Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39042542

RESUMO

Wireless inertial motion capture holds promise for real-time human-machine interfaces and home-based rehabilitation applications. However, wireless data drop can cause significant estimation errors deteriorating performance or even making the system unusable. It is currently unclear how to estimate non-periodic kinematics with wearable inertial measurement units (IMUs) in the presence of wireless data drop (packet loss). We thus propose a novel inference encoder-decoder network model for real-time kinematics during dynamic movement. Twenty-four healthy subjects performed yoga, golf, swimming, dance, and badminton movement activities while wearing IMUs and 10-90% of each IMU's data were randomly removed to determine the effects of data drop on estimation accuracy with and without the proposed model. Results demonstrated a reduction in RMSE of 45.2% to 51.5% in the upper limb kinematic estimation of the proposed model compared to the No Prediction strategy, and a reduction of 19.1% to 31.3% of the proposed model compared with an baseline LSTM model. In addition, the proposed model has significantly less error (p<0.05) than the No Prediction strategy and the baseline LSTM model for 10%, 20%, 30%, 40%, 50%, 60%, 70%, and 80% data drop. These results could enable wearable, wireless IMU dynamic motion analysis and assessment with reduced kinematic estimation error in the presence of varying amounts of wireless data drop and thus could further facilitate human-machine interaction and home-based medical assessment and treatment.

2.
J Neuroeng Rehabil ; 21(1): 96, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845000

RESUMO

BACKGROUND: Telerehabilitation is a promising avenue for improving patient outcomes and expanding accessibility. However, there is currently no spine-related assessment for telerehabilitation that covers multiple exercises. METHODS: We propose a wearable system with two inertial measurement units (IMUs) to identify IMU locations and estimate spine angles for ten commonly prescribed spinal degeneration rehabilitation exercises (supine chin tuck head lift rotation, dead bug unilateral isometric hold, pilates saw, catcow full spine, wall angel, quadruped neck flexion/extension, adductor open book, side plank hip dip, bird dog hip spinal flexion, and windmill single leg). Twelve healthy subjects performed these spine-related exercises, and wearable IMU data were collected for spine angle estimation and IMU location identification. RESULTS: Results demonstrated average mean absolute spinal angle estimation errors of 2.59 ∘ and average classification accuracy of 92.97%. The proposed system effectively identified IMU locations and assessed spine-related rehabilitation exercises while demonstrating robustness to individual differences and exercise variations. CONCLUSION: This inexpensive, convenient, and user-friendly approach to spine degeneration rehabilitation could potentially be implemented at home or provide remote assessment, offering a promising avenue to enhance patient outcomes and improve accessibility for spine-related rehabilitation. TRIAL REGISTRATION:  No. E2021013P in Shanghai Jiao Tong University.


Assuntos
Terapia por Exercício , Coluna Vertebral , Telerreabilitação , Humanos , Masculino , Telerreabilitação/instrumentação , Adulto , Feminino , Coluna Vertebral/fisiologia , Terapia por Exercício/métodos , Terapia por Exercício/instrumentação , Dispositivos Eletrônicos Vestíveis , Adulto Jovem , Acelerometria/instrumentação , Acelerometria/métodos , Fenômenos Biomecânicos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38224523

RESUMO

Wearable lower-limb joint angle estimation using a reduced inertial measurement unit (IMU) sensor set could enable quick, economical sports injury risk assessment and motion capture; however the vast majority of existing research requires a full IMU set attached to every related body segment and is implemented in only a single movement, typically walking. We thus implemented 3-dimensional knee and hip angle estimation with a reduced IMU sensor set during yoga, golf, swimming (simulated lower body swimming in a seated posture), badminton, and dance movements. Additionally, current deep-learning models undergo an accuracy drop when tested with new and unseen activities, which necessitates collecting large amounts of data for the new activity. However, collecting large datasets for every new activity is time-consuming and expensive. Thus, a transfer learning (TL) approach with long short-term memory neural networks was proposed to enhance the model's generalization ability towards new activities while minimizing the need for a large new-activity dataset. This approach could transfer the generic knowledge acquired from training the model in the source-activity domain to the target-activity domain. The maximum improvement in estimation accuracy (RMSE) achieved by TL is 23.6 degrees for knee flexion/extension and 22.2 degrees for hip flexion/extension compared to without TL. These results extend the application of motion capture with reduced sensor configurations to a broader range of activities relevant to injury prevention and sports training. Moreover, they enhance the capacity of data-driven models in scenarios where acquiring a substantial amount of training data is challenging.


Assuntos
Dança , Golfe , Esportes com Raquete , Dispositivos Eletrônicos Vestíveis , Yoga , Humanos , Natação , Articulação do Joelho , Aprendizado de Máquina , Fenômenos Biomecânicos
4.
Artigo em Inglês | MEDLINE | ID: mdl-37938963

RESUMO

Accurate shoulder joint angle estimation is crucial for analyzing joint kinematics and kinetics across a spectrum of movement applications including in athletic performance evaluation, injury prevention, and rehabilitation. However, accurate IMU-based shoulder angle estimation is challenging and the specific influence of key error factors on shoulder angle estimation is unclear. We thus propose an analytical model based on quaternions and rotation vectors that decouples and quantifies the effects of two key error factors, namely sensor-to-segment misalignment and sensor orientation estimation error, on shoulder joint rotation error. To validate this model, we conducted experiments involving twenty-five subjects who performed five activities: yoga, golf, swimming, dance, and badminton. Results showed that improving sensor-to-segment misalignment along the segment's extension/flexion dimension had the most significant impact in reducing the magnitude of shoulder joint rotation error. Specifically, a 1° improvement in thorax and upper arm calibration resulted in a reduction of 0.40° and 0.57° in error magnitude. In comparison, improving IMU heading estimation was only roughly half as effective (0.23° per 1°). This study clarifies the relationship between shoulder angle estimation error and its contributing factors, and identifies effective strategies for improving these error factors. These findings have significant implications for enhancing the accuracy of IMU-based shoulder angle estimation, thereby facilitating advancements in IMU-based upper limb rehabilitation, human-machine interaction, and athletic performance evaluation.


Assuntos
Articulação do Ombro , Ombro , Humanos , Amplitude de Movimento Articular , Extremidade Superior , Braço , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA