Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Nat Immunol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872000

RESUMO

Natural killer (NK) cells function by eliminating virus-infected or tumor cells. Here we identified an NK-lineage-biased progenitor population, referred to as early NK progenitors (ENKPs), which developed into NK cells independently of common precursors for innate lymphoid cells (ILCPs). ENKP-derived NK cells (ENKP_NK cells) and ILCP-derived NK cells (ILCP_NK cells) were transcriptionally different. We devised combinations of surface markers that identified highly enriched ENKP_NK and ILCP_NK cell populations in wild-type mice. Furthermore, Ly49H+ NK cells that responded to mouse cytomegalovirus infection primarily developed from ENKPs, whereas ILCP_NK cells were better IFNγ producers after infection with Salmonella and herpes simplex virus. Human CD56dim and CD56bright NK cells were transcriptionally similar to ENKP_NK cells and ILCP_NK cells, respectively. Our findings establish the existence of two pathways of NK cell development that generate functionally distinct NK cell subsets in mice and further suggest these pathways may be conserved in humans.

2.
Sci Adv ; 10(23): eadk2693, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838155

RESUMO

T helper 1 (TH1) cell identity is defined by the expression of the lineage-specifying transcription factor T-bet. Here, we examine the influence of T-bet expression heterogeneity on subset plasticity by leveraging cell sorting of distinct in vivo-differentiated TH1 cells based on their quantitative expression of T-bet and interferon-γ. Heterogeneous T-bet expression states were regulated by virus-induced type I interferons and were stably maintained even after secondary viral infection. Exposed to alternative differentiation signals, the sorted subpopulations exhibited graded levels of plasticity, particularly toward the TH2 lineage: T-bet quantities were inversely correlated with the ability to express the TH2 lineage-specifying transcription factor GATA-3 and TH2 cytokines. Reprogramed TH1 cells acquired graded mixed TH1 + TH2 phenotypes with a hybrid epigenetic landscape. Continuous presence of T-bet in differentiated TH1 cells was essential to ensure TH1 cell stability. Thus, innate cytokine signals regulate TH1 cell plasticity via an individual cell-intrinsic rheostat to enable T cell subset adaptation to subsequent challenges.


Assuntos
Diferenciação Celular , Linhagem da Célula , Plasticidade Celular , Proteínas com Domínio T , Células Th1 , Células Th2 , Células Th1/imunologia , Células Th1/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Animais , Linhagem da Célula/genética , Células Th2/imunologia , Células Th2/metabolismo , Camundongos , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Interferon gama/metabolismo , Regulação da Expressão Gênica , Citocinas/metabolismo
3.
bioRxiv ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38903096

RESUMO

The pair of transcription factors Bcl6-Blimp1 is well-known for follicular T helper (Tfh) cell fate determination, however, the mechanism(s) for Bcl6-independent regulation of CXCR5 during Tfh migration into germinal center (GC) is still unclear. In this study, we uncovered another pair of transcription factors, Bhlhe40-Pou2af1, that regulates CXCR5 expression. Pou2af1 was specifically expressed in Tfh cells whereas Bhlhe40 expression was found high in non-Tfh cells. Pou2af1 promoted Tfh formation and migration into GC by upregulating CXCR5 but not Bcl6, while Bhlhe40 repressed this process by inhibiting Pou2af1 expression. RNA-Seq analysis of antigen-specific Tfh cells generated in vivo confirmed the role of Bhlhe40-Pou2af1 axis in regulating optimal CXCR5 expression. Thus, the regulation of CXCR5 expression and migration of Tfh cells into GC involves a transcriptional regulatory circuit consisting of Bhlhe40 and Pou2af1, which operates independent of the Bcl6-Blimp1 circuit that determines the Tfh cell fate.

4.
Dev Cell ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38723629

RESUMO

In mice, skin-resident type 2 innate lymphoid cells (ILC2s) exhibit some ILC3-like characteristics. However, the underlying mechanism remains elusive. Here, we observed lower expression of the ILC2 master regulator GATA3 specifically in cutaneous ILC2s (cILC2s) compared with canonical ILC2s, in line with its functionally divergent role in transcriptional control in cILC2s. Decreased levels of GATA3 enabled the expansion of RORγt fate-mapped (RORγtfm+) cILC2s after postnatal days, displaying certain similarities to ILC3s. Single-cell trajectory analysis showed a sequential promotion of the RORγtfm+ cILC2 divergency by RORγt and GATA3. Notably, during hair follicle recycling, these RORγtfm+ cILC2s accumulated around the hair follicle dermal papilla (DP) region to facilitate the process. Mechanistically, we found that GATA3-mediated integrin α3ß1 upregulation on RORγtfm+ cILC2s was required for their positioning around the DP. Overall, our study demonstrates a distinct regulatory role of GATA3 in cILC2s, particularly in promoting the divergence of RORγtfm+ cILC2s to facilitate hair follicle recycling.

5.
Immunity ; 57(5): 987-1004.e5, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38614090

RESUMO

The development and function of the immune system are controlled by temporospatial gene expression programs, which are regulated by cis-regulatory elements, chromatin structure, and trans-acting factors. In this study, we cataloged the dynamic histone modifications and chromatin interactions at regulatory regions during T helper (Th) cell differentiation. Our data revealed that the H3K4me1 landscape established by MLL4 in naive CD4+ T cells is critical for restructuring the regulatory interaction network and orchestrating gene expression during the early phase of Th differentiation. GATA3 plays a crucial role in further configuring H3K4me1 modification and the chromatin interaction network during Th2 differentiation. Furthermore, we demonstrated that HSS3-anchored chromatin loops function to restrict the activity of the Th2 locus control region (LCR), thus coordinating the expression of Th2 cytokines. Our results provide insights into the mechanisms of how the interplay between histone modifications, chromatin looping, and trans-acting factors contributes to the differentiation of Th cells.


Assuntos
Diferenciação Celular , Cromatina , Código das Histonas , Histonas , Células Th2 , Diferenciação Celular/imunologia , Animais , Cromatina/metabolismo , Camundongos , Células Th2/imunologia , Histonas/metabolismo , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Região de Controle de Locus Gênico , Citocinas/metabolismo
6.
Immunity ; 57(5): 1019-1036.e9, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38677292

RESUMO

Group 3 innate lymphoid cells (ILC3) are the major subset of gut-resident ILC with essential roles in infections and tissue repair, but how they adapt to the gut environment to maintain tissue residency is unclear. We report that Tox2 is critical for gut ILC3 maintenance and function. Gut ILC3 highly expressed Tox2, and depletion of Tox2 markedly decreased ILC3 in gut but not at central sites, resulting in defective control of Citrobacter rodentium infection. Single-cell transcriptional profiling revealed decreased expression of Hexokinase-2 in Tox2-deficient gut ILC3. Consistent with the requirement for hexokinases in glycolysis, Tox2-/- ILC3 displayed decreased ability to utilize glycolysis for protein translation. Ectopic expression of Hexokinase-2 rescued Tox2-/- gut ILC3 defects. Hypoxia and interleukin (IL)-17A each induced Tox2 expression in ILC3, suggesting a mechanism by which ILC3 adjusts to fluctuating environments by programming glycolytic metabolism. Our results reveal the requirement for Tox2 to support the metabolic adaptation of ILC3 within the gastrointestinal tract.


Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Glicólise , Imunidade Inata , Linfócitos , Camundongos Knockout , Animais , Camundongos , Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Transativadores/metabolismo , Transativadores/genética , Hexoquinase/metabolismo , Hexoquinase/genética , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Interleucina-17/metabolismo , Adaptação Fisiológica/imunologia
7.
Cell Host Microbe ; 32(2): 154-155, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38359797

RESUMO

Interactions between microbiota and host skin have an important impact on cutaneous immunity and inflammation. In this issue of Cell Host & Microbe, Cha et al. report that skin commensal bacteria-mediated priming of group 2 innate lymphoid cells in early life predisposes the mice to atopic dermatitis-like inflammation in adulthood.


Assuntos
Dermatite Atópica , Camundongos , Animais , Imunidade Inata , Linfócitos , Pele , Inflamação/metabolismo
8.
Sci Immunol ; 8(89): eadi9066, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948511

RESUMO

How CD4+ lineage gene expression is initiated in differentiating thymocytes remains poorly understood. Here, we show that the paralog transcription factors Zfp281 and Zfp148 control both this process and cytokine expression by T helper cell type 2 (TH2) effector cells. Genetic, single-cell, and spatial transcriptomic analyses showed that these factors promote the intrathymic CD4+ T cell differentiation of class II major histocompatibility complex (MHC II)-restricted thymocytes, including expression of the CD4+ lineage-committing factor Thpok. In peripheral T cells, Zfp281 and Zfp148 promoted chromatin opening at and expression of TH2 cytokine genes but not of the TH2 lineage-determining transcription factor Gata3. We found that Zfp281 interacts with Gata3 and is recruited to Gata3 genomic binding sites at loci encoding Thpok and TH2 cytokines. Thus, Zfp148 and Zfp281 collaborate with Gata3 to promote CD4+ T cell development and TH2 cell responses.


Assuntos
Linfócitos T CD4-Positivos , Fatores de Transcrição , Animais , Camundongos , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Cell Rep ; 42(8): 112924, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37540600

RESUMO

Lymphoid tissue inducer (LTi) cells, a subset of innate lymphoid cells (ILCs), play an essential role in the formation of secondary lymphoid tissues. However, the regulation of the development and functions of this ILC subset is still elusive. In this study, we report that the transcription factor T cell factor 1 (TCF-1), just as GATA3, is indispensable for the development of non-LTi ILC subsets. While LTi cells are still present in TCF-1-deficient mice, the organogenesis of Peyer's patches (PPs), but not of lymph nodes, is impaired in these mice. LTi cells from different tissues have distinct gene expression patterns, and TCF-1 regulates the expression of lymphotoxin specifically in PP LTi cells. Mechanistically, TCF-1 may directly and/or indirectly regulate Lta, including through promoting the expression of GATA3. Thus, the TCF-1-GATA3 axis, which plays an important role during T cell development, also critically regulates the development of non-LTi cells and tissue-specific functions of LTi cells.


Assuntos
Imunidade Inata , Fator 1 de Transcrição de Linfócitos T , Animais , Camundongos , Linfócitos , Tecido Linfoide/metabolismo , Fator 1 de Transcrição de Linfócitos T/metabolismo
11.
Front Immunol ; 14: 1186580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37449212

RESUMO

T-bet-expressing Th17 (T-bet+RORγt+) cells are associated with the induction of pathology during experimental autoimmune encephalomyelitis (EAE) and the encephalitic nature of these Th17 cells can be explained by their ability to produce GM-CSF. However, the upstream regulatory mechanisms that control Csf2 (gene encoding GM-CSF) expression are still unclear. In this study, we found that Th17 cells dynamically expressed GATA3, the master transcription factor for Th2 cell differentiation, during their differentiation both in vitro and in vivo. Early deletion of Gata3 in three complimentary conditional knockout models by Cre-ERT2, hCd2 Cre and Tbx21 Cre, respectively, limited the pathogenicity of Th17 cells during EAE, which was correlated with a defect in generating pathogenic T-bet-expressing Th17 cells. These results indicate that early GATA3-dependent gene regulation is critically required to generate a de novo encephalitogenic Th17 response. Furthermore, a late deletion of Gata3 via Cre-ERT2 in the adoptive transfer EAE model resulted in a cell intrinsic failure to induce EAE symptoms which was correlated with a substantial reduction in GM-CSF production without affecting the generation and/or maintenance of T-bet-expressing Th17 cells. RNA-Seq analysis of Gata3-sufficient and Gata3-deficient CNS-infiltrating CD4+ effector T cells from mixed congenic co-transfer recipient mice revealed an important, cell-intrinsic, function of GATA3 in regulating the expression of Egr2, Bhlhe40, and Csf2. Thus, our data highlights a novel role for GATA3 in promoting and maintaining the pathogenicity of T-bet-expressing Th17 cells in EAE, via putative regulation of Egr2, Bhlhe40, and GM-CSF expression.


Assuntos
Encefalomielite Autoimune Experimental , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Camundongos , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células Th17 , Virulência , Células Th2
12.
Nat Immunol ; 24(8): 1331-1344, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37443284

RESUMO

CD4+ T helper 17 (TH17) cells protect barrier tissues but also trigger autoimmunity. The mechanisms behind these opposing processes remain unclear. Here, we found that the transcription factor EGR2 controlled the transcriptional program of pathogenic TH17 cells in the central nervous system (CNS) but not that of protective TH17 cells at barrier sites. EGR2 was significantly elevated in myelin-reactive CD4+ T cells from patients with multiple sclerosis and mice with autoimmune neuroinflammation. The EGR2 transcriptional program was intricately woven within the TH17 cell transcriptional regulatory network and showed high interconnectivity with core TH17 cell-specific transcription factors. Mechanistically, EGR2 enhanced TH17 cell differentiation and myeloid cell recruitment to the CNS by upregulating pathogenesis-associated genes and myelomonocytic chemokines. T cell-specific deletion of Egr2 attenuated neuroinflammation without compromising the host's ability to control infections. Our study shows that EGR2 regulates tissue-specific and disease-specific functions in pathogenic TH17 cells in the CNS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Diferenciação Celular , Sistema Nervoso Central , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Células Th1 , Células Th17 , Fatores de Transcrição , Virulência , Humanos
13.
Immunity ; 56(5): 944-958.e6, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37040761

RESUMO

Interferon-γ (IFN-γ) is a key cytokine in response to viral or intracellular bacterial infection in mammals. While a number of enhancers are described to promote IFN-γ responses, to the best of our knowledge, no silencers for the Ifng gene have been identified. By examining H3K4me1 histone modification in naive CD4+ T cells within Ifng locus, we identified a silencer (CNS-28) that restrains Ifng expression. Mechanistically, CNS-28 maintains Ifng silence by diminishing enhancer-promoter interactions within Ifng locus in a GATA3-dependent but T-bet-independent manner. Functionally, CNS-28 restrains Ifng transcription in NK cells, CD4+ cells, and CD8+ T cells during both innate and adaptive immune responses. Moreover, CNS-28 deficiency resulted in repressed type 2 responses due to elevated IFN-γ expression, shifting Th1 and Th2 paradigm. Thus, CNS-28 activity ensures immune cell quiescence by cooperating with other regulatory cis elements within the Ifng gene locus to minimize autoimmunity.


Assuntos
Linfócitos T CD8-Positivos , Interferon gama , Animais , Interferon gama/genética , Interferon gama/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Sequências Reguladoras de Ácido Nucleico , Homeostase , Células Th1 , Mamíferos
14.
Nat Immunol ; 24(6): 1036-1048, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37106040

RESUMO

Allergic diseases are a major global health issue. Interleukin (IL)-9-producing helper T (TH9) cells promote allergic inflammation, yet TH9 cell effector functions are incompletely understood because their lineage instability makes them challenging to study. Here we found that resting TH9 cells produced IL-9 independently of T cell receptor (TCR) restimulation, due to STAT5- and STAT6-dependent bystander activation. This mechanism was seen in circulating cells from allergic patients and was restricted to recently activated cells. STAT5-dependent Il9/IL9 regulatory elements underwent remodeling over time, inactivating the locus. A broader 'allergic TH9' transcriptomic and epigenomic program was also unstable. In vivo, TH9 cells induced airway inflammation via TCR-independent, STAT-dependent mechanisms. In allergic patients, TH9 cell expansion was associated with responsiveness to JAK inhibitors. These findings suggest that TH9 cell instability is a negative checkpoint on bystander activation that breaks down in allergy and that JAK inhibitors should be considered for allergic patients with TH9 cell expansion.


Assuntos
Hipersensibilidade , Inibidores de Janus Quinases , Humanos , Interleucina-9/genética , Linfócitos T Auxiliares-Indutores , Fator de Transcrição STAT5/genética , Cromatina/genética , Inflamação , Hipersensibilidade/genética , Diferenciação Celular , Fator de Transcrição STAT6
15.
Cell Rep ; 42(2): 112073, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36735533

RESUMO

Type 2 T helper (Th2) cells and group 2 innate lymphoid cells (ILC2s) provide protection against helminth infection and are involved in allergic responses. However, their relative importance and crosstalk during type 2 immune responses are still controversial. By generating and utilizing mouse strains that are deficient in either ILC2s or Th2 cells, we report that interleukin (IL)-33-mediated ILC2 activation promotes the Th2 cell response to papain; however, the Th2 cell response to ovalbumin (OVA)/alum immunization is thymic stromal lymphopoietin (TSLP) dependent but independent of ILC2s. During helminth infection, ILC2s and Th2 cells collaborate at different phases of the immune responses. Th2 cells, mainly through IL-4 production, induce the expression of IL-25, IL-33, and TSLP, among which IL-25 and IL-33 redundantly promote ILC2 expansion. Thus, while Th2 cell differentiation can occur independently of ILC2s, activation of ILC2s may promote Th2 responses, and Th2 cells can expand ILC2s by inducing type 2 alarmins.


Assuntos
Imunidade Inata , Interleucina-33 , Animais , Camundongos , Células Th2 , Linfócitos/metabolismo , Citocinas/metabolismo , Linfopoietina do Estroma do Timo
16.
J Ethnopharmacol ; 308: 116261, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36787846

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pleurospermum lindleyanum (Lipsky) B. Fedtsch is a perennial herb classified in the Apiaceae family, genus Pleurospermum, chiefly native to the Taxkorgan County, Xinjiang, China. In the Xinjiang Province, it is a well-known ethnic traditional herb, often addressed by its tribal name, Kurumuti. It grows in harsh conditions over 4000 m above sea level, such as the Pamirs plateau. It is rich in flavonoids, coumarins, terpenoids, essential oil, substances that have been widely applied in the prevention and treatment of hypertension, diabetes, coronary heart disease, and cerebral thrombosis by local Tajik residents. AIMS OF THE STUDY: The present study aimed to evaluate the antihypertensive effects of the Pleurospermum Lindleyanum aqueous extract (PLAE) in spontaneously hypertensive rats (SHRs). MATERIALS AND METHODS: The Pleurospermum lindleyanum was collected from the Taxkorgan Tajik Autonomous County, Xinjiang, China. The main chemical composition of PLAE was identified using the ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS). SHRs were treated by gavage with PLAE (equivalent to Pleurospermum lindleyanum 5 or 10 g/kg/day) for 6 weeks, using Captopril (10 mg/kg/day) as positive control. The systolic blood pressure (SBP), renal and cardiac morphology, plasma levels of angiotensin-converting enzyme (ACE), aldosterone (ALD), angiotensinⅡ (AngⅡ), superoxide dismutase (SOD), endothelin-1 (ET-1) and nitric oxide (NO) were measured. RESULTS: A total of 30 compounds were identified in PLAE. PLAE significantly attenuated the SBP of SHRs. The effects began after 3 weeks of administration and then became steady and long-lasting. Its potential mechanisms may be associated with the protective effects on renal and cardiac injury caused by hypertension, the decrease of plasma vasoconstrictors, such as ACE, ALD, AngⅡ, and ET-1 levels, the maintenance of NO/ET balance, the increase in plasma NO levels and SOD activity, thereby reducing oxidative stress. CONCLUSION: Pleurospermum lindleyanum can be suggested as a novel antihypertensive ethnic traditional herb, which lays the foundation for researching safe and effective antihypertensive herbal medicines.


Assuntos
Anti-Hipertensivos , Hipertensão , Ratos , Animais , Anti-Hipertensivos/farmacologia , Ratos Endogâmicos SHR , Hipertensão/tratamento farmacológico , Captopril/farmacologia , Pressão Sanguínea , Endotelina-1 , Superóxido Dismutase
17.
Cell Mol Immunol ; 20(4): 404-418, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36823235

RESUMO

Group 2 innate lymphoid cells (ILC2s) are a category of heterogeneous cells that produce the cytokines IL-5 and IL-13, which mediate the type 2 immune response. However, specific drug targets on lung ILC2s have rarely been reported. Previous studies have shown that type 2 cytokines, such as IL-5 and IL-13, are related to depression. Here, we demonstrated the negative correlation between the depression-associated monoamine neurotransmitter serotonin and secretion of the cytokines IL-5 and IL-13 by ILC2s in individuals with depression. Interestingly, serotonin ameliorates papain-induced lung inflammation by suppressing ILC2 activation. Our data showed that the serotonin receptor HTR2A was highly expressed on ILC2s from mouse lungs and human PBMCs. Furthermore, an HTR2A selective agonist (DOI) impaired ILC2 activation and alleviated the type 2 immune response in vivo and in vitro. Mice with ILC2-specific depletion of HTR2A (Il5cre/+·Htr2aflox/flox mice) abolished the DOI-mediated inhibition of ILC2s in a papain-induced mouse model of inflammation. In conclusion, serotonin and DOI could restrict the type 2 lung immune response, indicating a potential treatment strategy for type 2 lung inflammation by targeting HTR2A on ST2+ ILC2s.


Assuntos
Imunidade Inata , Pneumonia , Humanos , Animais , Camundongos , Papaína , Interleucina-13 , Interleucina-5 , Serotonina , Linfócitos , Pneumonia/induzido quimicamente , Pulmão , Citocinas , Interleucina-33
18.
Front Immunol ; 14: 1335326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283350

RESUMO

Therapies for bladder cancer patients are limited by side effects and failures, highlighting the need for novel targets to improve disease management. Given the emerging evidence highlighting the key role of innate lymphoid cell subsets, especially type 2 innate lymphoid cells (ILC2s), in shaping the tumor microenvironment and immune responses, we investigated the contribution of ILC2s in bladder tumor development. Using the orthotopic murine MB49 bladder tumor model, we found a strong enrichment of ILC2s in the bladder under steady-state conditions, comparable to that in the lung. However, as tumors grew, we observed an increase in ILC1s but no changes in ILC2s. Targeting ILC2s by blocking IL-4/IL-13 signaling pathways, IL-5, or IL-33 receptor, or using IL-33-deficient or ILC2-deficient mice, did not affect mice survival following bladder tumor implantation. Overall, these results suggest that ILC2s do not contribute significantly to bladder tumor development, yet further investigations are required to confirm these results in bladder cancer patients.


Assuntos
Imunidade Inata , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , Interleucina-33/metabolismo , Linfócitos , Pulmão , Neoplasias da Bexiga Urinária/patologia , Microambiente Tumoral
19.
Front Immunol ; 13: 975958, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466899

RESUMO

T helper-2 (Th2) cells and type 2 innate lymphoid cells (ILC2s) play crucial roles during type 2 immune responses; the transcription factor GATA3 is essential for the differentiation and functions of these cell types. It has been demonstrated that GATA3 is critical for maintaining Th2 and ILC2 phenotype in vitro; GATA3 not only positively regulates type 2 lymphocyte-associated genes, it also negatively regulates many genes associated with other lineages. However, such functions cannot be easily verified in vivo because the expression of the markers for identifying Th2 and ILC2s depends on GATA3. Thus, whether Th2 cells and ILC2s disappear after Gata3 deletion or these Gata3-deleted "Th2 cells" or "ILC2s" acquire an alternative lineage fate is unknown. In this study, we generated novel GATA3 reporter mouse strains carrying the Gata3 ZsG or Gata3 ZsG-fl allele. This was achieved by inserting a ZsGreen-T2A cassette at the translation initiation site of either the wild type Gata3 allele or the modified Gata3 allele which carries two loxP sites flanking the exon 4. ZsGreen faithfully reflected the endogenous GATA3 protein expression in Th2 cells and ILC2s both in vitro and in vivo. These reporter mice also allowed us to visualize Th2 cells and ILC2s in vivo. An inducible Gata3 deletion system was created by crossing Gata3 ZsG-fl/fl mice with a tamoxifen-inducible Cre. Continuous expression of ZsGreen even after the Gata3 exon 4 deletion was noted, which allows us to isolate and monitor GATA3-deficient "Th2" cells and "ILC2s" during in vivo immune responses. Our results not only indicated that functional GATA3 is dispensable for regulating its own expression in mature type 2 lymphocytes, but also revealed that GATA3-deficient "ILC2s" might be much more stable in vivo than in vitro. Overall, the generation of these novel GATA3 reporters will provide valuable research tools to the scientific community in investigating type 2 immune responses in vivo.


Assuntos
Fator de Transcrição GATA3 , Imunidade Inata , Camundongos , Animais , Alelos , Fator de Transcrição GATA3/genética , Linfócitos , Células Th2
20.
J Immunol ; 209(7): 1237-1242, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165199

RESUMO

IL-9, produced mainly by specialized T cells, mast cells, and group 2 innate lymphoid cells, regulates immune responses, including anti-helminth and allergic responses. Polarization of naive CD4 T cells into IL-9-producing T cells (Th9s) is induced by IL-4 and TGF-ß1 or IL-1ß. In this article, we report that the transcription factor growth factor-independent 1 transcriptional repressor (GFI1) plays a negative role in mouse Th9 polarization. Moreover, the expression of GFI1 is controlled by liganded RARα, allowing GFI1 to mediate the negative effect of retinoic acid on IL-9 expression. The Gfi1 gene has multiple RARα binding sites in the promoter region for recruiting nuclear coactivator steroid receptor coactivator-3 and p300 for histone epigenetic modifications in a retinoic acid-dependent manner. Retinoic acid-induced GFI1 binds the Il9 gene and suppresses its expression. Thus, GFI1 is a novel negative regulator of Il9 gene expression. The negative GFI1 pathway for IL-9 regulation provides a potential control point for Th9 activity.


Assuntos
Interleucina-9 , Receptores de Esteroides , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Imunidade Inata , Interleucina-4/metabolismo , Linfócitos/metabolismo , Camundongos , Receptores de Esteroides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Tretinoína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA