Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(34): 31145-31154, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37663484

RESUMO

In this work, the diblock copolymer methoxy-poly(ethylene glycol)-block-poly(ε-caprolactone) (MPEG-b-PCL) was synthesized with a block composition that allows this polymer in aqueous media to possess both an upper critical solution temperature (UCST) and a lower critical solution temperature (LCST) over a limited temperature interval. The value of the UCST, associated with crystallization of the PCL-block, depended on heating (H) or cooling (C) of the sample and was found to be CPUCSTH = 32 °C and CPUCSTC = 23 °C, respectively. The LCST was not affected by the heating or cooling scans; assumed a value of 52 °C (CPLCSTH = CPLCSTC). At intermediate temperatures (e.g., 45 °C), dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM) showed that the solution consisted of a large population of spherical core-shell particles and some self-assembled rodlike objects. At low temperatures (below 32 °C), differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS) in combination with SAXS disclosed the formation of crystals with a cylindrical core-shell structure. Cryo-TEM supported a thread-like appearance of the self-assembled polymer chains. At temperatures above 52 °C, incipient phase separation took place and large aggregation complexes of amorphous morphology were formed. This work provides insight into the intricate interplay between UCST and LCST and the type of structures formed at these conditions in aqueous solutions of MPEG-b-PCL diblock copolymers.

2.
Angew Chem Int Ed Engl ; 61(4): e202113279, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34757695

RESUMO

Condensation of DNA helices into hexagonally packed bundles and toroids represents an intriguing example of functional organization of biological macromolecules at the nanoscale. The condensation models are based on the unique polyelectrolyte features of DNA, however here we could reproduce a DNA-like condensation with supramolecular helices of small chiral molecules, thereby demonstrating that it is a more general phenomenon. We show that the bile salt sodium deoxycholate can form supramolecular helices upon interaction with oppositely charged polyelectrolytes of homopolymer or block copolymers. At higher order, a controlled hexagonal packing of the helices into DNA-like bundles and toroids could be accomplished. The results disclose unknown similarities between covalent and supramolecular non-covalent helical polyelectrolytes, which inspire visionary ideas of constructing supramolecular versions of biological macromolecules. As drug nanocarriers the polymer-bile salt superstructures would get advantage of a complex chirality at molecular and supramolecular levels, whose effect on the nanocarrier assisted drug efficiency is a still unexplored fascinating issue.


Assuntos
DNA/síntese química , DNA/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Conformação de Ácido Nucleico
3.
RSC Adv ; 11(17): 10121-10129, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35423476

RESUMO

Antibiotic resistance is an emerging threat to public health. The development of a new generation of antimicrobial compounds is therefore currently required. Here we report a novel antimicrobial polymer of chitosan/polypropylene carbonate nanoparticles (CS/PPC NPs). These were designed and synthesized from readily available chitosan and a reactive oligomer polypropylene carbonate (PPC)-derived epoxy intermediate. By employing a simple and efficient functionalized strategy, a series of micelle-like chitosan-graft-polypropylene carbonate (CS-g-PPC) polymers and chitosan-polypropylene carbonate (CS-PPC) microgels were prepared by reacting mono-/bis-epoxy capped PPC with chitosan. The chemical structure, particle size, and surface charge of the newly synthesized polymers were characterized by infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, dynamic light scattering (DLS), and zeta potential measurements. The antimicrobial activities of these nanoparticles were determined in both Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli). Minimum inhibitory concentration (MIC), the nanoparticle concentration needed to completely inhibit the bacterial growth, was found at 128 µg mL-1 to 1024 µg mL-1, strongly depending both on the nature of the epoxy-imine network formed from the functional groups (mono- or bis-capped epoxy groups reacting with amine groups) and the feed ratio of the functional groups (-epoxy/-NH2) between the functionalized PPC and chitosan. No hemolysis was observed at concentrations well in excess of the effective bacteria-inhibiting concentrations. These findings provide a novel strategy to fabricate a new type of nanoantibiotic for antimicrobial applications.

4.
Chemphyschem ; 21(12): 1258-1271, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32352214

RESUMO

The thermoresponsive nature of aqueous solutions of poly(N-isopropylacrylamide) (PNIPAAM) star polymers containing 2, 3, 4, and 6 arms has been investigated by turbidity, dynamic light scattering, rheology, and rheo-SALS. Simulations of the thermosensitive nature of the single star polymers have also been conducted. Some of the samples form aggregates even at temperatures significantly below the lower critical solution temperature (LCST) of PNIPAAM. Increasing concentration and number of arms promotes associations at low temperatures. When the temperature is raised, there is a competition between size increase due to enhanced aggregation and a size reduction caused by contraction. Monte Carlo simulations show that the single stars contract with increasing temperature, and that this contraction is more pronounced when the number of arms is increased. Some samples exhibit a minimum in the turbidity data after the initial increase at the cloud point. The combined rheology and rheo-SALS data suggest that this is due to a fragmentation of the aggregates followed by re-aggregation at even higher temperatures. Although the 6-arm star polymer aggregates more than the other stars at low temperatures, the more compact structure renders it less prone to aggregation at temperatures above the cloud point.

5.
Carbohydr Polym ; 231: 115705, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31888836

RESUMO

A novel eco-friendly vulcanization accelerator, starch supported sodium isobutyl xanthate (SSX) has been synthesized firstly. The modification of starch using sodium isobutyl xanthate (SIBX) has improved the thermal stability significantly, and the vulcanization process of natural rubber (NR) could be accelerated by SSX at 145 ℃ accordingly. More importantly, SSX can be dispersed into NR matrix uniformly along with the strong interfacial interaction between SSX and NR, as evidenced by the constrained rubber chains around SSX surface. In addition, mechanical properties of the obtained NR have been enhanced remarkably, showing a 22.4 % increase in tensile strength when compared with traditional vulcanization accelerator. Laying on the fact that a novel vulcanization accelerator has been fabricated successfully using SIBX functionalized starch, new strategies for the preparation of green vulcanization accelerators and the functional application of biopolymers can be provided.

6.
Langmuir ; 35(42): 13614-13623, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31577150

RESUMO

The self-assembly of two oppositely charged diblock copolymers that have a common thermosensitive nonionic block of poly(N-isopropylacrylamide) (pNIPAAM) has been investigated. The effect of the mixing ratio and total polymer concentrations on the self-assembly of the components and on the phase stability of the mixtures was studied by dynamic light scattering, electrophoretic mobility, and turbidimetry measurements in water at 20 °C. The effect of the competing electrostatic and hydrophobic interactions on the nanostructure of negatively charged electrostatically self-assembled micelles bearing a pNIPAAM corona was investigated by small-angle X-ray scattering (SAXS). The electrostatic and hydrophobic interactions were controlled independently by tuning the ionic strength (from pure water to 50 mM NaCl) and the temperature (20-50 °C) of the investigated mixtures. The SAXS data could be fitted by a spherical micelle model, which has a smoothly decaying radial profile and a Gaussian star term that describes the internal structure of the micellar structures and possible attractive interactions between the polymer chains. At high temperature, a cluster structure factor was included for describing the formation of bulky clusters of the formed micelles. At low temperature and ionic strength, the formation of micelles with a coacervate core and hydrated pNIPAAM shell was observed. The structural evolution of the self-assembled micelles with increasing ionic strength and temperature could be followed, and finally at high ionic strength and temperature, the formation of inverted micelles with a hydrophobic core and polyelectrolyte shell could be identified.

7.
Phys Chem Chem Phys ; 20(4): 2585-2596, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29318229

RESUMO

Understanding self-assembly of amphiphilic copolymers in aqueous solution is an important issue in many areas, e.g., in order to tailor-make carriers for drugs and genes. We have synthesized modified versions of the copolymer of type PEO-PPO-PEO (Pluronic, F127), with short (PCL(5)) or long (PCL(11)) PCL blocks at both ends. Turbidity, dynamic light scattering (DLS), small angle neutron scattering (SANS), and rheology measurements were carried out on dilute aqueous solutions of these polymers to investigate their self-assembly behavior. The DLS results clearly show that both micellization and inter-micellization can be controlled by polymer concentration, temperature, and length of the PCL block. The interplay between unimers, micelles, and clusters of micelles could be monitored and the size and size distribution of the species were determined. The SANS data could be portrayed by a spherical core-shell model at all considered conditions of temperature and concentration for F127 and PCL(5) apart from F127 at the lowest temperature measured. The SANS data for PCL(11) were described by a spherical core-shell model at low temperatures, whereas at elevated temperatures asymmetric sub-structures appeared and a cylindrical core-shell model was employed in the analysis of the data. The appearance of pronounced correlation peaks at elevated temperatures signalizes marked intermicellar interactions. The shear viscosity data revealed a minor shear thinning effect, suggesting that the interchain structures are rather stable and not easily disrupted. The work shows that PCL-modification of Pluronic has a large influence on the self-assembly process and on the final structure of the assemblies.


Assuntos
Poloxâmero/química , Poliésteres/química , Água/química , Difusão Dinâmica da Luz , Espectroscopia de Ressonância Magnética , Nefelometria e Turbidimetria , Difração de Nêutrons , Reologia , Espalhamento a Baixo Ângulo , Resistência ao Cisalhamento , Temperatura
8.
Colloid Polym Sci ; 295(8): 1327-1341, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28794578

RESUMO

The thermal responsive behavior of adsorbed layers of diblock copolymers of poly(N-isopropylacrylamide) (PNIPAAM) and poly((3-acrylamidopropyl)trimethylammonium chloride) (PAMPTMA(+)) with γ-cyclodextrin (γ-CD) at the solid/liquid interface has been investigated using three in situ techniques: null ellipsometry, quartz-crystal microbalance with dissipation monitoring, and neutron reflectometry. The measurements provided information about the adsorbed amounts, the layer thickness, hydration and viscoelastic properties, and the interfacial structure and composition. The copolymers adsorb to silica with the cationic PAMPTMA(+) blocks sitting as anchors in a flat conformation and the PNIPAAM chains extending into the solution. The copolymer system alone exhibits reversible collapse above the lower critical solution temperature of PNIPAAM. The addition of γ-CD to pre-adsorbed copolymer layers results in a highly extended conformation as well as some loss of copolymer from the surface, which we discuss in terms of the formation of surface-invoked lateral steric repulsion of formed inclusion complexes.

9.
Dis Aquat Organ ; 125(1): 19-29, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28627489

RESUMO

We tested the efficiency of 2 different antibiotics, rifampicin and oxolinic acid, against an established infection caused by fish pathogen Francisella noatunensis ssp. orientalis (F.n.o.) in zebrafish. The drugs were tested in the free form as well as encapsulated into biodegradable nanoparticles, either polylactic-co-glycolic acid (PLGA) nanoparticles or nanostructured lipid carriers. The most promising therapies were PLGA-rifampicin nanoparticles and free oxolinic acid; the PLGA nanoparticles significantly delayed embryo mortality while free oxolinic acid prevented it. Encapsulation of rifampicin in both PLGA and nanostructured lipid carriers enhanced its efficiency against F.n.o. infection relative to the free drug. We propose that the zebrafish model is a robust, rapid system for initial testing of different treatments of bacterial diseases important for aquaculture.


Assuntos
Antibacterianos/uso terapêutico , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Ácido Láctico/química , Lipídeos/química , Nanopartículas/química , Ácido Poliglicólico/química , Animais , Antibacterianos/administração & dosagem , Doenças dos Peixes/tratamento farmacológico , Francisella , Ácido Oxolínico/administração & dosagem , Ácido Oxolínico/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Rifampina/administração & dosagem , Rifampina/uso terapêutico , Peixe-Zebra
10.
J Colloid Interface Sci ; 505: 546-555, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28646758

RESUMO

The properties of synthesized diblock poly(N-isopropylacrylamide)-poly((3-acrylamidopropyl)trimethylammonium chloride) and triblock methoxy-poly(ethylene glycol)-poly(N-isopropylacrylamide)-poly((3-acrylamidopropyl)trimethylammonium chloride) cationic copolymers at the silica/aqueous interface are investigated using quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM). Moreover, dynamic light scattering is employed to assess the copolymers in terms of the hydrodynamic size and interchain aggregation. Although viscoelastic Voigt modeling of the QCM-D data suggests a comparable layer thickness for the copolymers on the silica surface, the AFM imaging and colloidal probe measurements reveal significant differences in surface coverage and thickness of the layers, which are discussed and compared with respect to the stabilization effect by the hydrophilic poly(ethylene glycol) block.

11.
Colloids Surf B Biointerfaces ; 156: 79-86, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28527360

RESUMO

Nanoparticulate systems with an uncharged hydrophilic surface may have a great potential in mucosal drug delivery. In the present study liposomes were coated with hydrophobically modified hydroxyethyl cellulose (HM-HEC) to create a sterically stabilized liposomal system with an uncharged surface. The aim was to clarify the influence of the amount of hydrophobic modification of HEC and the length of the hydrophobic moiety, on the stability of the system and on the release properties. HM-HEC with different degrees of hydrophobic modification (1 and 2mol%) and hydrophobic groups with different chain lengths (C8, C12, C16) were included in the study, as well as fluid phase and gel phase liposomes. Both types of liposomes were successfully coated with HM-HEC containing 1mol% of hydrophobic groups, while 2mol% did not work for the intended pharmaceutical applications. The polymer coated gel phase liposomes were stable (size, zeta potential, leakage) for 24 weeks at 4°C, with no differences between the C8 and C16 HM-HEC coating. For the fluid phase liposomes a size increase was observed after 24 weeks at 4°C for all formulations; the C8 HM-HEC coated liposomes increased the most. No differences in the leakage during storage at 4°C or in the release at 35°C were observed between the fluid phase formulations. To conclude; HM-HEC with a shorter hydrophobic chain length resulted in a less stable product for the fluid phase liposomes, while no influence of the chain length was observed for the gel phase liposomes (1mol% HM).


Assuntos
Celulose/análogos & derivados , Lipossomos , Celulose/química , Corantes Fluorescentes/química , Interações Hidrofóbicas e Hidrofílicas
12.
J Phys Chem B ; 121(18): 4885-4899, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28430448

RESUMO

Thermoresponsive amphiphilic biodegradable block copolymers of the type poly(ε-caprolactone-co-lactide)-poly(ethylene glycol)-poly(ε-caprolactone-co-lactide) (PCLA-PEGm-PCLA) have great potential for various biomedical applications. In the present study, we have surveyed the effects of PEG spacer length (m = 1000 and 1500), temperature, and polymer concentration on the self-assembling process to form supramolecular structures in aqueous solutions of the PCLA-PEGm-PCLA copolymer. This copolymer has a lower critical solution temperature, and the cloud point depends on both concentration and PEG length. Thermoreversible hydrogels are formed in the semidilute regime; the gel windows in the phase diagrams can be tuned by the concentration and length of the PEG spacer. The rheological properties of both dilute and semidilute samples were characterized; especially the sol-to-gel transition was examined. Small-angle neutron scattering (SANS) experiments reveal fundamental structural differences between the two copolymers for both dilute and semidilute samples. The intensity profiles for the copolymer with the long PEG spacer could be described by a spherical core-shell model over a broad temperature domain, whereas the copolymer with the short hydrophilic spacer forms rod-like species over an extended temperature range. This finding is supported by cryo-TEM images. At temperatures approaching macroscopic phase separation, both copolymers seem to assume extended rod-like structures.

13.
J Polym Sci B Polym Phys ; 54(19): 1913-1917, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27840558

RESUMO

Determination of molecular masses of charged polymers is often nontrivial and most methods have their drawbacks. For polyelectrolytes, a new possibility for the determination of number-average molecular masses is represented by small-angle X-ray scattering (SAXS) which allows fast determinations with a 10% accuracy. This is done by relating the mass to the position of a characteristic peak feature which arises in SAXS due to the local ordering caused by charge-repulsions between polyelectrolytes. Advantages of the technique are the simplicity of data analysis, the independency from polymer architecture, and the low sample and time consumption. The method was tested on polyelectrolytes of various structures and chemical compositions, and the results were compared with those obtained from more conventional techniques, such as asymmetric flow field-flow fractionation, gel permeation chromatography, and classical SAXS data analysis, showing that the accuracy of the suggested method is similar to that of the other techniques. © 2016 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1913-1917.

14.
Macromol Biosci ; 16(12): 1838-1852, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27739629

RESUMO

The thermoresponsive amphiphilic block copolymer poly(d,l-lactic acid-co-glycolic acid)-block-poly(ethylene glycol)-block-poly(d,l-lactic acid-co-glycolic acid) (PLGA-PEGn -PLGA), which exhibits a reversible temperature-induced sol-gel transition at higher polymer concentrations in aqueous solution has attached a great deal of interest because of its potential in biomedical applications. In the present work, the length of the hydrophobic PLGA blocks is kept constant, whereas the length of the hydrophilic PEG block is altered and this variation has a pronounced impact on the phase behavior of the aqueous samples and the structure of the polymer. A short PEG block promotes gelation at a low temperature, whereas a longer PEG block shifts the gelation point to higher temperature. By using a combination of turbidity, rheology, and small angle neutron scattering (SANS) methods, the authors have revealed dramatic temperature effects. In dilute solution, the SANS experiments expose asymmetric ellipsoid structures for the copolymer with the short PEG-spacer, whereas spherical core-shell structure is observed for the polymer with long PEG-spacer. In the semidilute concentration regime, SANS measurements disclose similar profiles for the two copolymers. In a broad temperature interval, the transition from spherical core-shell micelles to cylindrical structure and packing of cylinders is observed.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Polietilenoglicóis/química , Poliglactina 910/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Reologia , Soluções , Temperatura
15.
Nanoscale ; 8(2): 862-77, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26648525

RESUMO

Therapeutic nanoparticles (NPs) have great potential to deliver drugs against human diseases. Encapsulation of drugs in NPs protects them from being metabolized, while they are delivered specifically to a target site, thereby reducing toxicity and other side-effects. However, non-specific tissue accumulation of NPs, for example in macrophages, especially in the spleen and liver is a general problem with many NPs being developed for cancer therapy. To address the problem of non-specific tissue accumulation of NPs we describe the development of the zebrafish embryo as a transparent vertebrate system for characterization of NPs against cancer. We show that injection of human cancer cells results in tumor-like structures, and that subsequently injected fluorescent NPs, either made of polystyrene or liposomes can be imaged in real-time. NP biodistribution and general in vivo properties can be easily monitored in embryos having selective fluorescent labeling of specific tissues. We demonstrate in vitro, by using optical tweezer micromanipulation, microscopy and flow cytometry that polyethylene glycol (PEG) coating of NPs decreases the level of adhesion of NPs to macrophages, and also to cancer cells. In vivo in zebrafish embryos, PEG coating resulted in longer NP circulation times, decreased macrophage uptake, and reduced adhesion to the endothelium. Importantly, liposomes were observed to accumulate passively and selectively in tumor-like structures comprised of human cancer cells. These results show that zebrafish embryo is a powerful system for microscopy-based screening of NPs on the route to preclinical testing.


Assuntos
Micromanipulação/métodos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Peixe-Zebra/embriologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Citometria de Fluxo , Corantes Fluorescentes/química , Células HEK293 , Humanos , Lipossomos/química , Macrófagos/metabolismo , Nanopartículas Metálicas/química , Microscopia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanomedicina/métodos , Neoplasias/metabolismo , Neoplasias/terapia , Pinças Ópticas , Polietilenoglicóis/química , Polímeros/química , Poliestirenos/química , Distribuição Tecidual
16.
Mol Pharm ; 11(3): 819-27, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24428614

RESUMO

Gene knockdown has emerged as an important tool for cancer gene therapy as well as for viral infections and dominantly inherited genetic disorders. The generation of suitable siRNA delivery systems poses some challenges, namely, to avoid nuclease degradation, to surpass the cytoplasmic membrane, and to release the nucleic acids into the cytosol. Aiming at evaluating the ability of thermoresponsive block copolymers formed by units of N-isopropylacrylamide and of (3-acrylamidopropyl)trimethylammonium chloride to efficiently deliver siRNAs, an extensive study was performed with four different copolymers using a human fibrosarcoma cell line as cell model. The silencing ability and cytotoxicity of the generated copolymer-based siRNA delivery systems were found to be dependent on the cloud point of the polymer, which corresponds to the transition temperature at which the aggregation or precipitation of the polymer molecules becomes thermodynamically more favorable than their solubilization. In the present study, a system capable of delivering siRNAs efficiently, specifically and without presenting relevant cytotoxicity, even in the presence of serum, was developed. Confocal fluorescence experiments showed that the ability of the generated systems to silence the target gene is related to some extent to nucleic acid internalization, being also dependent on polymer/siRNA dissociation at 37 °C. Thus, a delicate balance between nucleic acid internalization and intracellular release must be met in order to reach an ideal knockdown efficiency. The special features and potential for manipulation of the N-isopropylacrylamide-based copolymers make them suitable materials for the design and synthesis of new and promising siRNA delivery systems.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Carcinoma de Células Escamosas/radioterapia , Proliferação de Células/efeitos da radiação , Receptores ErbB/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/radioterapia , Lutécio/uso terapêutico , Radioimunoterapia , Animais , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células/efeitos dos fármacos , Cetuximab , Receptores ErbB/imunologia , Feminino , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Lutécio/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Panitumumabe , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Pharm Sci ; 103(1): 227-34, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24218151

RESUMO

The release of the opioid antagonist naltrexone from neutral poly(N-isopropylacrylamide) (PNIPAAM) microgels and negatively charged PNIPAAM microgels containing acrylic acid groups (PNIPAAM-co-PAA) has been studied at various microgel and drug concentrations. The release curves were found to be well represented by the Weibull equation. The release rates were observed to be dependent on the microgel concentration. At most conditions, the release from the charged microgels was slower than for the neutral microgels. In addition, the charged microgels exhibited a release lag time, which was dependent on the microgel concentration. No significant lag time could be observed for the neutral microgels. Increasing the naltrexone concentration did not significantly affect the release rates from the neutral microgels, but the release from the charged microgels became faster. The microgels did not exhibit any significant cytotoxic effect on HeLa cells at the tested concentrations.


Assuntos
Resinas Acrílicas/química , Preparações de Ação Retardada/química , Géis/química , Naltrexona/química , Acrilatos/química , Linhagem Celular Tumoral , Células HeLa , Humanos
18.
Int J Pharm ; 448(1): 105-14, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23524085

RESUMO

Cationic block copolymers have been regarded as promising alternatives to the use of viral vectors for gene delivery. In this work, poly(N-isopropylacrylamide)n-block-poly((3-acrylamidopropyl)trimethylammonium chloride)m (PNIPAAMn-b-PAMPTMA(+)m) block copolymers with n=48 or 65 and m=6, 10 or 20 were synthesized and evaluated in terms of their potential for in vitro transfection of HeLa cells. These block copolymers collapse above a phase transition temperature, allowing the entrapment of the DNA molecules they are adsorbed to. The transfection efficiency increased with polymer concentration and was higher in the presence of a long PNIPAAM block and for a short charged block. In general, increasing the length of the charged block decreased the transfection efficiency. Additionally, polymer-DNA complexes (polyplexes) formed at lower polymer/DNA charge ratios caused lower cell toxicity levels. All polymers were shown to efficiently protect the DNA, even when they were present at low concentrations. At 37°C, the polyplexes mostly formed structures with size ranging from 100 to 500nm. The results also showed that the thermoresponsive contraction of PNIPAAM causes the charged block segments to be pressed out to the surface. The formation of compact structures seems to be a key factor in achieving high transfection efficiency.


Assuntos
Resinas Acrílicas/química , DNA/química , Técnicas de Transferência de Genes , Nanopartículas/química , Compostos de Amônio Quaternário/química , Resinas Acrílicas/administração & dosagem , Adsorção , DNA/administração & dosagem , Células HeLa , Humanos , Nanopartículas/administração & dosagem , Plasmídeos , Compostos de Amônio Quaternário/administração & dosagem , Temperatura
19.
Soft Matter ; 9(45): 10768-78, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25619143

RESUMO

In this work we report on the synthesis and self-assembly of a thermo-sensitive block copolymer system of n-octadecyl-poly(ethylene glycol)-block-poly(N-isopropylacrylamide), abbreviated as C18-PEGn-b-PNIPAAMm. We present a facile synthetic strategy for obtaining highly tunable thermo-responsive block copolymers starting from commercial PEG-based surfactants (Brij®) or a C18 precursor and conjugating with PNIPAAM via an Atom Transfer Radical Polymerization (ATRP) protocol. The self-assembly and detailed nanostructure were thoroughly investigated in aqueous solutions using both small-angle X-ray and neutron scattering (SAXS/SANS) combined with turbidity measurements. The results show that the system forms rather well defined classical micellar structures at room temperature that first undergo a collapse, followed by inter-micellar aggregation upon increasing the temperature. For the pure C18-PNIPAAM system, however, rather ill-defined micelles were formed, demonstrating the important role of PEG in regulating the nanostructure and the stability. It is found that the PEG content can be used as a convenient parameter to regulate the thermoresponse, i.e., the onset of collapse and aggregation. A detailed theoretical modeling analysis of the SAXS/SANS data shows that the system forms typical core-shell micellar structures. Interestingly, no evidence of back folding, where PEG allows PNIPAAM to form part of the C18 core, can be found upon crossing the lower critical solution temperature (LCST). This might be attributed to the entropic penalty of folding a polymer chain and/or enthalpic incompatibility between the blocks. The results show that by appropriately varying the balance between the hydrophobic and hydrophilic content, i.e. the amphiphilicity, tunable thermoresponsive micellar structures can be effectively designed. By means of SAXS/SANS we are able to follow the response on the nanoscale. These results thus give considerable insight into thermo-responsive micellar systems and provide guidelines as to how these systems can be tailor-made and designed. This is expected to be of considerable interest for potential applications such as in nanomedicine where an accurate and tunable thermoresponse is required.

20.
Langmuir ; 28(39): 14028-38, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22937727

RESUMO

A series of cationic diblock copolymers, poly(N-isopropylacrylamide)(48)-block-poly((3-acrylamidopropyl)trimethylammonium chloride)(X), abbreviated as PNIPAAM(48)-b-PAMPTMA(+)(X) (X = 0, 6, 10, 14, and 20), has been synthesized, and their adsorption onto silicon oxynitride from aqueous solution has been investigated using dual polarization interferometry. The polymer adsorption was modeled by using a lattice mean-field theory, and a satisfactory consistency between theory and experiments was found in terms of surface excess and layer thickness. Both theory and experiments show that the adsorption is limited by steric repulsion for X < X(max) and by electrostatic interactions for X > X(max). Modeling demonstrates that significant surface charge regulation occurs due to adsorption. Both the nonionic and cationic block exhibit nonelectrostatic affinity to silicon oxynitride and thus contribute to the driving force for adsorption, and modeling is used for clarifying how changes in the nonelectrostatic affinity affects the surface excess. The segments of the nonionic and cationic blocks seem less segregated when both have a nonelectrostatic affinity for the surface compared to the case where the segments had no surface affinity. Adsorption kinetics was investigated experimentally. Two kinetic regimes were observed: the adsorption rate is initially controlled by the mass transfer rate to the surface and at higher coverage is limited by the attachment rate.


Assuntos
Acrilamidas/química , Polímeros/química , Compostos de Silício/química , Acrilamidas/síntese química , Resinas Acrílicas , Adsorção , Cátions/química , Cinética , Estrutura Molecular , Polímeros/síntese química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA