Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e26588, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434286

RESUMO

Introduction: Multiple system atrophy (MSA) is a rapidly progressing neurodegenerative disorder. Although diverse biomarkers have been established for Parkinson's disease (PD), no widely accepted markers have been identified in MSA. Pyruvate and lactate are the end-product of glycolysis and crucial for brain metabolism. However, their correlation with MSA remains unclear. Moreover, it is elusive how lifestyles modify these metabolites. Methods: To investigate the correlation and diagnostic value of plasma pyruvate and lactate levels in MSA and PD. Moreover, we explored how lifestyle-related metabolites interact with these metabolites in determining the disease risk. We assayed the 3 metabolites in pyruvate/lactate and 6 in the tea/coffee metabolic pathways by targeted mass spectrometry and evaluate their interactions and performance in diagnosis and differentiation between MSA and PD. Results: We found that 7 metabolites were significantly different between MSA, PD and healthy controls (HCs). Particularly, pyruvate was increased in PD while significantly decreased in MSA patients. Moreover, the tea/coffee metabolites were negatively associated with the pyruvate level in HCs, but not in MSA and PD patients. Using machine-learning models, we showed that the combination of pyruvate and tea/coffee metabolites diagnosed MSA (AUC = 0.878) and PD (AUC = 0.833) with good performance. Additionally, pyruvate had good performance in distinguishing MSA from PD (AUC = 0.860), and the differentiation increased (AUC = 0.922) when combined with theanine and 1,3-dimethyluric acid. Conclusions: This study demonstrates that pyruvate correlates reversely with MSA and PD, and may play distinct roles in their pathogenesis, which can be modified by lifestyle-related tea/coffee metabolites.

2.
Brain Sci ; 13(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-38002506

RESUMO

BACKGROUND: Accurate diagnosis of Parkinson's disease (PD) is challenging due to its diverse manifestations. Machine learning (ML) algorithms can improve diagnostic precision, but their generalizability across medical centers in China is underexplored. OBJECTIVE: To assess the accuracy of an ML algorithm for PD diagnosis, trained and tested on data from different medical centers in China. METHODS: A total of 1656 participants were included, with 1028 from Beijing (training set) and 628 from Fuzhou (external validation set). Models were trained using the least absolute shrinkage and selection operator-logistic regression (LASSO-LR), decision tree (DT), random forest (RF), eXtreme gradient boosting (XGboost), support vector machine (SVM), and k-nearest neighbor (KNN) techniques. Hyperparameters were optimized using five-fold cross-validation and grid search techniques. Model performance was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, accuracy, sensitivity (recall), specificity, precision, and F1 score. Variable importance was assessed for all models. RESULTS: SVM demonstrated the best differentiation between healthy controls (HCs) and PD patients (AUC: 0.928, 95% CI: 0.908-0.947; accuracy: 0.844, 95% CI: 0.814-0.871; sensitivity: 0.826, 95% CI: 0.786-0.866; specificity: 0.861, 95% CI: 0.820-0.898; precision: 0.849, 95% CI: 0.807-0.891; F1 score: 0.837, 95% CI: 0.803-0.868) in the validation set. Constipation, olfactory decline, and daytime somnolence significantly influenced predictability. CONCLUSION: We identified multiple pivotal variables and SVM as a precise and clinician-friendly ML algorithm for prediction of PD in Chinese patients.

3.
Commun Biol ; 6(1): 1201, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007539

RESUMO

Parkinson's disease (PD) is characterized by α-synuclein aggregation in dopaminergic (DA) neurons, which are sensitive to oxidative stress. Mitochondria aconitase 2 (ACO2) is an essential enzyme in the tricarboxylic acid cycle that orchestrates mitochondrial and autophagic functions to energy metabolism. Though widely linked to diseases, its relation to PD has not been fully clarified. Here we revealed that the peripheral ACO2 activity was significantly decreased in PD patients and associated with their onset age and disease durations. The knock-in mouse and Drosophila models with the A252T variant displayed aggravated motor deficits and DA neuron degeneration after 6-OHDA and rotenone-induction, and the ACO2 knockdown or blockade cells showed features of mitochondrial and autophagic dysfunction. Moreover, the transcription of autophagy-related genes LC3 and Atg5 was significantly downregulated via inhibited histone acetylation at the H3K9 and H4K5 sites. These data provided multi-dimensional evidences supporting the essential roles of ACO2, and as a potential early biomarker to be used in clinical trials for assessing the effects of antioxidants in PD. Moreover, ameliorating energy metabolism by targeting ACO2 could be considered as a potential therapeutic strategy for PD and other neurodegenerative disorders.


Assuntos
Doença de Parkinson , Humanos , Camundongos , Animais , Doença de Parkinson/metabolismo , Histonas/metabolismo , Acetilação , Mitocôndrias/metabolismo , Autofagia , Aconitato Hidratase/genética
4.
Mol Genet Genomic Med ; 11(11): e2243, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37489029

RESUMO

BACKGROUND: Epilepsy (EP) is a common neurological disease in which 70-80% are thought to have a genetic cause. In patients with epilepsy, neurodevelopmental delay (NDD) was prevalent. Next generation of sequencing has been widely used in diagnosing EP/NDD. However, the diagnostic yield remains to be 40%-50%. Many reanalysis pipelines and software have been developed for automated reanalysis and decision making for the diseases. Nevertheless, it is a highly challenging task for smaller genetic centers or a routine pediatric practice. To address the clinical and genetic "diagnostic odyssey," we organized a Multidisciplinary Molecular Consultation (MMC) team for molecular consultation for 202 children with EP/NDD patients referred by lower level hospitals. METHODS: All the patients had undergone an aligned and sequential consultations and discussions by a "triple reanalysis" procedure by clinical, genetic specialists, and researchers. RESULTS: Among the 202 cases for MMC, we totally identified 47 cases (23%) harboring causative variants in 24 genes and 15 chromosomal regions after the MMC. In the 15 cases with positive CNVs, 3 cases harbor the deletions or duplications in 16p11.2, and 2 cases for 1p36. The bioinformatical reanalysis revealed 47 positive cases, in which 12 (26%) were reported to be negative, VUS or incorrectly positive in pre-MMC reports. Additionally, among 87 cases with negative cases, 4 (5%) were reported to be positive in pre-MMC reports. CONCLUSION: We established a workflow allowing for a "one-stop" collaborative assessments by experts of multiple fields and helps for correct the diagnosis of cases with falsenegative and -positive and VUS genetic reports and may have significant influences for intervention, prevention and genetic counseling of pediatric epilepsy and neurodevelopmental disorders.


Assuntos
Epilepsia Generalizada , Epilepsia , Transtornos do Neurodesenvolvimento , Criança , Humanos , Testes Genéticos/métodos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Epilepsia Generalizada/genética , Epilepsia/diagnóstico , Epilepsia/genética , Encaminhamento e Consulta
5.
Environ Sci Pollut Res Int ; 30(32): 79241-79257, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37286836

RESUMO

Red mud (RM) is a solid waste material with high alkalinity and low cementing activity component. The low activity of RM makes it difficult to prepare high-performance cementitious materials from RM alone. Five groups of RM-based cementitious samples were prepared by adding steel slag (SS), grade 42.5 ordinary Portland cement (OPC), blast furnace slag cement (BFSC), flue gas desulfurization gypsum (FGDG), and fly ash (FA). The effects of different solid waste additives on the hydration mechanisms, mechanical properties, and environmental safety of RM-based cementitious materials were discussed and analyzed. The results showed that the samples prepared from different solid waste materials and RM formed similar hydration products, and the main products were C-S-H, tobermorite, and Ca(OH)2. The mechanical properties of the samples met the single flexural strength criterion (≥ 3.0 MPa) for first-grade pavement brick in the Industry Standard of Building Materials of the People's Republic of China-Concrete Pavement Brick. The alkali substances in the samples existed stably, and the leaching concentrations of the heavy metals reached class III of the surface water environmental quality standards. The radioactivity level was in the unrestricted range for main building materials and decorative materials. The results manifest that RM-based cementitious materials have the characteristics of environmentally friendly materials and possess the potential to partially or fully replace traditional cement in the development of engineering and construction applications and it provides innovative guidance for combined utilization of multi-solid waste materials and RM resources.


Assuntos
Metais Pesados , Resíduos Sólidos , Resíduos Sólidos/análise , Cinza de Carvão , Metais Pesados/análise , Sulfato de Cálcio , Aço
6.
Environ Sci Pollut Res Int ; 30(19): 55905-55921, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36905547

RESUMO

Red mud (RM) cementitious materials were prepared with the thermally, thermoalkali- or thermocalcium-activated RM, steel slag (SS), and other additives. The effects of different thermal RM activation methods on the cementitious material hydration mechanisms, mechanical properties, and environmental risks were discussed and analyzed. The results showed that the hydration products of different thermally activated RM samples were similar with the main products being C-S-H, tobermorite, and Ca(OH)2. Ca(OH)2 was mainly present in thermally activated RM samples, and the tobermorite was mainly produced by samples prepared with thermoalkali- and the thermocalcium-activated RM. The mechanical properties of the samples prepared by thermally and thermocalcium-activated RM had early-strength properties, while the thermoalkali-activated RM samples were similar to the late-strength type of cement properties. The average flexural strength of thermally and the thermocalcium-activated RM samples at 14 days were 3.75 MPa and 3.87 MPa respectively, whereas, the 1000 °C thermoalkali-activated RM samples only at 28 days was 3.26 MPa; the above data could reach the single flexural strength (3.0 MPa) of the first-grade pavement blocks of the building materials industry standard of the People's Republic of China-concrete pavement blocks (JC/T446-2000). The optimal preactivated temperature for different thermally activated RM was different; the optimal preactivated temperature for both thermally and thermocalcium-activated RM was 900 °C, and the flexural strength was 4.46 MPa and 4.35 MPa, respectively. However, the optimal preactivated temperature of thermoalkali activated RM at 1000 °C. The 900 °C thermally activated RM samples had better solidified effects for heavy metal elements and alkali substances. 600~800℃ thermoalkali activated RM samples had better solidified effects for heavy metal elements. Different temperatures of thermocalcium-activated RM samples showed different solidified effects on different heavy metal elements, which may be due to the influence of thermocalcium activation temperature on the structural changes of the hydration products of the cementitious samples. In this study, three thermal RM activation methods were proposed, and the co-hydration mechanism and environmental risk study of different thermally activated RM and SS were further elucidated. This not only provides an effective method for the pretreatment and safe utilization of RM, but also facilitates the synergistic resource treatment of solid waste and further promotes the research process of replacing part of traditional cement with solid waste.


Assuntos
Metais Pesados , Resíduos Sólidos , Humanos , Silicatos/química , Compostos de Cálcio , Metais Pesados/análise , Aço
7.
Atherosclerosis ; 364: 20-28, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459728

RESUMO

BACKGROUND AND AIMS: Carotid atherosclerosis is an important cause of ischemic stroke. Lipids play a key role in the progression of atherosclerosis. To date, the spatial lipid profile of carotid atherosclerotic plaques related to histology has not been systematically investigated. METHODS: Carotid atherosclerosis samples from 12 patients were obtained and classified into four classical pathological stages (preatheroma, atheroma, fibroatheroma and complicated lesion) by histological staining. Desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) was used to investigate the lipid profile of carotid atherosclerosis, and correlated it with histological information. Bioinformatics technology was used to process MSI data among different pathological stages of atherosclerosis lesions. RESULTS: A total of 55 lipids (26 throughout cross-section regions [TCSRs], 13 in lipid-rich regions [LRRs], and 16 in collagen-rich regions [CRRs]) were initially identified in carotid plaque from one patient. Subsequently, 32 of 55 lipids (12 in TCSRs, eight in LRRs, and 12 in CRRs) were further screened in 11 patients. Pathway enrichment analysis showed that multiple metabolic pathways, such as fat digestion and absorption, cholesterol metabolism, lipid and atherosclerosis, were enriched in TCSRs; sphingolipid signaling pathway, necroptosis pathway were enriched in LRRs; and glycerophospholipid metabolism, ether lipid metabolism pathway were mainly enriched in CRRs. CONCLUSIONS: This study comprehensively showed the spatial lipid metabolism footprint in human carotid atherosclerotic plaques. The lipid profiles and related metabolism pathways in three regions of plaque with disease progression were different markedly, suggesting that the different metabolic mechanisms in these regions of carotid plaque may be critical in atherosclerosis progression.


Assuntos
Aterosclerose , Doenças das Artérias Carótidas , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/patologia , Doenças das Artérias Carótidas/patologia , Aterosclerose/patologia , Artérias Carótidas/patologia , Lipídeos/química
8.
Neurol Genet ; 8(6): e200044, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36524103

RESUMO

Background and Objectives: Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is a rare hereditary cerebrovascular disease caused by homozygous or compound heterozygous variations in the high-temperature requirement A serine peptidase 1 (HTRA1) gene. However, several studies in recent years have found that some heterozygous HTRA1 mutations also cause cerebral small vessel disease (CSVD). The current study aims to report the novel genotypes, phenotypes, and histopathologic results of 3 pedigrees of CSVD with heterozygous HTRA1 mutation. Methods: Three pedigrees of familiar CSVD, including 11 symptomatic patients and 3 asymptomatic carriers, were enrolled. Whole-exome sequencing was conducted in the probands for identifying rare variants, which were then evaluated for pathogenicity according to the American College of Medical Genetics and Genomics guidelines. Sanger sequencing was performed for validation of mutations in the probands and other family members. The protease activity was assayed for the novel mutations. All the participants received detailed clinical and imaging examinations and the corresponding results were concluded. Hematoma evacuation was performed for an intracerebral hemorrhage patient with the p.Q318H mutation, and the postoperative pathology including hematoma and cerebral small vessels were examined. Results: Three novel heterozygous HTRA1 mutations (p.Q318H, p.V279M, and p.R274W) were detected in the 3 pedigrees. The protease activity was largely lost for all the mutations, confirming that they were loss-of-function mutations. The patients in each pedigree presented with typical clinical and imaging features of CVSD, and some of them displayed several new phenotypes including color blindness, hydrocephalus, and multiple arachnoid cysts. In addition, family 1 is the largest pedigree with heterozygous HTRA1 mutation so far and includes homozygous twins, displaying some variation in clinical phenotypes. More importantly, pathologic study of a patient with p.Q318H mutation showed hyalinization, luminal stenosis, loss of smooth muscle cells, splitting of the internal elastic lamina, and intramural hemorrhage/dissection-like structures. Discussion: These findings broaden the mutational and clinical spectrum of heterozygous HTRA1-related CSVD. Pathologic features were similar with the previous heterozygous and homozygous cases. Moreover, clinical heterogeneity was revealed within the largest single family, and the mechanisms of the phenotypic heterogenetic remain unclear. Overall, heterozygous HTRA1-related CSVD should not be simply taken as a mild type of CARASIL as previously considered.

9.
BMC Med Genomics ; 15(1): 173, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35932023

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by predominant impairment of upper and lower motor neurons. Over 50 TARDBP mutations have been reported in both familial (FALS) and sporadic ALS (SALS). Some mutations in TARDBP, e.g. A382T and G294V, have genetic founder effects in certain geographic regions. However, such prevalence and founder effect have not been reported in Chinese. METHODS: Whole-exome sequencing (WES) was performed in 16 Chinese FALS patients, followed by Sanger sequencing for the TARDBP p.Gly298Ser mutation (G298S) in 798 SALS patients and 1,325 controls. Haplotype analysis using microsatellites flanking TARDBP was conducted in the G298S-carrying patients and noncarriers. The geographic distribution and phenotypic correlation of the TARDBP mutations reported worldwide were reviewed. RESULTS: WES detected the TARDBP G298S mutation in 8 FALS patients, and Sanger sequencing found additional 8 SALS cases, but no controls, carrying this mutation. All the 16 cases came from Southern China, and 7 of these patients shared the 117-286-257-145-246-270 allele for the D1S2736-D1S1151-D1S2667-D1S489-D1S434-D1S2697 markers, which was not found in the 92 non-carrier patients (0/92) (p < 0.0001) and 65 age-matched and neurologically normal individuals (0/65) (p < 0.0001). The A382T and G298S mutations were prevalent in Europeans and Eastern Asians, respectively. Additionally, carriers for the M337V mutation are dominated by bulbar onset with a long survival, whereas those for G298S are dominated by limb onset with a short survival. CONCLUSIONS: Some prevalent TARDBP mutations are distributed in a geographic pattern and related to clinical profiles. TARDBP G298S mutation is a founder mutation in the Southern Chinese ALS population.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA/genética , Esclerose Lateral Amiotrófica/genética , Povo Asiático/genética , Haplótipos , Humanos , Mutação
10.
Front Neurol ; 13: 903721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847229

RESUMO

Objectives: To develop and validate a predictive nomogram for idiopathic rapid eye movement (REM) sleep behavior disorder (RBD) in a community population in Beijing, China. Methods: Based on the validated RBD questionnaire-Hong Kong (RBDQ-HK), we identified 78 individuals with possible RBD (pRBD) in 1,030 community residents from two communities in Beijing. The least absolute shrinkage and selection operator (LASSO) regression was applied to identify candidate features and develop the nomogram. Internal validation was performed using bootstrap resampling. The discrimination of the nomogram was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, and the predictive accuracy was assessed via a calibration curve. Decision curve analysis (DCA) was performed to evaluate the clinical value of the model. Results: From 31 potential predictors, 7 variables were identified as the independent predictive factors and assembled into the nomogram: family history of Parkinson's disease (PD) or dementia [odds ratio (OR), 4.59; 95% confidence interval (CI), 1.35-14.45; p = 0.011], smoking (OR, 3.24; 95% CI, 1.84-5.81; p < 0.001), physical activity (≥4 times/week) (OR, 0.23; 95% CI, 0.12-0.42; p < 0.001), exposure to pesticides (OR, 3.73; 95%CI, 2.08-6.65; p < 0.001), constipation (OR, 6.25; 95% CI, 3.58-11.07; p < 0.001), depression (OR, 3.66; 95% CI, 1.96-6.75; p < 0.001), and daytime somnolence (OR, 3.28; 95% CI, 1.65-6.38; p = 0.001). The nomogram displayed good discrimination, with original AUC of 0.885 (95% CI, 0.845-0.925), while the bias-corrected concordance index (C-index) with 1,000 bootstraps was 0.876. The calibration curve and DCA indicated the high accuracy and clinical usefulness of the nomogram. Conclusions: This study proposed an effective nomogram with potential application in the individualized prediction for pRBD.

12.
Microbiol Spectr ; 10(1): e0098521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171012

RESUMO

Nicotinamidase (Nic) (E.C.3.5.1.19) is a representative protein of the isochorismatase superfamily from Escherichia coli. Despite showing no (+) γ-lactamase activity, its active site constellations (ASCs) are very similar to those of two other known (+) γ-lactamases (Mhpg and RutB), indicating that it could be a latent (+) γ-lactamase. In this study, the primary sequences of the five representative proteins of the isochorismatase superfamily from E. coli were aligned, and a "lid"-like unit of a six-residue loop (112GENPLV117) was established. The Nic protein was converted to a (+) γ-lactamase by eliminating the loop. A conversion mechanism was proposed in which a more compact binding pocket is formed after lid deletion. In addition, the "shrunk" binding pocket stabilized the small substrate and the catalysis intermediate, which triggered catalysis. Moreover, we identified another latent (+) γ-lactamase in the E. coli isochorismatase superfamily and successfully converted it into an active (+) γ-lactamase. In summary, the isochorismatase superfamily is potentially a good candidate for obtaining novel (+) γ-lactamases. IMPORTANCE γ-Lactamases are important enzymatic catalysts in preparing optically pure γ-lactam enantiomers, which are high-value chiral intermediates. Different studies have presumed that the isochorismatase superfamily is a candidate to obtain novel (+) γ-lactamases. By engineering its substrate entrance tunnel, Nic, a representative protein of the isochorismatase superfamily, is converted to a (+) γ-lactamase. Tunnel engineering has proven effective in enhancing enzyme promiscuity. Therefore, the latent or active γ-lactamase activities of the isochorismatase superfamily members indicate their evolutionary path positions.


Assuntos
Amidoidrolases/genética , Amidoidrolases/metabolismo , Escherichia coli/enzimologia , Hidrolases/genética , Hidrolases/metabolismo , Nicotinamidase/genética , Nicotinamidase/metabolismo , Amidoidrolases/química , Biocatálise , Escherichia coli/química , Escherichia coli/genética , Hidrolases/química , Família Multigênica , Nicotinamidase/química , Engenharia de Proteínas , Especificidade por Substrato
13.
Radiother Oncol ; 167: 25-33, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34902371

RESUMO

BACKGROUND AND PURPOSE: Radiotherapy is a standard treatment for head and neck tumors that significantly increases patients' long-term survival rates. However, late cerebrovascular complications, especially carotid artery stenosis (CAS), have gained increasing attention. Investigation of biomarkers of radiation-induced CAS may help to elucidate the mechanism by which radiation induces damage to blood vessels and identify possible preventive measures against such damage. MATERIALS AND METHODS: In this study, we used lipidomics strategy to characterize the lipids present in 8 radiation-induced carotid plaques (RICPs) and 12 atherosclerotic carotid plaques (ASCPs). We also used desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) to map the spatial distribution of the screened lipids from 2 RICPs samples and 2 ASCPs samples. RESULTS: The results showed that 31 metabolites in RICPs were significantly higher than that in ASCPs, 24 of which were triglycerides (TGs). We used four machine learning models to select potential indicators from the 31 metabolites. Six TGs [TG(17:2/17:2/18:0), TG(17:1/17:2/18:0), TG(17:0/17:2/18:0), TG(17:2/17:2/20:0), TG(17:1/17:2/20:0), TG(15:0/22:0/22:2)] were found to be the potential markers for distinguishing RICPs and ASCPs (AUC = 0.83). The DESI-MSI results suggested that the 6 TGs were localized in the collagen fiber regions and confirmed the differences of these TGs between the two kinds of plaques. CONCLUSIONS: The 6 TGs primarily localized in the collagen fiber regions of plaques are likely to be potential indicators for the differentiation of RICPs from ASCPs which may have implications in the mechanisms and possible preventive measures against RICPs.


Assuntos
Lipídeos , Espectrometria de Massas por Ionização por Electrospray , Colágeno , Humanos , Lipídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos
14.
BMC Med Genomics ; 14(1): 222, 2021 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-34511133

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with neuronal cell inclusions composed of neurofilaments and other abnormal aggregative proteins as pathological hallmarks. Approximately 90% of patients have sporadic cases (sALS), and at least 4 genes, i.e. C9orf72, SOD1, FUS and TARDBP, have been identified as the main causative genes, while many others have been proposed as potential risk genes. However, these mutations could explain only ~ 10% of sALS cases. The neurofilament polypeptides encoded by NEFH, NEFM, and NEFL are promising protein biomarkers for ALS and other degenerative diseases. However, whether the genetic variants of these genes were associated with ALS remain ambiguous. METHODS: Here, we used PCR-Sanger to sequence the exons of these three genes in a cohort of 371 sALS patients and 711 healthy controls (Phase I) and validated the risk variant in another 300 sALS patients and 1076 controls (Phase II). RESULTS: A total of 92 variants were identified, including 36 rare heterozygous variants in NEFH, 27 in NEFM, and 16 in NEFL, and only rs568759161 (p.Ser787Arg) in NEFH reached nominal statistical power (P = 0.02 at Phase I, P = 0.009 at Phase II) in the case-control comparison. Together, the Phase I and II studies showed the significantly higher frequency of the variant in cases (9/1342, 0.67%) than in controls (2/3574, 0.07%) (OR 12.06; 95% CI 2.60-55.88; P = 0.0003). No variants passed multiple testing in the discovery cohort, but rs568759161 was associated with ALS in a replication cohort. CONCLUSIONS: Our results confirmed that NEFH Ser787Arg is a novel sALS risk variant in Chinese subjects, but NEFM and NEFL were not associated with sALS. These data may have implications for genetic counselling and for understanding the pathogenesis of sALS.


Assuntos
Esclerose Lateral Amiotrófica
15.
Parkinsonism Relat Disord ; 88: 62-67, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34144229

RESUMO

BACKGROUND: Mutations in the F-box protein 7 (FBXO7) gene is one of the genetic causes of early-onset Parkinson's disease, which usually presents as autosomal recessive early-onset parkinsonian-pyramidal syndrome (PPS). Herein, we report a Chinese PPS family with a novel FBXO7 homozygous mutation. METHODS: Clinical data of the proband and his affected sister manifesting as early-onset parkinsonism combined with pyramidal signs were collected. DNAs of the two affected siblings, an unaffected sibling and their unaffected mother were isolated. Whole-exome sequencing (WES) was performed for the proband. After bioinformatic analysis, targeted variants were validated by Sanger sequencing in the family members available for DNAs. RESULTS: The proband began to walk unsteadily at 30-year-old and developed mild parkinsonism and stiffness in both lower extremities 4 years later. His older sister also manifested as early-onset parkinsonism with stiffness in both lower limbs and postural instability. Both the proband and his older sister carried a novel homozygous FBXO7 mutation in exon 7 (c.1034G > C, p. R345P). The homozygous mutation co-segregated with disease in this pedigree. The mutation located at a highly conserved amino acid residue in the F-box domain, which was predicted to be damaging in silico. CONCLUSIONS: Our study expands the mutational spectrum of autosomal recessive early-onset Parkinson's disease (PARK15) caused by FBXO7 mutations.


Assuntos
Blefarospasmo/genética , Blefarospasmo/fisiopatologia , Proteínas F-Box/genética , Doença de Parkinson Secundária/genética , Doença de Parkinson Secundária/fisiopatologia , Adulto , Idade de Início , China , Feminino , Globo Pálido/fisiopatologia , Humanos , Masculino , Mutação , Linhagem , Sequenciamento do Exoma
16.
Neurosci Lett ; 752: 135831, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33746006

RESUMO

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare hereditary disease characterized by cerebellar ataxia, pyramidal signs in lower limbs, and sensorimotor neuropathy. The disease is caused by bi-allelic mutations of the SACS gene encoding the sacsin protein. Over 200 mutations have been reported worldwide. Here, we report two unrelated Chinese ARSACS patients with novel mutations revealed by whole-exome sequencing (WES). One 36-year-old female patient exhibited classical ARSACS characteristics including cerebellar ataxia, pyramidal tract signs in the lower limbs and sensorimotor neuropathy, while the other 9-year-old male showed cerebellar ataxia and peripheral neuropathy. WES identified a compound heterozygous variant in the SACS gene (c.5692 G > T, p.E1898X; c.12673-12677 del TATCA, p.Y4225D fs*6) in the female patient and another compound heterozygous variant (c.1773C > A, p.S578X; c.8088-8089 in. CA, p.M2697Q fs*43) in the male patient. All of these novel mutations were predicted to be loss-of-function which affect the expression of the two important C-terminal domains (DnaJ and HEPN). These findings add new insights into the mutational and clinical spectrum of ARSACS.


Assuntos
Proteínas de Choque Térmico/genética , Espasticidade Muscular/genética , Ataxias Espinocerebelares/congênito , Adulto , Criança , China , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Espasticidade Muscular/diagnóstico , Mutação , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Sequenciamento do Exoma
17.
Neuropeptides ; 87: 102134, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33639357

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by the loss of dopaminergic neurons in the substantia nigra and the deposition of Lewy bodies. Mitochondrial dysfunction, oxidative stress, and autophagy dysfunction are involved in the pathogenesis of PD. Ghrelin is a brain-gut peptide that has been reported that protected against 1-methyl-4-phenyl-1,2,3,6- tetrahydropyran (MPTP)/MPP+-induced toxic effects. In the present work, human neuroblastoma SH-SY5Y cells were exposed to rotenone as a PD model to explore the underlying mechanism of ghrelin. We found that ghrelin inhibited rotenone-induced cytotoxicity, mitochondrial dysfunction, and apoptosis by improving cell viability, increasing the ratio of red/green of JC-1, inhibiting the production of reactive oxidative species (ROS), and regulating Bcl-2, Bax, Cytochrome c, caspase-9, and caspase-3 expression. Besides, ghrelin promoted mitophagy accompanied by up-regulating microtubule-associated protein 1 Light Chain 3B-II/I(LC3B-II/I) and Beclin1 but decreasing the expression of p62. Moreover, ghrelin promoted PINK1/Parkin mitochondrial translocation. Additionally, we investigated that ghrelin activated the AMPK/SIRT1/PGC1α pathway and pharmacological inhibition of AMPK and SIRT1 abolished the cytoprotection of ghrelin, decreased the level of mitophagy, and PINK1/Parkin mitochondrial translocation. Taken together, our findings suggested that mitophagy and AMPK/SIRT1/PGC1α pathways were related to the cytoprotection of ghrelin. These findings provided novel insights into the underlying mechanisms of ghrelin, further mechanistic studies on preclinical and clinical levels are required to be conducted with ghrelin to avail and foresee it as a potential agent in the treatment and management of PD.


Assuntos
Grelina/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitofagia/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Rotenona/toxicidade , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/fisiologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Grelina/farmacologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Neuroblastoma , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/fisiologia , Proteínas Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Espécies Reativas de Oxigênio , Rotenona/antagonistas & inibidores , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/biossíntese , alfa-Sinucleína/genética
18.
Neurotox Res ; 39(3): 740-753, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33580874

RESUMO

Oxidative stress and mitochondrial dysfunction are involved in cerebral ischemia/reperfusion injury-induced neuronal apoptosis. Mitophagy is the main method to eliminate dysfunctional mitochondria. Apelin-36, a type of neuropeptide, has been reported to exert protective effects in cerebral I/R (I/R) injury, but its precise mechanisms remain to be elucidated. To study the effects of Apelin-36 on oxidative stress and mitochondrial dysfunction in cerebral I/R injury, the oxygen-glucose deprivation/reperfusion (OGD/R) model with 6 h of ischemia and 6 h of reperfusion was established in HT22 cells. Results demonstrated that Apelin-36 protected against OGD/R injury by improving cell viability, decreasing the apoptotic cells ratio and increasing the ratio of Bcl-2/Bax. In addition, Apelin-36 treatment inhibited oxidative stress by downregulating the level of reactive oxygen species (ROS) and malondialdehyde (MDA) as well as the expression of inducible nitric oxide synthase (iNOS). And Apelin-36 also activated the level of superoxide dismutase (SOD) and glutathione (GSH). Mitochondrial apoptosis was also alleviated with Apelin-36 treatment detected by the mitochondrial membrane potential (MMP) and the expression of Cytochrome c (Cyt c), Cleaved caspase-9, and Cleaved caspase-3. Furthermore, the SIRT1-mediated PINK1/Parkin-dependent mitophagy was activated by Apelin-36 treatment with the downregulation of p62 and upregulation of LC3B-II and Beclin1. Both EX527 and Cyclosporine A (CsA), which are inhibitors of SIRT1 and mitophagy, markedly alleviated the inhibition of oxidative stress and mitochondrial dysfunction caused by Apelin-36. These findings suggest that SIRT1-mediated PINK1/Parkin-dependent mitophagy is involved in the neuroprotective effects of Apelin-36 on OGD/R-induced oxidative stress and mitochondrial dysfunction.


Assuntos
Apelina/farmacologia , Glucose/deficiência , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Sirtuína 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Linhagem Celular Transformada , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Mitofagia/fisiologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
19.
Neuropeptides ; 85: 102112, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33333485

RESUMO

Ghrelin is a regulatory peptide that is the endogenous ligand of the growth hormone secretagogue 1a (GHS-R1a) which belongs to the G protein-coupled receptor family. Ghrelin and GHS-R1a are widely expressed in the central and peripheral tissues and play therapeutic potential roles in the cytoprotection of many internal organs. Endoplasmic reticulum stress (ERS), oxidative stress, and autophagy dysfunction, which are involved in various diseases. In recent years, accumulating evidence has suggested that ghrelin exerts protective effects by regulating ERS, oxidative stress, and autophagy in diverse diseases. This review article summarizes information about the roles of the ghrelin system on ERS, oxidative stress, and autophagy in multiple diseases. It is suggested that ghrelin positively affects the treatment of diseases and may be considered as a therapeutic drug in many illnesses.


Assuntos
Autofagia/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Grelina/metabolismo , Grelina/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Animais , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transdução de Sinais
20.
Neural Regen Res ; 16(6): 1044-1051, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33269749

RESUMO

Apelin-13 is a novel endogenous ligand for an angiotensin-like orphan G-protein coupled receptor, and it may be neuroprotective against cerebral ischemia injury. However, the precise mechanisms of the effects of apelin-13 remain to be elucidated. To investigate the effects of apelin-13 on apoptosis and autophagy in models of cerebral ischemia/reperfusion injury, a rat model was established by middle cerebral artery occlusion. Apelin-13 (50 µg/kg) was injected into the right ventricle as a treatment. In addition, an SH-SY5Y cell model was established by oxygen-glucose deprivation/reperfusion, with cells first cultured in sugar-free medium with 95% N2 and 5% CO2 for 4 hours and then cultured in a normal environment with sugar-containing medium for 5 hours. This SH-SY5Y cell model was treated with 10-7 M apelin-13 for 5 hours. Results showed that apelin-13 protected against cerebral ischemia/reperfusion injury. Apelin-13 treatment alleviated neuronal apoptosis by increasing the ratio of Bcl-2/Bax and significantly decreasing cleaved caspase-3 expression. In addition, apelin-13 significantly inhibited excessive autophagy by regulating the expression of LC3B, p62, and Beclin1. Furthermore, the expression of Bcl-2 and the phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was markedly increased. Both LY294002 (20 µM) and rapamycin (500 nM), which are inhibitors of the PI3K/Akt/mTOR pathway, significantly attenuated the inhibition of autophagy and apoptosis caused by apelin-13. In conclusion, the findings of the present study suggest that Bcl-2 upregulation and mTOR signaling pathway activation lead to the inhibition of apoptosis and excessive autophagy. These effects are involved in apelin-13-induced neuroprotection against cerebral ischemia/reperfusion injury, both in vivo and in vitro. The study was approved by the Animal Ethical and Welfare Committee of Jining Medical University, China (approval No. 2018-JS-001) in February 2018.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA