation analysis, FT-IR, and NMR analysis, which identified the presence of ß-d-Xylp(1→, →2, 4)-ß-d-Xylp(1→, →3)-ß-d-Manp(1→, α-d-Glcp(1→ and →2, 4)-α-d-GalAp(1→ linkages. A CCK-8 kit assay was employed to evaluate the anti-inflammatory action of HDCP-2. These results demonstrated that HDCP-2 could inhibit the migration and proliferation of the MH7A cells and reduce NO production in an inflammatory model induced by TNF-α. The abundant presence of xylose accounted for 39 % of the LYT polysaccharide structure, and its distinctive linking mode (→2, 4)-ß-d-Xylp(1→) appears to be the primary contributing factor to its anti-inflammatory effect.


Assuntos
Camellia sinensis , Polissacarídeos , Água , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Camellia sinensis/química , Camundongos , Animais , Água/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Solubilidade , Monossacarídeos/análise , Células RAW 264.7 , Peso Molecular
4.
Zhongguo Zhen Jiu ; 44(8): 923-30, 2024 Aug 12.
Artigo em Chinês | MEDLINE | ID: mdl-39111792

RESUMO

OBJECTIVE: To observe the effects of electroacupuncture (EA) on fear extinction and sleep phase in single prolonged stress (SPS) mice, and explore its mechanism in view of the expression of relevant synaptic proteins. METHODS: Thirty-two C57BL/6J male mice were randomly divided into a control group, a model group, an EA group and a paroxetine (PRX) group, with 8 mice in each one. Modified SPS method was used to establish PTSD model in the model group, the EA group and the PRX group. Seven days after modeling completion, in the EA group, the intervention was delivered at "Baihui" (GV 20) and bilateral "Zusanli" (ST 36), with disperse-dense wave, 3 Hz/15 Hz in frequency and 1 mA in current intensity, for 30 min. In the PRX group, paroxetine solution (2.5 g/L) was administered intragastrically (10 mg/kg). The intervention was given once daily and for consecutive 10 days in the above two groups. The fear conditioning task and the elevated plus-maze test were adopted to evaluate the fear extinction and anxiety of the mice in each group. Using Medusa electroencephalogram (EEG) and electromyography (EMG) recording system from rats and mice, the sleep phase was determined in the mice. With Western blot method adopted, the protein expression of the postsynaptic density protein 95 (PSD95), activity-regulated cytoskeleton-associated protein (ARC), brain-derived neurotrophic factor (BDNF), N-methyl-D-aspartic acid receptor 2A (GluN2A), N-methyl-D-aspartic acid receptor 2B (GluN2B) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor 1 (GluA1) in the hippocampus was detected in the mice. RESULTS: Compared with the control group, the freezing time for the fear re-exposure in 3 min to 15 min and the fear extinction in 0 min to 3 min were prolonged (P<0.05), the fear extinction index decreased (P<0.05), and the open arm time (OT) of the elevated plus-maze was shortened (P<0.05) in the model group. When compared with the model group, in the EA group and the PRX group, the freezing time for the fear re-exposure in 3 min to 6 min and 12 min to 15 min, as well as the fear extinction in 0 min to 3 min was shortened (P<0.05), the fear extinction index increased (P<0.05); the OT in elevated plus-maze was longer in the mice of the EA group (P<0.05). The period of wake (Wake) was prolonged (P<0.05), the non-rapid eye movement period (NREM) and the total sleep time (Sleep) were reduced in the model group (P<0.05) in comparison with the control group. Compared with the model group, the Wake was declined (P<0.05), and the NREM and Sleep increased in the EA group and the PRX group (P<0.05). When compared with the control group, the protein expression of PSD95, ARC, BDNF, GluN2A and GluA1 in the hippocampus decreased (P<0.05), and that of GluN2B increased (P<0.05) in the model group. In the EA group and the PRX group, the protein expression of PSD95, ARC, BDNF, GluN2A and GluA1 in the hippocampus was elevated (P<0.05), and that of GluN2B reduced (P<0.05) when compared with the model group. CONCLUSION: Electroacupuncture at "Baihui" (GV 29) and "Zusanli" (ST 36) can ameliorate anxiety-like behavior, fear extinction disorder and abnormal sleep phase in SPS mice, which may be related to the regulation of synaptic transmission and synaptic plasticity expression in the hippocampus.


Assuntos
Eletroacupuntura , Medo , Camundongos Endogâmicos C57BL , Sono , Animais , Masculino , Camundongos , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Hipocampo/metabolismo , Estresse Psicológico/terapia , Estresse Psicológico/metabolismo , Memória , Pontos de Acupuntura , Proteína 4 Homóloga a Disks-Large/metabolismo
5.
CNS Neurosci Ther ; 30(7): e14855, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38992889

RESUMO

BACKGROUND: G1 is a specific agonist of G protein-coupled estrogen receptor 1 (GPER1), which binds and activates GPER1 to exert various neurological functions. However, the preventive effect of G1 on post-traumatic stress disorder (PTSD) and its mechanisms are unclear. OBJECTIVE: To evaluate the protective effect of G1 against synaptic and mitochondrial impairments and to investigate the mechanism of G1 to improve PTSD from brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling. METHODS: This study initially detected GPER1 expression in the hippocampus of single prolonged stress (SPS) mice, utilizing both Western blot and immunofluorescence staining. Subsequently, the effects of G1 on PTSD-like behaviors, synaptic, and mitochondrial functions in SPS mice were investigated. Additionally, the involvement of BDNF/TrkB signaling involved in the protection was further confirmed using GPER1 antagonist and TrkB inhibitor, respectively. RESULTS: The expression of GPER1 was reduced in the hippocampus of SPS mice, and G1 treatment given for 14 consecutive days significantly improved PTSD-like behaviors in SPS mice compared with model group. Electrophysiological local field potential (LFP) results showed that G1 administration for 14 consecutive days could reverse the abnormal changes in the gamma oscillation in the CA1 region of SPS mice. Meanwhile, G1 administration for 14 consecutive days could significantly improve the abnormal expression of synaptic proteins, increase the expression of mitochondria-related proteins, increase the number of synapses in the hippocampus, and ameliorate the damage of hippocampal mitochondrial structure in SPS mice. In addition, G15 (GPER1 inhibitor) and ANA-12 (TrkB inhibitor) blocked the ameliorative effects of G1 on PTSD-like behaviors and aberrant expression of hippocampal synaptic and mitochondrial proteins in SPS mice and inhibited the reparative effects of G1 on structural damage to hippocampal mitochondria, respectively. CONCLUSION: G1 improved PTSD-like behaviors in SPS mice, possibly by increasing hippocampal GPER1 expression and promoting BDNF/TrkB signaling to repair synaptic and mitochondrial functional impairments. This study would provide critical mechanism for the prevention and treatment of PTSD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Hipocampo , Mitocôndrias , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Transtornos de Estresse Pós-Traumáticos , Sinapses , Animais , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/prevenção & controle , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Camundongos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Receptores de Estrogênio/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Receptor trkB/metabolismo , Receptor trkB/antagonistas & inibidores , Camundongos Endogâmicos C57BL
6.
Eur J Neurosci ; 60(4): 4661-4683, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39044332

RESUMO

Post-traumatic stress disorder (PTSD) is a complex psychological disorder provoked by distressing experiences, and it remains without highly effective intervention strategies. The exploration of PTSD's underlying mechanisms is crucial for advancing diagnostic and therapeutic approaches. Current studies primarily explore PTSD through the lens of the central nervous system, investigating concrete molecular alterations in the cerebral area and neural circuit irregularities. However, the body's response to external stressors, particularly the changes in cardiovascular function, is often pronounced, evidenced by notable cardiac dysfunction. Consequently, examining PTSD with a focus on cardiac function is vital for the early prevention and targeted management of the disorder. This review undertakes a comprehensive literature analysis to detail the alterations in brain and heart structures and functions associated with PTSD. It also synthesizes potential mechanisms of heart-brain axis interactions relevant to the development of PTSD. Ultimately, by considering cardiac function, this review proposes novel perspectives for PTSD's prophylaxis and therapy.


Assuntos
Encéfalo , Coração , Transtornos de Estresse Pós-Traumáticos , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/terapia , Humanos , Coração/fisiopatologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Animais
7.
Cell Signal ; 122: 111311, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39059755

RESUMO

Cyclic adenosine monophosphate (cAMP) is an intracellular second messenger that is derived from the conversion of adenosine triphosphate catalysed by adenylyl cyclase (AC). Protein kinase A (PKA), the main effector of cAMP, is a dimeric protein kinase consisting of two catalytic subunits and two regulatory subunits. When cAMP binds to the regulatory subunits of PKA, it leads to the dissociation and activation of PKA, which allows the catalytic subunit of PKA to phosphorylate target proteins, thereby regulating various physiological functions and metabolic processes in cellular function. Recent researches also implicate the involvement of cAMP-PKA signaling in the pathologenesis of anxiety disorder. However, there are still debates on the prevention and treatment of anxiety disorders from this signaling pathway. To review the function of cAMP-PKA signaling in anxiety disorder, we searched the publications with the keywords including "cAMP", "PKA" and "Anxiety" from Pubmed, Embase, Web of Science and CNKI databases. The results showed that the number of publications on cAMP-PKA pathway in anxiety disorder tended to increase. Bioinformatics results displayed a close association between the cAMP-PKA pathway and the occurrence of anxiety. Mechanistically, cAMP-PKA signaling could influence brain-derived neurotrophic factor and neuropeptide Y and participate in the regulation of anxiety. cAMP-PKA signaling could also oppose the dysfunctions of gamma-aminobutyric acid (GABA), intestinal flora, hypothalamic-pituitary-adrenal axis, neuroinflammation, and signaling proteins (MAPK and AMPK) in anxiety. In addition, chemical agents with the ability to activate cAMP-PKA signaling demonstrated therapy potential against anxiety disorders. This review emphasizes the central roles of cAMP-PKA signaling in anxiety and the targets of the cAMP-PKA pathway would be potential candidates for treatment of anxiety. Nevertheless, more laboratory investigations to improve the therapeutic effect and reduce the adverse effect, and continuous clinical research will warrant the drug development.


Assuntos
Ansiedade , Proteínas Quinases Dependentes de AMP Cíclico , AMP Cíclico , Transdução de Sinais , Humanos , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Animais , Ansiedade/metabolismo
8.
J Ethnopharmacol ; 333: 118425, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38848974

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Anshen Dingzhi prescription (ADP), documented in "Yi Xue Xin Wu", is a famous prescription for treating panic-related mental disorders such as post-traumatic stress disorder (PTSD). However, the underlying mechanism remains unclear. AIM OF THE STUDY: This study aimed to investigate the mechanisms by which ADP intervened in PTSD-like behaviors. METHODS: A mouse model of single prolonged stress (SPS) was established to evaluate the ameliorative effects and mechanisms of ADP on PTSD. Behavioral tests were used to assess PTSD-like behaviors in mice; transmission electron microscopy was used to observe changes in the ultrastructure of hippocampal synapses, and western blot, immunofluorescence, and ELISA were used to detect the expression of hippocampal deleted in colorectal cancer (DCC) and downstream Ras-related C3 botulinum toxin substrate 1 (Rac1) - P21-activated kinase 1 (PAK1) signal, as well as levels of synaptic proteins and inflammatory factors. Molecular docking technology simulated the binding of potential brain-penetrating components of ADP to DCC. RESULTS: SPS induced PTSD-like behaviors in mice and increased expression of hippocampal netrin-1 (NT-1) and DCC on the 14th day post-modeling, with concurrent elevation in serum NT-1 levels. Simultaneously, SPS also decreased p-Rac1 level and increased p-PAK1 level, the down-stream molecules of DCC. Lentiviral overexpression of DCC induced or exacerbated PTSD-like behaviors in control and SPS mice, respectively, whereas neutralization antibody against NT-1 reduced DCC activation and ameliorated PTSD-like behaviors in SPS mice. Interestingly, downstream Rac1-PAK1 signal was altered according to DCC expression. Moreover, DCC overexpression down-regulated N-methyl-d-aspartate (NMDA) receptor 2A (GluN2A) and postsynaptic density 95 (PSD95), up-regulated NMDA receptor 2B (GluN2B) and increased neuroinflammatory responses. Administration of ADP (36.8 mg/kg) improved PTSD-like behaviors in the SPS mice, suppressed hippocampal DCC, and downstream Rac1-PAK1 signal, upregulated GluN2A and PSD95, downregulated GluN2B, and reduced levels of inflammatory factors NOD-like receptor protein 3 (NLRP3), nuclear factor kappa-B (NF-κB) and interleukin-6 (IL-6). Importantly, DCC overexpression could also reduce the ameliorative effect of ADP on PTSD. Additionally, DCC demonstrated a favorable molecular docking pattern with the potential brain-penetrating components of ADP, further suggesting DCC as a potential target of ADP. CONCLUSION: Our data indicate that DCC is a key target for the regulation of synaptic function and inflammatory response in the onset of PTSD, and ADP likely reduces DCC to prevent PTSD via modulating downstream Rac1-PAK1 pathway. This study provides a novel mechanism for the onset of PTSD and warrants the clinical application of ADP.


Assuntos
Receptor DCC , Medicamentos de Ervas Chinesas , Hipocampo , Receptores de N-Metil-D-Aspartato , Transtornos de Estresse Pós-Traumáticos , Sinapses , Animais , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Receptor DCC/metabolismo , Modelos Animais de Doenças , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Proteína 4 Homóloga a Disks-Large/metabolismo , Transdução de Sinais/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Neuropeptídeos
9.
Quant Imaging Med Surg ; 14(4): 2904-2915, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617179

RESUMO

Background: The effects of glycemic status on coronary physiology have not been well evaluated. This study aimed to investigate changes in coronary physiology by using angiographic quantitative flow ratio (QFR), and their relationships with diabetes mellitus (DM) and glycemic control status. Methods: This retrospective cohort study included 530 patients who underwent serial coronary angiography (CAG) measurements between January 2016 and December 2021 at Tongji Hospital of Tongji University. Based on baseline and follow-up angiograms, 3-vessel QFR (3V-QFR) measurements were performed. Functional progression of coronary artery disease (CAD) was defined as a change in 3V-QFR (Δ3V-QFR = 3V-QFRfollow-up - 3V-QFRbaseline) ≤-0.05. Univariable and multivariable logistic regression analyses were applied to identify the independent predictors of coronary functional progression. Subgroup analysis according to diabetic status was performed. Results: During a median interval of 12.1 (10.6, 14.3) months between the two QFR measurements, functional progression was observed in 169 (31.9%) patients. Follow-up glycosylated hemoglobin (HbA1c) was predictive of coronary functional progression with an area under the curve (AUC) of 0.599 [95% confidence interval (CI): 0.546-0.651; P<0.001] in the entire population. Additionally, the Δ3V-QFR values were significantly lower in diabetic patients with HbA1c ≥7.0% compared to those with well-controlled HbA1c or non-diabetic patients [-0.03 (-0.09, 0) vs. -0.02 (-0.05, 0.01) vs. -0.02 (-0.05, 0.02); P=0.002]. In a fully adjusted multivariable logistics analysis, higher follow-up HbA1c levels were independently associated with progression in 3V-QFR [odds ratio (OR), 1.263; 95% CI: 1.078-1.479; P=0.004]. Furthermore, this association was particularly strong in diabetic patients (OR, 1.353; 95% CI: 1.082-1.693; P=0.008) compared to patients without DM. Conclusions: Among patients with established CAD, on-treatment HbA1c levels were independently associated with progression in physiological atherosclerotic burden, especially in patients with DM.

10.
Phytomedicine ; 129: 155639, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38669966

RESUMO

BACKGROUND: Cerebral microcirculation disturbance manifested by decrease of cerebral blood flow (CBF) is one of early features of Alzheimer's disease (AD). Shenqi Yizhi prescription (SQYZ) is widely used in the treatment of AD. However, the effect of SQYZ on the early feature of AD is not clarified. PURPOSE: To explore the effect and mechanism of SQYZ on AD-like behavior from the perspective of early pathological features of AD. METHODS: The fingerprint of SQYZ was established by ultra-high-performance liquid chromatograph. The improvement effect of SQYZ on Aß1-42 Oligomer (AßO)-induced AD-like behavior of mice was evaluated by behavioral test. The changes of CBF were detected by laser doppler meter and laser speckle imaging. The pathological changes of the hippocampus were observed by HE staining and transmission electron microscope. The expressions of intercellular communication molecules were detected by western blotting or immunofluorescence staining. The content of platelet-derived growth factor-BB (PDGF-BB) was detected by ELISA. Finally, the core components of SQYZ were docked with platelet-derived growth factor receptor beta (PDGFRß) using AutoDock Vina software. RESULTS: The similarity of the components in SQYZ extracted from different batches of medicinal materials was higher than 0.9. SQYZ administration could improve AßO-induced memory impairment and CBF reduction. Compared with the sham group, the number of neurons in the hippocampi of AßO group was significantly reduced, and the microvessels were shrunken and deformed. By contrary, SQYZ administration mitigated those pathological changes. Compared with the sham mice, the expressions of CD31, N-cadherin, PDGFRß, glial fibrillary acidic protein, phosphorylation of focal adhesion kinase, integrin ß1, and integrin α5 in the hippocampi of AßO mice were significantly increased. However, SQYZ administration significantly reduced AßO-induced expression of those proteins. Interestingly, the effect of PDGFRß inhibitor, sunitinib demonstrated a consistent modulating effect as SQYZ. Finally, the brain-entering components of SQYZ, including ginsenoside Rg5, coptisine, cryptotanshinone, dihydrotanshinone IIA, stigmasterol, and tanshinone IIA had high binding force with PDGFRß, implicating PDGFRß as a potential target for SQYZ. CONCLUSIONS: Our data indicate that SQYZ improves CBF in AßO-triggered AD-like mice through inhibiting brain pericyte contractility, indicating the treatment potential of SQYZ for AD at the early stage.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Medicamentos de Ervas Chinesas , Hipocampo , Transtornos da Memória , Pericitos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Peptídeos beta-Amiloides/metabolismo , Masculino , Camundongos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Pericitos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Fragmentos de Peptídeos , Becaplermina/farmacologia , Circulação Cerebrovascular/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Ginsenosídeos/farmacologia
11.
Biosens Bioelectron ; 255: 116229, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554574

RESUMO

Quantifying trace glycoproteins in biofluids requires ultrasensitive components, but feedback is not available in the current portable platforms of point-of-care (POC) diagnosis technologies. A compact and ultrasensitive bioelectrochemical patch was based on boronate-affinity amplified organic electrochemical transistors (BAAOECTs) for POC use was developed to overcome this dilemma. Benefit from the cascading signal enhancement deriving from boronate-affinity targeting multiple regions of glycoprotein and OECTs' inherent signal amplification capability, the BAAOECTs achieved a detection limit of 300 aM within 25 min, displaying about 3 orders of magnitude improvement in sensitivity compared with the commercial electrochemical luminescence (ECL) kit. By using a microfluidic chip, a microcontroller module, and a wireless sensing system, the testing workflows of the above patch was automated, allowing for running the sample-to-answer pipeline even in a resource-limited environment. The reliability of such portable biosensing platform is well recognized in clinical diagnostic applications of heart failure. Overall, the remarkable enhanced sensitivity and automated workflow of BAAOECTs biosensing platform provide a prospective and generalized design policy for expanding the POC diagnosis capabilities of glycoproteins.


Assuntos
Técnicas Biossensoriais , Sistemas Automatizados de Assistência Junto ao Leito , Estudos Prospectivos , Reprodutibilidade dos Testes , Glicoproteínas , Técnicas Eletroquímicas
12.
CNS Neurosci Ther ; 30(3): e14688, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516808

RESUMO

BACKGROUND: Accumulation of amyloid beta, tau hyperphosphorylation, and microglia activation are the three highly acknowledged pathological factors of Alzheimer's disease (AD). However, oligodendrocytes (OLs) were also widely investigated in the pathogenesis and treatment for AD. AIMS: We aimed to update the regulatory targets of the differentiation and maturation of OLs, and emphasized the key role of OLs in the occurrence and treatment of AD. METHODS: This review first concluded the targets of OL differentiation and maturation with AD pathogenesis, and then advanced the key role of OLs in the pathogenesis of AD based on both clinic and basic experiments. Later, we extensively discussed the possible application of the current progress in the diagnosis and treatment of this complex disease. RESULTS: Molecules involving in OLs' differentiation or maturation, including various transcriptional factors, cholesterol homeostasis regulators, and microRNAs could also participate in the pathogenesis of AD. Clinical data point towards the impairment of OLs in AD patients. Basic research further supports the central role of OLs in the regulation of AD pathologies. Additionally, classic drugs, including donepezil, edaravone, fluoxetine, and clemastine demonstrate their potential in remedying OL impairment in AD models, and new therapeutics from the perspective of OLs is constantly being developed. CONCLUSIONS: We believe that OL dysfunction is one important pathogenesis of AD. Factors regulating OLs might be biomarkers for early diagnosis and agents stimulating OLs warrant the development of anti-AD drugs.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Oligodendroglia/patologia
13.
J Ethnopharmacol ; 323: 117713, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38181935

RESUMO

HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE: Anshen Dingzhi prescription (ADP), which was first published in the masterpiece of traditional Chinese Medicine in the Qing Dynasty, "Yi Xue Xin Wu" (1732 CE), is documented to interrupt panic-related disorders. However, the mechanism of its action is still not clear. AIM OF THE STUDY: This study aims to investigate the effects of ADP on post-traumatic stress disorder (PTSD)-like behaviors and explore the mechanism from perspective of sirtuin1 (SIRT1)-peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α)-dependent mitochondrial function. MATERIALS AND METHODS: The changes of SIRT1-PGC-1α signal and mitochondrial function were evaluated in the hippocampus of mice receiving single prolonged stress (SPS). Later, the roles of this signaling pathway played in fear memory generalization and anxiety-like behavior in SPS mice was investigated using two agonists of this signaling pathway. On this basis, the effects of ADP (36.8 mg/kg) with definite therapeutic effects, on mitochondrial function were investigated and further confirmed by a SIRT1 inhibitor. Finally, the possible components of ADP targeting PGC-1α were monitored through bioinformatics. RESULTS: Compared with control mice, SIRT1-PGC-1α signal in the hippocampus was impaired in SPS mice, accompanied with dysfunction of mitochondria and abnormal expression of synaptic proteins. The agonists of SIRT1-PGC-1α signal, ZLN005, as well as resveratrol improved the behavioral changes of mice caused by SPS, reversed the decline of proteins in SIRT1-PGC-1α signal, mitochondrial dysfunction, and the abnormal expression of synaptic proteins. The fingerprint was established for the quality control of ADP. At a dose of 36.8 mg/kg, ADP could prevent fear memory generalization and anxiety-like behavior in SPS mice. Mechanically, ADP promoted SIRT1-PGC-1α signal and repaired mitochondrial function. Importantly, SIRT1 inhibitor, selisistat eliminated the ameliorative effects of ADP on behavioral and mitochondrial function. Through molecular docking simulation, the brain-entering components of ADP, including malkangunin, Rg5, fumarine, frutinone A, celabenzine, and inermin had high binding energy with PGC-1α. CONCLUSION: Dysfunction of SIRT1-PGC-1α-dependent mitochondrial function is attributed to SPS-triggered fear generalization and anxiety-like behavior, and ADP could improve PTSD-like behaviors likely through activating this signaling pathway.


Assuntos
Mitocôndrias , Sirtuína 1 , Camundongos , Animais , Sirtuína 1/metabolismo , Simulação de Acoplamento Molecular , Modelos Animais de Doenças , Hipocampo/metabolismo , Prescrições
14.
Curr Neuropharmacol ; 22(13): 2217-2239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38288836

RESUMO

Memory refers to the imprint accumulated in the brain by life experiences and represents the basis for humans to engage in advanced psychological activities such as thinking and imagination. Previously, research activities focused on memory have always targeted neurons. However, in addition to neurons, astrocytes are also involved in the encoding, consolidation, and extinction of memory. In particular, astrocytes are known to affect the recruitment and function of neurons at the level of local synapses and brain networks. Moreover, the involvement of astrocytes in memory and memory-related disorders, especially in Alzheimer's disease (AD) and post-traumatic stress disorder (PTSD), has been investigated extensively. In this review, we describe the unique contributions of astrocytes to synaptic plasticity and neuronal networks and discuss the role of astrocytes in different types of memory processing. In addition, we also explore the roles of astrocytes in the pathogenesis of memory-related disorders, such as AD, brain aging, PTSD and addiction, thus suggesting that targeting astrocytes may represent a potential strategy to treat memory-related neurological diseases. In conclusion, this review emphasizes that thinking from the perspective of astrocytes will provide new ideas for the diagnosis and therapy of memory-related neurological disorders.


Assuntos
Astrócitos , Transtornos da Memória , Memória , Humanos , Astrócitos/fisiologia , Animais , Memória/fisiologia , Transtornos da Memória/terapia , Plasticidade Neuronal/fisiologia , Doença de Alzheimer/terapia , Transtornos de Estresse Pós-Traumáticos/terapia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Encéfalo
15.
Angiology ; : 33197231218616, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37994827

RESUMO

The association between coronary physiological progression and clinical outcomes has not been investigated. A total of 421 patients who underwent serial coronary angiography at least 6 months apart were included. Total physiological atherosclerotic burden was characterized by sum of quantitative flow ratio in 3 epicardial vessels (3V-QFR). The relationships of the 3V-QFR and its longitudinal change (△3V-QFR) with major adverse cardiovascular events (MACE) were explored. 3V-QFR values derived from follow-up angiograms were slightly lower compared with baseline (2.85 [2.77, 2.90] vs 2.86 [2.80, 2.90], P < .001). The median △3V-QFR value was -0.01 (-0.05, 0.02). The multivariable models demonstrated that follow-up 3V-QFR and △3V-QFR were independently associated with MACE (both P < .05). Patients with both low follow-up 3V-QFR (≤2.78) and low △3V-QFR (≤-0.05) presented 3 times higher risk of MACE than those without (hazard ratio: 2.953, 95% confidence interval 1.428-6.104, P = .003). Furthermore, adding patient-level 3V-QFR and △3V-QFR to clinical model significantly improved the predictability for MACE. In conclusion, total physiological atherosclerotic burden and its progression can provide incremental prognostic value over clinical characteristics, supporting the use of coronary physiology in the evaluation of disease progression and for the identification of vulnerable patients.

16.
Zhen Ci Yan Jiu ; 48(11): 1079-1087, 2023 Nov 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37984904

RESUMO

OBJECTIVES: To explore the effect of electroacupuncture (EA) at "Baihui" (GV20) and "Shenting" (GV24) on the microvascular structure and related protein expression in the hippocampus of vascular dementia (VD) rat model, and to investigate the mechanism of EA in the treatment of VD. METHODS: A total of 24 SD rats were randomly divided into sham operation, model, EA, and oxiracetam groups, with 6 rats in each group. Multiple cerebral infarction method was used to establish VD model. In the EA group, EA was applied to GV20 and GV24 for 30 min, once daily for 14 days. Rats in the oxiracetam group were treated with oxiracetam (50 mg/kg) by intraperitoneal injection, and the course of treatment was the same as that in the EA group. Learning and memory ability were evaluated by using Morris water maze test and new object recognition experiment. The cerebral blood flow was detected by laser doppler. The microvascular structure in the hippocampus was observed by transmission electron microscopy. The expression of vascular structure related proteins of platelet-derived growth factor receptor (PDGFR)-ß, platelet endothelial cell adhesion molecule-1(CD31), neural cadherin N-Cadherin, Zonula occludens protein-1(ZO-1) in the hippocampus were measured by Western blot. RESULTS: Compared with the sham operation group, the rats in the model group had a significant increase in time of first crossing the platform, a significant decrease in the number of crossing platform and the new object preference index (P<0.05), a significant decrease in cerebral blood flow (P<0.05), and a significant increase in the brain weight (P<0.05). The structure boundary of pericyte and endothelial cells in the microvessels of the hippocampal CA1 area of model group was blurred, accompanied by obvious edema around the vessels and the reduction of tight junctions. The protein expression levels of PDGFR-ß, CD31, N-Cadherin, ZO-1 were significantly decreased in the model group compared with those in the sham operation group (P<0.05). Compared with the model group, the time of first crossing the platform of rats in the EA and oxiracetam group was shortened, the number of crossing platform were increased (P<0.05), the cerebral blood flow was increased (P<0.05), the brain weight was decreased (P<0.05), the morphology and structure of pericyte and endothelial cells in the microvessels of hippocampal CA1 area were intact, accompanied by the increase of tight junctions. Additionally, Compared with the model group, the EA group had a significant increase in the new object preference index (P<0.05), the protein expression levels of PDGFR-ß, CD31, ZO-1 in the EA group were increased (P<0.05), and the expression of PDGFR-ß, N-Cadherin, ZO-1 in the oxiracetam group were increased (P<0.05). CONCLUSIONS: EA at GV20 and GV24 can improve the learning and memory ability of VD rats, and the mechanism may be related to the repair of microvascular structures and improvement of cerebral blood flow.


Assuntos
Demência Vascular , Eletroacupuntura , Ratos , Animais , Demência Vascular/genética , Demência Vascular/terapia , Demência Vascular/metabolismo , Ratos Sprague-Dawley , Células Endoteliais/metabolismo , Hipocampo/metabolismo , Caderinas/metabolismo
17.
Eur J Med Chem ; 261: 115855, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37847955

RESUMO

In view of the fact that the G-protein-coupled receptors (GPCRs) sit at the top of the signaling pathways triggering a diverse range of signaling cascades towards a cellular event, GPCRs are regarded as central drug targets. mGlu5, a type of classical GPCRs, is highly expressed in the central nervous system (CNS) and responds to the neurotransmitter glutamate. Researches show that mGlu5 is a potential drug target for the treatment of depression. Up to now, multiple mGlu5 negative allosteric modulators (NAMs) have entered clinical trials, but no small molecule mGlu5 NAM has yet to reach market. Herein, we report the structural optimization and structure-activity relationship studies of a series of novel mGlu5 NAMs. Among them, the novel compound 10b is a high-affinity mGluR5 antagonist, with an IC50 value of 11.5 nM. Besides, we evaluated the anti-depressant effect of compound 10b using the chronic unpredictable mild stress (CUMS)-induced depression model. The data showed that the mice in CUMS group were featured by decreased level of serum 5-HT and increased level of serum CORT, and the expression of synaptic proteins were reduced, including GluA1, GluA2, p-PKA, BDNF and TrkB. However, those factors for identifying sensitivity to depression-like behaviors could be improved by compound 10b treatment. The preliminary toxicology evaluations indicated that compound 10b had a good safety profile in vivo. Collectively, the compound 10b represents a promising lead compound for the treatment of depressive disorder.


Assuntos
Transtorno Depressivo , Pirimidinas , Camundongos , Animais , Pirimidinas/farmacologia , Pirimidinas/química , Regulação Alostérica , Relação Estrutura-Atividade , Sistema Nervoso Central , Receptores Acoplados a Proteínas G
18.
Phytomedicine ; 119: 155009, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37573807

RESUMO

BACKGROUND: Neurovascular glial unit (NVGU) dysfunction has been reported to be an early and critical event in the pathophysiology of Alzheimer's disease (AD) and vascular dementia (VD). Although herbal medicines, with their favorable safety profiles and low adverse effects, have been suggested to be useful for the treatment of cognitive impairment, the potential role of the NVGU as the target of the effects of herbal medicines is still unclear. PURPOSE: This review aimed to retrieve evidence from experimental studies of phytopharmaceuticals targeting the NVGU for the treatment of cognitive impairment in AD and VD, and discussed the potential of phytopharmaceuticals to improve cognitive impairment from the perspective of the NVGU. STUDY DESIGN AND METHODS: We systematically searched PubMed, Google Scholar, Web of Science, and CNKI. The keywords used for searching information on the NVGU in the treatment of cognitive impairments included "Alzheimer's disease," "Vascular dementia," "Herbal medicines," "Natural products," "Neurovascular," "Adverse reaction," and "Toxicity, etc." We selected studies on the basis of predefined eligibility criteria. RESULTS: NVGU mainly consists of endothelial cells, pericytes, astrocytes, microglia, oligodendrocytes, and neurons, and damage to these cells can induce cognitive impairment by impairing the blood-brain barrier (BBB) and cerebral blood flow (CBF) as well as neuronal function. The active components of herbal medicines, including Ginkgo biloba L., Ginseng Radix et Rhizoma, Epimedium Folium, Chuanxiong Rhizoma, Carthami flos, and Acorus tatarinowii Schott, as well as traditional Chinese medicine prescriptions have shown the potential to improve BBB function and increase CBF to prevent cognitive impairment by inhibiting astrocyte and microglia activation, protecting oligodendrocyte myelin function, reducing neuronal apoptosis, and promoting angiogenesis. CONCLUSIONS: Herbal medicines demonstrate great potential to prevent cognitive impairment. Multiple components from herbal medicines may function through different signaling pathways to target the NVGU. Future studies using novel drug-carrier or delivery systems targeting the NVGU will certainly facilitate the development of phytopharmaceuticals for AD and VD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência Vascular , Medicamentos de Ervas Chinesas , Plantas Medicinais , Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Demência Vascular/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Células Endoteliais , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Humanos
19.
Eur J Pharmacol ; 957: 175905, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37640220

RESUMO

Chronic kidney disease (CKD) with anxiety disorder is of a great concern due to its high morbidity and mortality. Urea, as an important toxin in CKD, is not only a pathological factor for complications in patients with CKD, but also is accumulated in the brain of aging and neurodegenerative diseases. However, the pathological role and underlying regulatory mechanism of urea in CKD related mood disorders have not been well established. We previously reported a depression phenotype in mice with abnormal urea metabolism. Since patients with depression are more likely to suffer from anxiety, we speculate that high urea may be an important factor causing anxiety in CKD patients. In adenine-induced CKD mouse model and UT-B-/- mouse model, multiple behavioral studies confirmed that high urea induces anxiety-like behavior. Single-cell transcriptome revealed that down-regulation of Egr1 induced compensatory proliferation of oligodendrocyte progenitor cells (OPC). Myelin-related signaling pathways of oligodendrocytes (OL) were change significant in the urea accumulation amygdala. The study showed that high urea downregulated Egr1 with subsequent upregulation of ERK pathways in OPCs. These data indicate that the pathological role and molecular mechanism of high urea in CKD-related anxiety, and provide objective serological indicator and a potential new drug target for the prevention and treatment of anxiety in CKD patients.


Assuntos
Células Precursoras de Oligodendrócitos , Humanos , Animais , Camundongos , Transtornos de Ansiedade/complicações , Ansiedade/complicações , Tonsila do Cerebelo , Proliferação de Células
20.
Fitoterapia ; 169: 105618, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37482307

RESUMO

It is generally believed that in post-traumatic stress disorder (PTSD), the high expression of fear memory is mainly determined by amygdala hyperactivity and hippocampus hypoactivity. In this review, we firstly updated the mechanisms of fear memory, and then searched the experimental evidence of phytotherapy for fear memory in the past five years. Based on the summary of those experimental studies, we further discussed the future research strategies of plant medicines, including the study of the mechanism of specific brain regions, the optimal time for the prevention and treatment of fear memory-related diseases such as PTSD, and the development of new drugs with active components of plant medicines. Accordingly, plant medicines play a clear role in improving fear memory abnormalities and have the drug development potential in the treatment of fear-related disorders.


Assuntos
Medo , Memória , Estrutura Molecular , Tonsila do Cerebelo/metabolismo , Fitoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA