Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 44(7): 3685-3694, 2023 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-37438268

RESUMO

Based on the air quality data and conventional meteorological data of the Nanjing Region from January 2015 to December 2016, to analyze the characteristics of O3 concentration changes in the Nanjing Region, a light gradient boosting machine (LightGBM) model was established to predict O3 concentration. The model was compared with three machine learning methods that are commonly used in air quality prediction, including support vector machine, recurrent neural network, and random forest methods, to verify its effectiveness and feasibility. Finally, the performance of the prediction model was analyzed under different meteorological conditions. The results showed that the variation in O3 concentration in Nanjing had significant seasonal differences and was affected by a combination of its pre-concentration, meteorological factors, and other air pollutant concentrations. The LightGBM model predicted the ground-level O3 concentration in the Nanjing area more precisely to a large extent (R2=0.92), and the model outperformed other models in prediction accuracy and computational efficiency. In particular, the model showed a significantly higher prediction accuracy and stability than that of other models under a high-temperature condition that was more likely prone to ozone pollution. The LightGBM model was characterized by its high prediction accuracy, good stability, satisfactory generalization ability, and short operation time, which broaden its application prospect in O3 concentration prediction.

2.
Genome Biol ; 24(1): 108, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158941

RESUMO

BACKGROUND: Genetic variation in regulatory sequences that alter transcription factor (TF) binding is a major cause of phenotypic diversity. Brassinosteroid is a growth hormone that has major effects on plant phenotypes. Genetic variation in brassinosteroid-responsive cis-elements likely contributes to trait variation. Pinpointing such regulatory variations and quantitative genomic analysis of the variation in TF-target binding, however, remains challenging. How variation in transcriptional targets of signaling pathways such as the brassinosteroid pathway contributes to phenotypic variation is an important question to be investigated with innovative approaches. RESULTS: Here, we use a hybrid allele-specific chromatin binding sequencing (HASCh-seq) approach and identify variations in target binding of the brassinosteroid-responsive TF ZmBZR1 in maize. HASCh-seq in the B73xMo17 F1s identifies thousands of target genes of ZmBZR1. Allele-specific ZmBZR1 binding (ASB) has been observed for 18.3% of target genes and is enriched in promoter and enhancer regions. About a quarter of the ASB sites correlate with sequence variation in BZR1-binding motifs and another quarter correlate with haplotype-specific DNA methylation, suggesting that both genetic and epigenetic variations contribute to the high level of variation in ZmBZR1 occupancy. Comparison with GWAS data shows linkage of hundreds of ASB loci to important yield and disease-related traits. CONCLUSION: Our study provides a robust method for analyzing genome-wide variations of TF occupancy and identifies genetic and epigenetic variations of the brassinosteroid response transcription network in maize.


Assuntos
Brassinosteroides , Zea mays , Zea mays/genética , Alelos , Sequenciamento de Cromatina por Imunoprecipitação , Fenótipo , Fatores de Transcrição/genética
3.
Plant Cell ; 35(3): 975-993, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36660928

RESUMO

Elucidating enzyme-substrate relationships in posttranslational modification (PTM) networks is crucial for understanding signal transduction pathways but is technically difficult because enzyme-substrate interactions tend to be transient. Here, we demonstrate that TurboID-based proximity labeling (TbPL) effectively and specifically captures the substrates of kinases and phosphatases. TbPL-mass spectrometry (TbPL-MS) identified over 400 proximal proteins of Arabidopsis thaliana BRASSINOSTEROID-INSENSITIVE2 (BIN2), a member of the GLYCOGEN SYNTHASE KINASE 3 (GSK3) family that integrates signaling pathways controlling diverse developmental and acclimation processes. A large portion of the BIN2-proximal proteins showed BIN2-dependent phosphorylation in vivo or in vitro, suggesting that these are BIN2 substrates. Protein-protein interaction network analysis showed that the BIN2-proximal proteins include interactors of BIN2 substrates, revealing a high level of interactions among the BIN2-proximal proteins. Our proteomic analysis establishes the BIN2 signaling network and uncovers BIN2 functions in regulating key cellular processes such as transcription, RNA processing, translation initiation, vesicle trafficking, and cytoskeleton organization. We further discovered significant overlap between the GSK3 phosphorylome and the O-GlcNAcylome, suggesting an evolutionarily ancient relationship between GSK3 and the nutrient-sensing O-glycosylation pathway. Our work presents a powerful method for mapping PTM networks, a large dataset of GSK3 kinase substrates, and important insights into the signaling network that controls key cellular functions underlying plant growth and acclimation.


Assuntos
Proteínas Quinases , Proteômica , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biotina/química , Biotinilação , Brassinosteroides/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteômica/métodos , Transdução de Sinais/fisiologia
4.
Inorg Chem ; 61(48): 19106-19118, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36395523

RESUMO

Deep investigations on the synthetic and structural chemistry of heterometallic chalcogenidostannates bear fundamental significance for the establishment of the structure-property relationship that would offer guidance on the functional material innovation. Presented here are four ammonium- and/or alkylammonium-directed M-Sn-Q (M = Zn, Cd; Q = S, Se) compounds, namely, [NH4]7[H3O]3Zn4Sn4S17 (1), [NH4]5[(CH3)2NH2]Zn4Sn5S17 (2), [CH3CH2NH3]22Zn16Sn12Se51(H2O)4·16H2O (3), and [NH4]2CdSnSe4 (4). All four compounds were synthesized in deep eutectic solvents (DESs) or ethylamine aqueous solution, both of which function simultaneously as reaction media and structure-directing agents. Compound 1 consists of discrete P1-[Zn4Sn4S17]10- clusters templated by mixed [NH4]+/[H3O]+ cations. In compound 2, such P1 clusters are bridged by Sn4+ ions in a 4,4-connection mode to form a [Zn4Sn5S17]n6n- framework with three types of cavities (I-III) varying in size. The two smaller cavities (I and II) accommodate NH4+ while the larger one(III) is occupied by [(CH3)2NH2]+, reflecting the rational size-dependence of cations on cavities. Compound 3 features an [Zn16Sn12Se51(H2O)4]n22n- open framework constructed from the 4,3-connection of P1-[Zn4Sn4Se17]10- clusters and {Zn(H2O)}2+ bridges. This linkage mode contributes to a large cage-like subunit (inner dimension: 21.99 × 9.06 Å2) and therefore an ultrahigh porosity that are occupied by [CH3CH2NH3]+ cations and water molecules (volume fraction: 57.7%). Compound 4 exists as a stacking of [CdSnSe4]n2n- chains, which are composed of alternatively arranged {CdSe4} and {SnSe4} tetrahedra, in combination with [NH4]+ cations as both charge-compensating and space-filling agents. Detailed synthetic, structural, and topological analyses were performed on these solid materials, coupled with extensive investigations on their optical and thermal properties. Compound 3 exhibits an efficient Sr2+ adsorption performance, featuring ultrafast kinetics (94.69% in 5 min), high removal rate (98.57% in 20 min) at equilibrium, and high capacity (104.17 ± 23.53 mg g-1).

6.
Arch Insect Biochem Physiol ; 111(3): e21954, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36065122

RESUMO

Cytochrome P450 monooxygenases (CYPs) are present in almost all areas of the tree of life. As one of the largest and most diverse superfamilies of multifunctional enzymes, they play important roles in the metabolism of xenobiotics and biosynthesis of endogenous compounds, shaping the success of insects. In this study, the CYPome (an omics term for all the CYP genes in a genome) diversification was examined in the four Tenebrionidea species through genome-wide analysis. A total of 483 CYP genes were identified, of which 103, 157, 122, and 101 were respectively deciphered from the genomes of Tebebrio molitor, Asbolus verucosus, Hycleus cichorii and Hycleus phaleratus. These CYPs were classified into four major clans (mitochondrial, CYP2, CYP3, and CYP4), and clans CYP3 and CYP4 are most diverse. Phylogenetic analysis showed that most CYPs of these Tenebrionidea beetles from each clan had a very close 1:1 orthology to each other, suggesting that they originate closely and have evolutionally conserved function. Expression analysis at different developmental stages and in various tissues showed the life stage-, gut-, salivary gland-, fat body-, Malpighian tubule-, antennae-, ovary- and testis-specific expression patterns of T. molitor CYP genes, implying their various potential roles in development, detoxification, immune response, digestion, olfaction, and reproduction. Our studies provide a platform to understand the evolution of Tenebrionidea CYP gene superfamily, and a basis for further functional investigation of the T. molitor CYPs involved in various biological processes.


Assuntos
Besouros , Xenobióticos , Animais , Besouros/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Genoma , Enzimas Multifuncionais/genética , Filogenia
7.
Arch Insect Biochem Physiol ; 111(3): e21967, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36111353

RESUMO

Carboxylesterases (COEs) have various functions in wide taxons of organisms. In insects, COEs are important enzymes involved in the hydrolysis of a variety of ester-containing xenobiotics, neural signal transmission, pheromone degradation, and reproductive development. Understanding the diversity of COEs is basic to illustrate their functions. In this study, we identified 53, 105, 37, and 39 COEs from the genomes of Tenebrio molitor, Asbolus verucosus, Hycleus cichorii, and H. phaleratus in the superfamily of Tenebrionidea, respectively. Phylogenetic analysis showed that 234 COEs from these four species and those reported in Tribolium castaneum (63) could be divided into 12 clades and three major classes. The α-esterases significantly expanded in T. molitor, A. verucosus, and T. castaneum compared to dipteran and hymenopteran insects. In T. molitor, most COEs showed tissue and stage-specific but not a sex-biased expression. Our results provide insights into the diversity and evolutionary characteristics of COEs in tenebrionids, and lay a foundation for the functional characterization of COEs in the yellow mealworm.


Assuntos
Tenebrio , Animais , Carboxilesterase/genética , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Ésteres , Genômica , Larva/metabolismo , Feromônios/metabolismo , Filogenia , Tenebrio/genética , Tenebrio/metabolismo
8.
Arch Insect Biochem Physiol ; 111(3): e21963, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36039637

RESUMO

In insects, serine proteases and serine protease homologs (SPs/SPHs) are involved in a variety of physiological processes including digestion, development, and immunity. Here, we identified 112 SP and 88 SPH genes in the genome of the yellow mealworm, Tenebrio molitor. Based on the features of domain structure, they were divided into "S" group containing single Tryp-SPc or Tryp-SPHc domain, "C" group containing 1-4 CLIP domain (CLIPA-D) and "M" group containing the CBD, CUB, EGF, Fz, Gd, LDLa, PAN, SEA, SR, Sushi, and TSP domains, and have 115, 48, and 37 gene members, respectively. According to the active sites in the catalytic triad, the putative trypsin, chymotrypsin, or elastase-like enzyme specificity of the identified SPs/SPHs were predicted. Phylogenetic and genomic location analyses revealed that gene duplication exists in the large amount of SPs/SPHs. Gene expression profiling using RNA-seq data along with real time reverse transcription-polymerase chain reaction analysis showed that most SP/SPH genes display life stage specific expression patterns, indicating their important roles in development. Many SP/SPH genes are specifically or highly expressed in the gut, salivary gland, fat body, hemocyte, ovary, and testis, suggesting that they participate in digestion, immunity, and reproduction. The findings lay the foundation for further functional characterization of SPs/SPHs in T. molitor.


Assuntos
Serina Proteases , Tenebrio , Animais , Quimotripsina/genética , Fator de Crescimento Epidérmico/genética , Feminino , Masculino , Elastase Pancreática/genética , Filogenia , Serina Proteases/química , Tenebrio/genética , Tenebrio/metabolismo , Tripsina/genética
9.
Arch Insect Biochem Physiol ; 111(3): e21950, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35809232

RESUMO

Chitin is of great importance in the cuticle and inner cuticular linings of insects. Chitin synthases (CHSs), chitin deacetylases (CDAs), chitinases (CHTs), and ß-N-acetylhexosaminidases (HEXs) are important enzymes required for chitin metabolism, and play essential roles in development and metamorphosis. Although chitin metabolism genes have been well characterized in limited insects, the information in the yellow mealworm, Tenebrio molitor, a model insect, is presently still unavailable. With the help of bioinformatics, we identified 54 genes that encode putative chitin metabolism enzymes, including 2 CHSs, 10 CDAs, 32 CHTs, and 10 HEXs in the genome of T. molitor. All these genes have the conserved domains and motifs of their corresponding protein family. Phylogenetic analyses indicated that CHS genes were divided into two groups. CDA genes were clustered into five groups. CHT genes were phylogenetically grouped into 11 clades, among which 1 in the endo-ß-N-acetylglucosaminidases group and the others were classified in the glycoside hydrolase family 18 groups. HEX genes were assorted into six groups. Developmental and tissue-specific expression profiling indicated that the identified chitin metabolism genes showed dynamical expression patterns concurrent with specific instar during molting period, suggesting their significant roles in molting and development. They were predominantly expressed in different tissues or body parts, implying their functional specialization and diversity. The results provide important information for further clarifying their biological functions using the yellow mealworm as an ideal experimental insect.


Assuntos
Quitinases , Tenebrio , Animais , Quitina/metabolismo , Quitina Sintase/genética , Quitina Sintase/metabolismo , Quitinases/genética , Quitinases/metabolismo , Genômica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos/metabolismo , Filogenia , Tenebrio/genética , Tenebrio/metabolismo , Transcriptoma , beta-N-Acetil-Hexosaminidases/metabolismo
10.
Arch Insect Biochem Physiol ; 111(3): e21948, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35749627

RESUMO

Serine protease inhibitors (SPIs) act in diverse biological processes in insects such as immunity, development, and digestion by preventing the unwanted proteolysis. So far, the repertoire of genes encoding SPIs has been identified from few insect species. In this study, 62 SPI genes were identified from the genome of the yellow mealworm, Tenebrio molitor. According to their modes of action, they were classified into three families, serpin (26), canonical SPI (31), and α-macroglobulins (A2M) (5). These SPIs feature eight domains including serpin, Kazal, TIL, Kunitz, WAP, Antistasin, pacifastin, and A2M. In total, 39 SPIs contain a single SPI domain, while the others encode at least two inhibitor units. Based on the amino acids in the cleaved reactive sites, the abilities of these SPIs to inhibit trypsin, chymotrypsin, or elastase-like enzymes are predicted. The expression profiling based on the RNA-seq data showed that these genes displayed stage-specific expression patterns during development, suggesting to us their significance in development. Some of the SPI genes were exclusively expressed in particular tissues such as hemocyte, fat body, gut, ovary, and testis, which may be involved in biological processes specific to the indicated tissues. These findings provide necessary information for further investigation of insect SPIs.


Assuntos
Serpinas , Tenebrio , Sequência de Aminoácidos , Aminoácidos , Animais , Quimotripsina , Feminino , Masculino , Elastase Pancreática/metabolismo , Inibidores de Serina Proteinase/genética , Inibidores de Serina Proteinase/metabolismo , Serpinas/genética , Tripsina/metabolismo , alfa-Macroglobulinas
11.
Arch Insect Biochem Physiol ; 111(3): e21916, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35584005

RESUMO

ATP-binding cassette (ABC) transporters, one of the largest transmembrane protein families, transport a diverse number of substate across membranes. Details of their diverse physiological functions have not been established. Here, we identified 87 ABC transporter genes in the genomes of Tenebrio molitor along with those from Asbolus verrucosus (104), Hycleus cichorii (65), and Hycleus phaleratus (80). Combining these genes (336 in total) with genes reported in Tribolium castaneum (73), we analyzed the phylogeny of ABC transporter genes in all five Tenebrionids. They are assigned into eight subfamilies (ABCA-H). In comparison to other species, the ABCC subfamily in this group of beetles appears expanded. The expression profiles of the T. molitor genes at different life stages and in various tissues were also investigated using transcriptomic analysis. Most of them display developmental specific expression patterns, suggesting to us their possible roles in development. Most of them are highly expressed in detoxification-related tissues including gut and Malpighian tubule, from which we infer their roles in insecticide resistance. We detected specific or abundant expressions of many ABC transporter genes in various tissues such as salivary gland, ovary, testis, and antenna. This new information helps generate new hypotheses on their biological significance within tissues.


Assuntos
Besouros , Tenebrio , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina , Animais , Besouros/metabolismo , Feminino , Genômica , Masculino , Filogenia , Tenebrio/genética , Tenebrio/metabolismo
12.
Arch Insect Biochem Physiol ; 111(3): e21915, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35584033

RESUMO

The Wnt gene family is involved in a wide range of developmental processes. Despite its significance, the evolution and function of Wnt genes remain largely unclear. Here, an exhaustive survey of Wnt genes was conducted in Tenebrio molitor and 17 other beetle genomes. A total of 146 Wnt genes were identified, creating a comprehensive coleopteran Wnt gene catalog. Comparative genomics indicates that dynamic evolutionary patterns of Wnt gene loss and duplication occurred in Coleoptera, leading to the diverse Wnt gene repertoire in various beetles. A striking loss of particular Wnt gene subfamilies occurs in Coleoptera. Remarkably, Wnt gene duplication was discovered for the first time in insects. Further analysis of Wnt gene expression in T. molitor indicates that each Wnt gene, including the duplicated ones, has a unique spatial or temporal expression pattern. The current study provides valuable insight into the evolution and functional validation of Wnt genes in Coleoptera.


Assuntos
Besouros , Tenebrio , Animais , Besouros/genética , Genoma , Tenebrio/genética , Tenebrio/metabolismo
13.
J Hazard Mater ; 425: 128007, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986569

RESUMO

Removal of radioactive 133Ba, 60Co and 63Ni and their nonradioactive isotopes through ion exchange method would be highly beneficial for the safe disposal of liquid industrial waste, and it also bears importance for the emergency response to nuclear accident. Herein, we report the employment of an indium sulfide [CH3CH2NH3]6In8S15 (InS-2) with exchangeable ethylammonium cations for efficient and selective uptake of Ba2+, Co2+ and Ni2+. The corner-sharing linkage of P1-{In8S17} clusters in InS-2 endow the layered structure with nanoscale windows, which facilitates both transfer and accommodation of the large hydrated divalent metal ions. This results in ultrafast exchange kinetics (10-20 min) and top-level exchange capacities of 211.73 mg g-1 for Ba2+, 103.57 mg g-1 for Co2+, and 111.78 mg g-1 for Ni2+. Particularly, InS-2 achieves ultrahigh Kd values of 2.3 × 105 mL g-1 for Ba2+, 2.0 × 105 mL g-1 for Co2+ and 1.6 × 105 mL g-1 for Ni2+, corresponding to remarkable removal efficiencies larger than 99.4% (C0 ~ 6 ppm). InS-2 shows high ß and γ irradiation resistance, wide pH durability (pH 3-13 for Ba2+, pH 3-11 for Co2+ and Ni2+), and outstanding selectivity against competitor ions (e.g. Na+, K+, Mg2+, Ca2+). The InS-2-filled ion exchange column exhibits a fantastic removal effect (R > 99%) for mixed Ba2+, Co2+, Ni2+, as well as Sr2+. The ultralong column-treatment on 20000 BVs of flow reveals an affinity order of Co2+ > Ni2+ > Ba2+ > Sr2+ for InS-2, which gives deep insights into the adsorption process and interaction between competitor ions. This excellent uptake of Ba2+ (Ra by analogy), Co2+ and Ni2+ ions by InS-2 highlights the great potential of metal chalcogenides as a type of promising materials for minimizing contamination in complex wastewater.

14.
Insects ; 12(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34821798

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda, is a serious pest of crucial crops causing great threats to the food security of the world. It has evolved resistance to various insecticides, while the underlying molecular mechanisms remain largely unknown. Cuticular proteins (CPs), as primary components in cuticle, play an important role in insects' protection against environmental stresses. Few of them have been documented as participating in insecticide resistance in several insect species. In order to explore whether CP genes of the FAW exhibit a functional role in responding to insecticides stress, a total of 206 CPs, classified into eight families, were identified from the genome of the FAW through a homology-based approach coupled with manual efforts. The temporal expression profiles of all identified CP genes across developmental stages and their responses to 23 different insecticides were analyzed using the RNA-seq data. Expression profiling indicated that most of the CP genes displayed stage-specific expression patterns. It was found that the expression of 51 CP genes significantly changed after 48 h exposure to 17 different insecticides. The expression of eight CP genes responding to four insecticides were confirmed by RT-PCR analysis. The results showed that their overall expression profiles were consistent with RNA-seq analysis. The findings provide a basis for further functional investigation of CPs implied in insecticide stress in FAW.

15.
Mol Ecol ; 30(17): 4204-4219, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34278603

RESUMO

Invasive species pose increasing threats to global biodiversity and ecosystems. While previous studies have characterized successful invaders based on ecological traits, characteristics related to evolutionary processes have rarely been investigated. Here we compared gene flow and local adaptation using demographic analyses and outlier tests in two co-occurring moth pests across their common native range of China, one of which (the peach fruit moth, Carposina sasakii) has maintained its native distribution, while the other (the oriental fruit moth, Grapholita molesta) has expanded its range globally during the past century. We found that both species showed a pattern of genetic differentiation and an evolutionary history consistent with a common southwestern origin and northward expansion in their native range. However, for the noninvasive species, genetic differentiation was closely aligned with the environment, and there was a relatively low level of gene flow, whereas in the invasive species, genetic differentiation was associated with geography. Genome scans indicated stronger patterns of climate-associated loci in the noninvasive species. While strong local adaptation and reduced gene flow across its native range may have decreased the invasiveness of C. sasakii, this requires further validation with additional comparisons of invasive and noninvasive species across their native range.


Assuntos
Mariposas , Animais , Ecossistema , Frutas , Fluxo Gênico , Geografia , Mariposas/genética
16.
Inorg Chem ; 60(10): 7115-7127, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33926189

RESUMO

Metal chalcogenide supertetrahedral Tn clusters are of current interest for their unique compositions and structures, which rely highly on the structure-directing agents. Herein, we report four novel Tn cluster-based indium and gallium sulfides, namely, [NH(CH3)3]4In4S10H4 (1), (NH3)4Ga4S6 (2), [NH3CH2CH3]5(NH2CH2CH3)2Ga11S19 (3), and [NH3CH2CH2OH]6Ga10S18·2NH2CH2CH2OH (4). All four compounds were solvothermally synthesized in mixed amine-ethanol solutions or deep eutectic solvent (DES), where ammonia/amine molecules play significant structure-directing roles in the speciation and crystal growth. (1) Being protonated, the trimethylamine and ethanolamine molecules surround the T2-[In4S10H4]4- clusters (for 1) and [Ga10S18]n6n- open framework (for 4), respectively, compensating for the negative charge of the inorganic moieties. (2) With the lone pair of electrons, the ammonia molecules in 2 coordinate directly to corner Ga3+ ions of the {Ga4S6} cage to give a neutral T2-(NH3)4Ga4S6 cluster. (3) For compound 3, part of the ethylamine molecules act as terminating ligands for the T1 and T3 units in the [Ga11S19(NH2CH2CH3)2]n5n- layer, while the rest act as interlamellar countercations upon protonation. Theoretical studies reveal the contributions of N, C, and H to the density of states (DOS) for 2 and 3 because of their hybrid structures that combine the ammonia/amine ligands with sulfide moieties together.

17.
Genomics ; 113(1 Pt 2): 601-612, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002624

RESUMO

Lepidoptera (moths and butterflies) and Trichoptera (caddisflies), belonging to the superorder Amphiesmenoptera, are the most diverse insect orders as representatives of the terrestrial and aquatic insects, respectively. The insects of the two orders possess different biological and behavioral characteristics, especially their larvae, presumably resulting in the differences of the ionotropic receptor (IR) genes in numbers, sequence characteristics or gene structure. Here, we employed genomics, transcriptomics, bioinformatics, phylogenetics and molecular biology strategies to characterize the IR gene repertoire in Lepidoptera and Trichoptera. Genome and transcriptome analyses with exhaustive homology-based searches and manual efforts, in 32 lepidopterans and five trichopterans, led to the identification of 1449 genes encoding IRs with 1170 full-length sequences, representing the most comprehensive set of chemoreceptor superfamilies across the Amphiesmenoptera. Analysis of gene gains and losses in orthologous groups implied that some IRs were lost in related species, and multiple gene copies occurred mainly in divergent IRs (D-IRs) by gene duplications. Phylogenetic analysis of 2442 IR proteins from 67 species revealed that Lepidoptera and Trichoptera IRs could be classified into three subfamilies, i.e., 14 antennal IRs (A-IRs), five Lepidoptera-specific IRs (LS-IRs) and four D-IRs. Of the three subfamilies, A-IRs and LS-IRs members within orthologous groups exhibited high conservation of gene structure, but D-IRs shared extremely low amino acid identities (below 30%). Expression profiles revealed functional diversities of IRs from Bombyx mori and Papilio xuthus involving smell, taste or reproduction, in which some genes displayed sex-biased expression in antennae associated with specific chemosensory behaviors of female or male adults. Our current study has provided insights into the evolution, conservation and divergence of IRs between/within Lepidoptera and Trichoptera, and allows for further experiments to investigate IR functions.


Assuntos
Bombyx/genética , Evolução Molecular , Proteínas de Insetos/genética , Receptores Ionotrópicos de Glutamato/genética , Animais , Bombyx/metabolismo , Proteínas de Insetos/metabolismo , Família Multigênica , Filogenia , Polimorfismo Genético , Receptores Ionotrópicos de Glutamato/metabolismo , Transcriptoma
18.
Arch Virol ; 166(1): 295-297, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33067649

RESUMO

Here, we report a novel RNA virus from an encyrtid endoparasitoid wasp (Diversinervus elegans). This virus has a genome of 8845 nucleotides in length with a poly(A) tail. It contains one open reading frame (ORF) encoding a single polyprotein that shares the most significant similarity to the polyproteins of dicistroviruses. Phylogenetic analysis suggested that this virus belongs to the family Dicistroviridae from the order Picornavirales, but its genomic organization is distinct from that of the other known dicistroviruses, which have two ORFs. Consequently, we propose that this virus is a member of a new species in the order Picornavirales, and have named it "Diversinervus elegans virus" (DEV).


Assuntos
Dicistroviridae/genética , Genoma Viral/genética , Vírus de RNA/genética , Vespas/virologia , Animais , Fases de Leitura Aberta/genética , Filogenia , Poliproteínas/genética , RNA Viral/genética , Alinhamento de Sequência , Análise de Sequência de DNA/métodos , Proteínas Virais/genética
19.
Pest Manag Sci ; 77(4): 1683-1693, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33200882

RESUMO

BACKGROUND: The diamondback moth (DBM), Plutella xylostella (Lepidoptera: Plutellidae), is a notorious pest of cruciferous plants. In temperate areas, annual populations of DBM originate from adult migrants. However, the source populations and migration trajectories of immigrants remain unclear. Here, we investigated migration trajectories of DBM in China using genome-wide single nucleotide polymorphisms (SNPs) genotyped using double-digest RAD (ddRAD) sequencing. We first analyzed patterns of spatial and temporal genetic structure among southern source and northern recipient populations, then inferred migration trajectories into northern regions using discriminant analysis of principal components (DAPC), assignment tests, and spatial kinship patterns. RESULTS: Temporal genetic differentiation among populations was low, indicating that sources of recipient populations and migration trajectories are stable. Spatial genetic structure indicated three genetic clusters in the southern source populations. Assignment tests linked northern populations to the Sichuan cluster, and central-eastern populations to the southern and Yunnan clusters, indicating that Sichuan populations are sources of northern immigrants and southern and Yunnan populations are sources of central-eastern populations. First-order (full-sib) and second-order (half-sib) kin pairs were always found within populations, but ~ 35-40% of third-order (cousin) pairs were found in different populations. Closely related individuals in different populations were found at distances of 900-1500 km in ~ 35-40% of cases, while some were separated by > 2000 km. CONCLUSION: This study unravels seasonal migration patterns in the DBM. We demonstrate how careful sampling and population genomic analyses can be combined to help understand cryptic migration patterns in insects. © 2020 Society of Chemical Industry.


Assuntos
Mariposas , Animais , China , Genômica , Larva , Metagenômica , Mariposas/genética
20.
Inorg Chem ; 59(19): 13822-13826, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32959655

RESUMO

An ethylammonium-templated indium sulfide, [CH3CH2NH3]6In8S15 (InS-2), featuring anionic layers perforated with large, 24-membered rings that facilitate the accommodation of hydrated Sr2+ ions is reported. InS-2 exhibits an excellent adsorption performance toward Sr2+ with a top-ranked capacity (qm = 143.29 mg g-1), rapid kinetics, wide pH durability (3-14), ß- and γ-radiation resistances, and a facile elution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA