Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(8): 6456-6494, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38574366

RESUMO

Dysregulation of IL17A drives numerous inflammatory and autoimmune disorders with inhibition of IL17A using antibodies proven as an effective treatment. Oral anti-IL17 therapies are an attractive alternative option, and several preclinical small molecule IL17 inhibitors have previously been described. Herein, we report the discovery of a novel class of small molecule IL17A inhibitors, identified via a DNA-encoded chemical library screen, and their subsequent optimization to provide in vivo efficacious inhibitors. These new protein-protein interaction (PPI) inhibitors bind in a previously undescribed mode in the IL17A protein with two copies binding symmetrically to the central cavities of the IL17A homodimer.


Assuntos
DNA , Descoberta de Drogas , Interleucina-17 , Bibliotecas de Moléculas Pequenas , Interleucina-17/metabolismo , Interleucina-17/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , DNA/metabolismo , DNA/química , Humanos , Animais , Relação Estrutura-Atividade , Ligação Proteica , Camundongos
2.
RSC Med Chem ; 15(3): 1072, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516596

RESUMO

[This corrects the article DOI: 10.1039/D3MD00540B.].

3.
RSC Med Chem ; 15(3): 832-838, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516584

RESUMO

Glucocorticoid receptor modulators (GRMs) are an established and successful compound class for the treatment of multiple diseases. In addition, they are an area of high interest as payloads for antibody-drug conjugate s(ADCs) in both immunology and oncology. Solving the crystal structure of compound 2, the GRM payload from ABBV-3373 and ABBV-154, in the ligand binding domain of the glucocorticoid receptor (GR) revealed key information to facilitate optimal ADC payload design. All four critical H-bonds between the oxygen functional groups on the hexadecahydro-1H-cyclopenta[a]phenanthrene ring system of the small molecule and protein were shown to be made (carbonyl at C3 to Gln570 and Arg611 and Asn564, carbonyl at C20 to Thr739, hydroxyl at C21 to Asn 564 and Thr739). In addition, an extra H-bond between the linker attachment site on compound 2, the aniline in the biaryl region, was observed. Confirmation of the stereochemistry of the acetal in compound 2 as (R) was established. Finally, the importance of minimising the exposed hydrophobic surface area of a payload to reduce the negative impact on the properties of resulting ADCs, like aggregation, was rationalised by comparison of (R)-acetal compound 2 and (S)-acetal compound 3.

4.
Sci Transl Med ; 16(739): eadd8936, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507467

RESUMO

Glucocorticoids (GCs) are efficacious drugs used for treating many inflammatory diseases, but the dose and duration of administration are limited because of severe side effects. We therefore sought to identify an approach to selectively target GCs to inflamed tissue. Previous work identified that anti-tumor necrosis factor (TNF) antibodies that bind to transmembrane TNF undergo internalization; therefore, an anti-TNF antibody-drug conjugate (ADC) would be mechanistically similar, where lysosomal catabolism could release a GC receptor modulator (GRM) payload to dampen immune cell activity. Consequently, we have generated an anti-TNF-GRM ADC with the aim of inhibiting pro-inflammatory cytokine production from stimulated human immune cells. In an acute mouse model of contact hypersensitivity, a murine surrogate anti-TNF-GRM ADC inhibited inflammatory responses with minimal effect on systemic GC biomarkers. In addition, in a mouse model of collagen-induced arthritis, single-dose administration of the ADC, delivered at disease onset, was able to completely inhibit arthritis for greater than 30 days, whereas an anti-TNF monoclonal antibody only partially inhibited disease. ADC treatment at the peak of disease was also able to attenuate the arthritic phenotype. Clinical data for a human anti-TNF-GRM ADC (ABBV-3373) from a single ascending dose phase 1 study in healthy volunteers demonstrated antibody-like pharmacokinetic profiles and a lack of impact on serum cortisol concentrations at predicted therapeutic doses. These data suggest that an anti-TNF-GRM ADC may provide improved efficacy beyond anti-TNF alone in immune mediated diseases while minimizing systemic side effects associated with standard GC treatment.


Assuntos
Anticorpos , Artrite Experimental , Imunoconjugados , Esteroides , Humanos , Animais , Camundongos , Preparações Farmacêuticas , Receptores de Glucocorticoides/uso terapêutico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Modelos Animais de Doenças , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico
5.
Mol Cancer Ther ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507740

RESUMO

The activated B cell (ABC) subset of diffuse large B cell lymphoma (DLBCL) is characterized by chronic B cell receptor signaling and associated with poor outcomes when treated with standard therapy. In ABC-DLBCL, MALT1 is a core enzyme that is constitutively activated by stimulation of the B cell receptor or gain-of-function mutations in upstream components of the signaling pathway, making it an attractive therapeutic target. We discovered a novel small molecule inhibitor, ABBV-MALT1, that potently shuts down B cell signaling selectively in ABC-DLBCL preclinical models leading to potent cell growth and xenograft inhibition. We also identified a rational combination partner for ABBV-MALT1 in the BCL2 inhibitor, venetoclax, which when combined significantly synergizes to elicit deep and durable responses in preclinical models. This work highlights the potential of ABBV-MALT1 monotherapy and combination with venetoclax as effective treatment options for patients with ABC-DLBCL.

6.
Bioanalysis ; 15(7): 371-390, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37057990

RESUMO

Background: Sodium oligomannate was approved for marketing by the National Medical Products Administration of China in 2019 for improving cognitive functions in mild-to-moderate Alzheimer's disease patients. Method: LC-MS/MS methods were established and validated for the quantitation of sodium oligomannate in human plasma, urine and feces to support clinical development studies. Samples were prepared using liquid-liquid extraction and analyzed by ion-pair reversed-phase LC-MS/MS with calibration standard curve ranges of 25.0-5000 ng/ml, 0.500-100 µg/ml and 100-10,000 µg/g in plasma, urine and feces, respectively. Results & conclusion: All validation parameters met the respective acceptance criteria established by US FDA and International Council for Harmonisation of Technical Requirements for Human Use guidelines. The validated methods were applied to a pharmacokinetics and excretion study in healthy Chinese subjects.


Assuntos
Doença de Alzheimer , Líquidos Corporais , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Fezes , Reprodutibilidade dos Testes
7.
Sci Rep ; 12(1): 14561, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028520

RESUMO

Anti-IL17A therapies have proven effective for numerous inflammatory diseases including psoriasis, axial spondylitis and psoriatic arthritis. Modulating and/or antagonizing protein-protein interactions of IL17A cytokine binding to its cell surface receptors with oral therapies offers the promise to bring forward biologics-like efficacy in a pill to patients. We used an NMR-based fragment screen of recombinant IL17A to uncover starting points for small molecule IL17A antagonist discovery. By examining chemical shift perturbations in 2D [1H, 13C-HSQC] spectra of isotopically labeled IL17A, we discovered fragments binding the cytokine at a previously undescribed site near the IL17A C-terminal region, albeit with weak affinity (> 250 µM). Importantly this binding location was distinct from previously known chemical matter modulating cytokine responses. Subsequently through analog screening, we identified related compounds that bound symmetrically in this novel site with two copies. From this observation we employed a linking strategy via structure-based drug design and obtained compounds with increased binding affinity (< 50 nM) and showed functional inhibition of IL17A-induced cellular signaling (IC50~1 µM). We also describe a fluorescence-based probe molecule suitable to discern/screen for additional molecules binding in this C-terminal site.


Assuntos
Artrite Psoriásica , Espondiloartrite Axial , Interleucina-17 , Psoríase , Citocinas , Desenho de Fármacos , Humanos , Interleucina-17/antagonistas & inibidores
8.
Biochemistry ; 58(18): 2326-2338, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30973712

RESUMO

Chromokinesins NOD and KID have similar DNA binding domains and functions during cell division, while their motor domain sequences show significant variations. It has been unclear whether these motors have the similar structure, chemistry, and microtubule interactions necessary to follow a similar mechanism of force generation. We used biochemical rate measurements, cosedimentation, and structural analysis to investigate the ATPase mechanisms of the NOD and KID core domains. These studies revealed that NOD and KID have different ATPase mechanisms, microtubule interactions, and catalytic domain structures. The ATPase cycles of NOD and KID have different rate-limiting steps. The ATPase rate of NOD was robustly stimulated by microtubules, and its microtubule affinity was weakened in all nucleotide-bound states. KID bound microtubules tightly in all nucleotide states and remained associated with the microtubule for more than 100 cycles of ATP hydrolysis before dissociating. The structure of KID was most like that of conventional kinesin (KIF5). Key differences in the microtubule binding region and allosteric communication pathway between KID and NOD are consistent with our biochemical data. Our results support the model in which NOD and KID utilize distinct mechanistic pathways to achieve the same function during cell division.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação/genética , Domínio Catalítico , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Humanos , Cinesinas/química , Cinesinas/genética , Cinética , Microtúbulos/química , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Domínios Proteicos
9.
Biosci Rep ; 38(1)2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29298880

RESUMO

The high proliferation rate of tumor cells demands high energy and metabolites that are sustained by a high glycolytic flux known as the 'Warburg effect'. The activation and further metabolism of glucose is initiated by hexokinase, a focal point of metabolic regulation. The human hexokinase 2 (HK2) is overexpressed in all aggressive tumors and predominantly found on the outer mitochondrial membrane, where interactions through its N-terminus initiates and maintains tumorigenesis. Here, we report the structure of HK2 in complex with glucose and glucose-6-phosphate (G6P). Structural and biochemical characterization of the mitochondrial conformation reveals higher conformational stability and slow protein unfolding rate (ku) compared with the cytosolic conformation. Despite the active site similarity of all human hexokinases, the N-domain of HK2 is catalytically active but not in hexokinase 1 and 3. Helix-α13 that protrudes out of the N-domain to link it to the C-domain of HK2 is found to be important in maintaining the catalytic activity of the N-half. In addition, the N-domain of HK2 regulates the stability of the whole enzyme in contrast with the C-domain. Glucose binding enhanced the stability of the wild-type (WT) enzyme and the single mutant D657A of the C-domain, but it did not increase the stability of the D209A mutant of the N-domain. The interaction of HK2 with the mitochondria through its N-half is proposed to facilitate higher stability on the mitochondria. The identification of structural and biochemical differences between HK2 and other human hexokinase isozymes could potentially be used in the development of new anticancer therapies.


Assuntos
Glucose-6-Fosfato/química , Glucose/metabolismo , Hexoquinase/química , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , Catálise , Domínio Catalítico , Glucose/química , Hexoquinase/genética , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Conformação Molecular , Mutação , Conformação Proteica , Termodinâmica
10.
Sci Rep ; 7(1): 15121, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123223

RESUMO

Kinesin microtubule motor proteins play essential roles in division, including attaching chromosomes to spindles and crosslinking microtubules for spindle assembly. Human kinesin-14 KIFC1 is unique in that cancer cells with amplified centrosomes are dependent on the motor for viable division because of its ability to cluster centrosomes and form bipolar spindles, but it is not required for division in almost all normal cells. Screens for small molecule inhibitors of KIFC1 have yielded several candidates for further development, but obtaining structural data to determine their sites of binding has been difficult. Here we compare a previously unreported KIFC1 crystal structure with new structures of two closely related kinesin-14 proteins, Ncd and KIFC3, to determine the potential binding site of a known KIFC1 ATPase inhibitor, AZ82. We analyze the previously identified kinesin inhibitor binding sites and identify features of AZ82 that favor binding to one of the sites, the α4/α6 site. This selectivity can be explained by unique structural features of the KIFC1 α4/α6 binding site. These features may help improve the drug-like properties of AZ82 and other specific KIFC1 inhibitors.


Assuntos
Alanina/análogos & derivados , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Cinesinas/antagonistas & inibidores , Cinesinas/química , Piridinas/química , Piridinas/metabolismo , Alanina/química , Alanina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Humanos , Cinesinas/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica
12.
Bioorg Med Chem Lett ; 27(7): 1576-1583, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28254486

RESUMO

Herein we disclose SAR studies of a series of dimethylamino pyrrolidines which we recently reported as novel inhibitors of the PRC2 complex through disruption of EED/H3K27me3 binding. Modification of the indole and benzyl moieties of screening hit 1 provided analogs with substantially improved binding and cellular activities. This work culminated in the identification of compound 2, our nanomolar proof-of-concept (PoC) inhibitor which provided on-target tumor growth inhibition in a mouse xenograft model. X-ray crystal structures of several inhibitors bound in the EED active-site are also discussed.


Assuntos
Complexo Repressor Polycomb 2/antagonistas & inibidores , Complexo Repressor Polycomb 2/metabolismo , Pirrolidinas/farmacologia , Sulfonamidas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Ligantes , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Complexo Repressor Polycomb 2/química , Ligação Proteica , Pirrolidinas/síntese química , Pirrolidinas/química , Estereoisomerismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nat Chem Biol ; 13(4): 389-395, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28135237

RESUMO

Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein-protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.


Assuntos
Antineoplásicos/farmacologia , Indanos/farmacologia , Complexo Repressor Polycomb 2/antagonistas & inibidores , Sulfonamidas/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indanos/química , Modelos Moleculares , Estrutura Molecular , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfonamidas/química , Células Tumorais Cultivadas
14.
ACS Med Chem Lett ; 7(12): 1102-1106, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27994746

RESUMO

SETD8 is a histone H4-K20 methyltransferase that plays an essential role in the maintenance of genomic integrity during mitosis and in DNA damage repair, making it an intriguing target for cancer research. While some small molecule inhibitors for SETD8 have been reported, the structural binding modes for these inhibitors have not been revealed. Using the complex structure of the substrate peptide bound to SETD8 as a starting point, different natural and unnatural amino acid substitutions were tested, and a potent (Ki 50 nM, IC50 0.33 µM) and selective norleucine containing peptide inhibitor has been obtained.

15.
J Biol Chem ; 290(16): 10406-17, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25678709

RESUMO

The Gram-negative bacterium enteropathogenic Escherichia coli uses a syringe-like type III secretion system (T3SS) to inject virulence or "effector" proteins into the cytoplasm of host intestinal epithelial cells. To assemble, the T3SS must traverse both bacterial membranes, as well as the peptidoglycan layer. Peptidoglycan is made of repeating N-acetylmuramic acid and N-acetylglucosamine disaccharides cross-linked by pentapeptides to form a tight mesh barrier. Assembly of many macromolecular machines requires a dedicated peptidoglycan lytic enzyme (PG-lytic enzyme) to locally clear peptidoglycan. Here we have solved the first structure of a T3SS-associated PG-lytic enzyme, EtgA from enteropathogenic E. coli. Unexpectedly, the active site of EtgA has features in common with both lytic transglycosylases and hen egg white lysozyme. Most notably, the ß-hairpin region resembles that of lysozyme and contains an aspartate that aligns with lysozyme Asp-52 (a residue critical for catalysis), a conservation not observed in other previously characterized lytic transglycosylase families to which the conserved T3SS enzymes had been presumed to belong. Mutation of the EtgA catalytic glutamate, Glu-42, conserved across lytic transglycosylases and hen egg white lysozyme, and this differentiating aspartate diminishes type III secretion in vivo, supporting its essential role in clearing the peptidoglycan for T3SS assembly. Finally, we show that EtgA forms a 1:1 complex with the building block of the polymerized T3SS inner rod component, EscI, and that this interaction enhances PG-lytic activity of EtgA in vitro, collectively providing the necessary strict localization and regulation of the lytic activity to prevent overall cell lysis.


Assuntos
Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/química , Regulação Bacteriana da Expressão Gênica , Glicosiltransferases/química , Peptidoglicano/química , Sequência de Aminoácidos , Sistemas de Secreção Bacterianos , Transporte Biológico , Membrana Celular/metabolismo , Parede Celular/metabolismo , Escherichia coli Enteropatogênica/enzimologia , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Muramidase/química , Muramidase/genética , Muramidase/metabolismo , Mutação , Peptidoglicano/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Virulência
16.
ACS Med Chem Lett ; 4(2): 211-5, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24900653

RESUMO

To investigate the role played by the unique pre-DFG residue Val 195 of Cdc7 kinase on the potency of azaindole-chloropyridines (1), a series of novel analogues with various chloro replacements were synthesized and evaluated for their inhibitory activity against Cdc7. X-ray cocrystallization using a surrogate protein, GSK3ß, and modeling studies confirmed the azaindole motif as the hinge binder. Weaker hydrophobic interactions with Met 134 and Val 195 by certain chloro replacements (e.g., H, methyl) led to reduced Cdc7 inhibition. Meanwhile, data from other replacements (e.g., F, O) indicated that loss of such hydrophobic interaction could be compensated by enhanced hydrogen bonding to Lys 90. Our findings not only provide an in-depth understanding of the pre-DFG residue as another viable position impacting kinase inhibition, they also expand the existing knowledge of ligand-Cdc7 binding.

17.
PLoS One ; 7(3): e33943, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470497

RESUMO

Kinesin-1 transports various cargos along the axon by interacting with the cargos through its light chain subunit. Kinesin light chains (KLC) utilize its tetratricopeptide repeat (TPR) domain to interact with over 10 different cargos. Despite a high sequence identity between their TPR domains (87%), KLC1 and KLC2 isoforms exhibit differential binding properties towards some cargos. We determined the structures of human KLC1 and KLC2 tetratricopeptide repeat (TPR) domains using X-ray crystallography and investigated the different mechanisms by which KLCs interact with their cargos. Using isothermal titration calorimetry, we attributed the specific interaction between KLC1 and JNK-interacting protein 1 (JIP1) cargo to residue N343 in the fourth TRP repeat. Structurally, the N343 residue is adjacent to other asparagines and lysines, creating a positively charged polar patch within the groove of the TPR domain. Whereas, KLC2 with the corresponding residue S328 did not interact with JIP1. Based on these finding, we propose that N343 of KLC1 can form "a carboxylate clamp" with its neighboring asparagine to interact with JIP1, similar to that of HSP70/HSP90 organizing protein-1's (HOP1) interaction with heat shock proteins. For the binding of cargos shared by KLC1 and KLC2, we propose a different site located within the groove but not involving N343. We further propose a third binding site on KLC1 which involves a stretch of polar residues along the inter-TPR loops that may form a network of hydrogen bonds to JIP3 and JIP4. Together, these results provide structural insights into possible mechanisms of interaction between KLC TPR domains and various cargo proteins.


Assuntos
Cinesinas/química , Modelos Moleculares , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Dados de Sequência Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
18.
J Biol Inorg Chem ; 17(4): 573-88, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22349975

RESUMO

Isothermal calorimetric studies of the binding of iron(III) citrate to ferric ion binding protein from Neisseria gonorrhoeae suggested the complexation of a tetranuclear iron(III) cluster as a single step binding event (apparent binding constant K(app) (ITC) = 6.0(5) × 10(5) M(-1)). High-resolution Fourier transform ion cyclotron resonance mass spectrometric data supported the binding of a tetranuclear oxo(hydroxo) iron(III) cluster of formula [Fe(4)O(2)(OH)(4)(H(2)O)(cit)](+) in the interdomain binding cleft of FbpA. The mutant H9Y-nFbpA showed a twofold increase in the apparent binding constant [K(app) (ITC) = 1.1(7) × 10(6) M(-1)] for the tetranuclear iron(III) cluster compared to the wild-type protein. Mössbauer spectra of Escherichia coli cells overexpressing FbpA and cultured in the presence of added (57)Fe citrate were indicative of the presence of dinuclear and polynuclear clusters. FbpA therefore appears to have a strong affinity for iron clusters in iron-rich environments, a property which might endow the protein with new biological functions.


Assuntos
Proteínas de Bactérias/química , Compostos Férricos/química , Proteínas de Ligação ao Ferro/química , Proteínas de Bactérias/genética , Sítios de Ligação , Calorimetria , Clonagem Molecular , Proteínas de Ligação ao Ferro/genética , Espectrometria de Massas , Modelos Moleculares , Estrutura Molecular , Neisseria gonorrhoeae , Espectroscopia de Mossbauer
19.
PLoS Pathog ; 5(3): e1000344, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19300498

RESUMO

Mycobacterium tuberculosis, the etiological agent of TB, possesses a cholesterol catabolic pathway implicated in pathogenesis. This pathway includes an iron-dependent extradiol dioxygenase, HsaC, that cleaves catechols. Immuno-compromised mice infected with a DeltahsaC mutant of M. tuberculosis H37Rv survived 50% longer than mice infected with the wild-type strain. In guinea pigs, the mutant disseminated more slowly to the spleen, persisted less successfully in the lung, and caused little pathology. These data establish that, while cholesterol metabolism by M. tuberculosis appears to be most important during the chronic stage of infection, it begins much earlier and may contribute to the pathogen's dissemination within the host. Purified HsaC efficiently cleaved the catecholic cholesterol metabolite, DHSA (3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione; k(cat)/K(m) = 14.4+/-0.5 microM(-1) s(-1)), and was inactivated by a halogenated substrate analogue (partition coefficient<50). Remarkably, cholesterol caused loss of viability in the DeltahsaC mutant, consistent with catechol toxicity. Structures of HsaC:DHSA binary complexes at 2.1 A revealed two catechol-binding modes: bidentate binding to the active site iron, as has been reported in similar enzymes, and, unexpectedly, monodentate binding. The position of the bicyclo-alkanone moiety of DHSA was very similar in the two binding modes, suggesting that this interaction is a determinant in the initial substrate-binding event. These data provide insights into the binding of catechols by extradiol dioxygenases and facilitate inhibitor design.


Assuntos
Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , Mycobacterium tuberculosis/patogenicidade , Oxigenases/química , Oxigenases/metabolismo , Animais , Proteínas de Bactérias/química , Cristalografia por Raios X , Feminino , Cobaias , Camundongos , Camundongos SCID , Mutação , Mycobacterium tuberculosis/metabolismo , Oxigenases/genética , Reação em Cadeia da Polimerase , Relação Estrutura-Atividade , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/patologia
20.
Nucleic Acids Res ; 37(7): 2204-10, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19233876

RESUMO

The MBT repeat has been recently identified as a key domain capable of methyl-lysine histone recognition. Functional work has pointed to a role for MBT domain-containing proteins in transcriptional repression of developmental control genes such as Hox genes. In this study, L3MBTL2, a human homolog of Drosophila Sfmbt critical for Hox gene silencing, is demonstrated to preferentially recognize lower methylation states of several histone-derived peptides through its fourth MBT repeat. High-resolution crystallographic analysis of the four MBT repeats of this protein reveals its unique asymmetric rhomboid architecture, as well as binding mechanism, which preclude the interaction of the first three MBT repeats with methylated peptides. Structural elucidation of an L3MBTL2-H4K20me1 complex and comparison with other MBT-histone peptide complexes also suggests that an absence of distinct surface contours surrounding the methyl-lysine-binding pocket may underlie the lack of sequence specificity observed for members of this protein family.


Assuntos
Histonas/metabolismo , Proteínas Nucleares/química , Proteínas Repressoras/química , Fatores de Transcrição/química , Histonas/química , Humanos , Lisina/metabolismo , Metilação , Modelos Moleculares , Proteínas Nucleares/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Sequências Repetitivas de Aminoácidos , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA