Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
APL Bioeng ; 8(2): 021501, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572313

RESUMO

Cancer, with high morbidity and high mortality, is one of the major burdens threatening human health globally. Intervention procedures via percutaneous puncture have been widely used by physicians due to its minimally invasive surgical approach. However, traditional manual puncture intervention depends on personal experience and faces challenges in terms of precisely puncture, learning-curve, safety and efficacy. The development of puncture interventional surgery robotic (PISR) systems could alleviate the aforementioned problems to a certain extent. This paper attempts to review the current status and prospective of PISR systems for thoracic and abdominal application. In this review, the key technologies related to the robotics, including spatial registration, positioning navigation, puncture guidance feedback, respiratory motion compensation, and motion control, are discussed in detail.

2.
Microorganisms ; 12(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38674657

RESUMO

Bacteria and phages are two of the most abundant biological entities in the gut microbiome, and diet and host phylogeny are two of the most critical factors influencing the gut microbiome. A stable gut bacterial community plays a pivotal role in the host's physiological development and immune health. A phage is a virus that directly infects bacteria, and phages' close associations and interactions with bacteria are essential for maintaining the stability of the gut bacterial community and the entire microbial ecosystem. Here, we utilized 99 published metagenomic datasets from 38 mammalian species to investigate the relationship (diversity and composition) and potential interactions between gut bacterial and phage communities and the impact of diet and phylogeny on these communities. Our results highlight the co-evolutionary potential of bacterial-phage interactions within the mammalian gut. We observed a higher alpha diversity in gut bacteria than in phages and identified positive correlations between bacterial and phage compositions. Furthermore, our study revealed the significant influence of diet and phylogeny on mammalian gut bacterial and phage communities. We discovered that the impact of dietary factors on these communities was more pronounced than that of phylogenetic factors at the order level. In contrast, phylogenetic characteristics had a more substantial influence at the family level. The similar omnivorous dietary preference and closer phylogenetic relationship (family Ursidae) may contribute to the similarity of gut bacterial and phage communities between captive giant panda populations (GPCD and GPYA) and omnivorous animals (OC; including Sun bear, brown bear, and Asian black bear). This study employed co-occurrence microbial network analysis to reveal the potential interaction patterns between bacteria and phages. Compared to other mammalian groups (carnivores, herbivores, and omnivores), the gut bacterial and phage communities of bamboo-eating species (giant pandas and red pandas) exhibited a higher level of interaction. Additionally, keystone species and modular analysis showed the potential role of phages in driving and maintaining the interaction patterns between bacteria and phages in captive giant pandas. In sum, gaining a comprehensive understanding of the interaction between the gut microbiota and phages in mammals is of great significance, which is of great value in promoting healthy and sustainable mammals and may provide valuable insights into the conservation of wildlife populations, especially endangered animal species.

3.
J Hazard Mater ; 471: 134158, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38636234

RESUMO

BACKGROUND: Long-term ozone (O3) exposure has been associated with cardiovascular disease (CVD) mortality in mounting cohort evidence, yet its relationship with incident CVD was poorly understood, especially in low- and middle-income countries (LMICs) experiencing high ambient air pollution. METHODS: We carried out a nationwide perspective cohort study from 2010 through 2018 by dynamically enrolling 36948 participants across Chinese mainland. Warm-season (April-September) O3 concentrations were estimated using satellite-based machine-learning models with national coverage. Cox proportional hazards model with time-varying exposures was employed to evaluate the association of long-term O3 exposure with incident CVD (overall CVD, hypertension, stroke, and coronary heart disease [CHD]). Assuming causality, a counterfactual framework was employed to estimate O3-attributable CVD burden based on the exposure-response (E-R) relationship obtained from this study. Decomposition analysis was utilized to quantify the contributions of four key direct driving factors (O3 exposure, population size, age structure, and incidence rate) to the net change of O3-related CVD cases between 2010 and 2018. RESULTS: A total of 4428 CVD, 2600 hypertension, 1174 stroke, and 337 CHD events were reported during 9-year follow-up. Each 10-µg/m³ increase in warm-season O3 was associated with an incident risk of 1.078 (95% confidence interval [CI]: 1.050-1.106) for overall CVD, 1.098 (95% CI: 1.062-1.135) for hypertension, 1.073 (95% CI: 1.019-1.131) for stroke, and 1.150 (95% CI: 1.038-1.274) for CHD, respectively. We observed no departure from linear E-R relationships of O3 exposure with overall CVD (Pnonlinear= 0.22), hypertension (Pnonlinear= 0.19), stroke (Pnonlinear= 0.70), and CHD (Pnonlinear= 0.44) at a broad concentration range of 60-160 µg/m3. Compared with rural dwellers, those residing in urban areas were at significantly greater O3-associated incident risks of overall CVD, hypertension, and stroke. We estimated 1.22 million (10.6% of overall CVD in 2018) incident CVD cases could be attributable to ambient O3 pollution in 2018, representing an overall 40.9% growth (0.36 million) compared to 2010 (0.87 million, 9.7% of overall CVD in 2010). This remarkable rise in O3-attributable CVD cases was primary driven by population aging (+24.0%), followed by increase in O3 concentration (+10.5%) and population size (+6.7%). CONCLUSIONS: Long-term O3 exposure was associated with an elevated risk and burden of incident CVD in Chinese adults, especially among urban dwellers. Our findings underscored policy priorities of implementing joint control measures for fine particulate matter and O3 in the context of accelerated urbanization and population aging in China.


Assuntos
Poluentes Atmosféricos , Doenças Cardiovasculares , Exposição Ambiental , Ozônio , Humanos , Ozônio/análise , China/epidemiologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/induzido quimicamente , Pessoa de Meia-Idade , Masculino , Exposição Ambiental/efeitos adversos , Feminino , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Incidência , Estudos de Coortes , Idoso , Adulto , Poluição do Ar/efeitos adversos , Poluição do Ar/análise
4.
NPJ Precis Oncol ; 8(1): 76, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538739

RESUMO

Diffuse large B cell lymphoma (DLBCL) is an aggressive blood cancer known for its rapid progression and high incidence. The growing use of immunohistochemistry (IHC) has significantly contributed to the detailed cell characterization, thereby playing a crucial role in guiding treatment strategies for DLBCL. In this study, we developed an AI-based image analysis approach for assessing PD-L1 expression in DLBCL patients. PD-L1 expression represents as a major biomarker for screening patients who can benefit from targeted immunotherapy interventions. In particular, we performed large-scale cell annotations in IHC slides, encompassing over 5101 tissue regions and 146,439 live cells. Extensive experiments in primary and validation cohorts demonstrated the defined quantitative rule helped overcome the difficulty of identifying specific cell types. In assessing data obtained from fine needle biopsies, experiments revealed that there was a higher level of agreement in the quantitative results between Artificial Intelligence (AI) algorithms and pathologists, as well as among pathologists themselves, in comparison to the data obtained from surgical specimens. We highlight that the AI-enabled analytics enhance the objectivity and interpretability of PD-L1 quantification to improve the targeted immunotherapy development in DLBCL patients.

6.
ACS Appl Mater Interfaces ; 16(6): 7444-7452, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38302429

RESUMO

Potassium sodium niobate (KNN) lead-free piezoceramics have garnered significant attention for their environmentally friendly attributes, desired piezoelectric activity (d33), and high Curie temperature (Tc). However, the limited applicability of most KNN systems in high-power apparatus, including ultrasonic motors, transformers, and resonators, persists due to the inherent low mechanical quality factor (Qm). Herein, we proposed an innovative strategy for achieving high Qm accompanied by desirable d33 via synergistic chemical doping and texturing in KNN piezoceramics. Comprehensive electrical measurements along with quantitative structural characterization at multilength scales reveal that the excellent electromechanical properties (kp = 0.58, d33 ∼ 134 pC·N-1, Qm = 582, and Tc ∼ 415 °C) originate from the high <001> texturing degree, nanodomain, as well as acceptor hardening. Our findings provide an insight and guidance for achieving high-power performance in lead-free KNN-based piezoceramics, which were expected to be used in advanced transducer technology.

7.
Environ Res ; 247: 118165, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38215923

RESUMO

BACKGROUND: Airborne particulate matter pollution has been linked to occurrence of childhood allergic rhinitis (AR). However, the relationships between exposure to particulate matter with an aerodynamic diameter ≤1 µm (PM1) during early life (in utero and first year of life) and the onset of childhood AR remain largely unknown. This study aims to investigate potential associations of in utero and first-year exposures to size-segregated PMs, including PM1, PM1-2.5, PM2.5, PM2.5-10, and PM10, with childhood AR. METHODS: We investigated 29286 preschool children aged 3-6 years in 7 Chinese major cities during 2019-2020 as the Phase II of the China Children, Families, Health Study. Machine learning-based space-time models were utilized to estimate early-life residential exposure to PM1, PM2.5, and PM10 at 1 × 1-km resolutions. The concentrations of PM1-2.5 and PM2.5-10 were calculated by subtracting PM1 from PM2.5 and PM2.5 from PM10, respectively. Multiple mixed-effects logistic models were used to assess the odds ratios (ORs) and 95% confidence intervals (CIs) of childhood AR associated with per 10-µg/m3 increase in exposure to particulate air pollution during in utero period and the first year of life. RESULTS: Among the 29286 children surveyed (mean ± standard deviation, 4.9 ± 0.9 years), 3652 (12.5%) were reported to be diagnosed with AR. Average PM1 concentrations during in utero period and the first year since birth were 36.3 ± 8.6 µg/m3 and 33.1 ± 6.9 µg/m3, respectively. Exposure to PM1 and PM2.5 during pregnancy and the first year of life was associated with an increased risk of AR in children, and the OR estimates were higher for each 10-µg/m3 increase in PM1 than for PM2.5 (e.g., 1.132 [95% CI: 1.022-1.254] vs. 1.079 [95% CI: 1.014-1.149] in pregnancy; 1.151 [95% CI: 1.014-1.306] vs. 1.095 [95% CI: 1.008-1.189] in the first year of life). No associations were observed between AR and both pre- and post-natal exposure to PM1-2.5, indicating that PM1 rather than PM1-2.5 contributed to the association between PM2.5 and childhood AR. In trimester-stratified analysis, childhood AR was only found to be associated with exposure to PM1 (OR = 1.077, 95% CI: 1.027-1.128), PM2.5 (OR = 1.048, 95% CI: 1.018-1.078), and PM10 (OR = 1.032, 95% CI: 1.007-1.058) during the third trimester of pregnancy. Subgroup analysis suggested stronger PM-AR associations among younger (<5 years old) and winter-born children. CONCLUSIONS: Prenatal and postnatal exposures to ambient PM1 and PM2.5 were associated with an increased risk of childhood AR, and PM2.5-related hazards could be predominantly attributed to PM1. These findings highlighted public health significance of formulating air quality guideline for ambient PM1 in mitigating children's AR burden caused by particulate air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Rinite Alérgica , Pré-Escolar , Gravidez , Feminino , Humanos , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Estudos Transversais , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Rinite Alérgica/etiologia , Rinite Alérgica/induzido quimicamente , China/epidemiologia , Poeira/análise
8.
Microb Ecol ; 87(1): 28, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38182675

RESUMO

High mountain freshwater systems are particularly sensitive to the impacts of global warming and relevant environmental changes. Microorganisms contribute substantially to biogeochemical processes, yet their distribution patterns and driving mechanism in alpine streams remain understudied. Here, we examined the bacterial and fungal community compositions in stream biofilm along the elevational gradient of 745-1874 m on Mt. Kilimanjaro and explored their alpha and beta diversity patterns and the underlying environmental drivers. We found that the species richness and evenness monotonically increased towards higher elevations for bacteria, while were non-significant for fungi. However, both bacterial and fungal communities showed consistent elevational distance-decay relationships, i.e., the dissimilarity of assemblage composition increased with greater elevational differences. Bacterial alpha diversity patterns were mainly affected by chemical variables such as total nitrogen and phosphorus, while fungi were affected by physical variables such as riparian shading and stream width. Notably, climatic variables such as mean annual temperature strongly affected the elevational succession of bacterial and fungal community compositions. Our study is the first exploration of microbial biodiversity and their underlying driving mechanisms for stream ecosystems in tropical alpine regions. Our findings provide insights on the response patterns of tropical aquatic microbial community composition and diversity under climate change.


Assuntos
Microbiota , Rios , Tanzânia , Bactérias/genética , Biofilmes
9.
Small ; 20(7): e2306486, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803415

RESUMO

Lead-free antiferroelectrics with excellent energy storage performance can become the core components of the next-generation advanced pulse power capacitors. However, the low energy storage efficiency caused by the hysteresis of antiferroelectric-ferroelectric transition largely limits their development toward miniaturization, lightweight, and integration. In this work, an ultrahigh recoverable energy storage density of ≈11.4 J cm-3 with a high efficiency of ≈80% can be realized in La-modified Ag0.5 Na0.5 NbO3 antiferroelectric ceramics at an ultrahigh breakdown electric field of ≈67 kV mm-1 by the compromise optimization between antiferroelectricity enhancement and nanodomain engineering, resulting in the transformation of large-size ferrielectric antipolar stripe domains into ultrasmall antiferroelectric nanodomains or polarization nanoregions revealing as Moiré fringe structures. In addition, the enhanced transparency with increasing La content can also be clearly observed. This work not only develops new lead-free antiferroelectric energy storage materials with high application potential but also demonstrates that the strategy of compromise optimization between antiferroelectricity modulation and nanodomain engineering is an effective avenue to enhance the energy storage performance of antiferroelectrics.

10.
J Am Chem Soc ; 146(1): 460-467, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109256

RESUMO

Dielectric ceramic capacitors with high recoverable energy density (Wrec) and efficiency (η) are of great significance in advanced electronic devices. However, it remains a challenge to achieve high Wrec and η parameters simultaneously. Herein, based on density functional theory calculations and local structure analysis, the feasibility of developing the aforementioned capacitors is demonstrated by considering Bi0.25Na0.25Ba0.5TiO3 (BNT-50BT) as a matrix material with large local polarization and structural distortion. Remarkable Wrec and η of 16.21 J/cm3 and 90.5% have been achieved in Bi0.25Na0.25Ba0.5Ti0.92Hf0.08O3 via simple chemical modification, which is the highest Wrec value among reported bulk ceramics with η greater than 90%. The examination results of local structures at lattice and atomic scales indicate that the disorderly polarization distribution and small nanoregion (∼3 nm) lead to low hysteresis and high efficiency. In turn, the drastic increase in local polarization activated via the ultrahigh electric field (80 kV/mm) leads to large polarization and superior energy storage density. Therefore, this study emphasizes that chemical design should be established on a clear understanding of the performance-related local structure to enable a targeted regulation of high-performance systems.

11.
Evol Appl ; 16(10): 1708-1720, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38020871

RESUMO

Animals living in high-altitude environments, such as the Tibetan Plateau, must face harsh environmental conditions (e.g., hypoxia, cold, and strong UV radiation). These animals' physiological adaptations (e.g., increased red cell production and turnover rate) might also be associated with the gut microbial response. Bilirubin is a component of red blood cell turnover or destruction and is excreted into the intestine and reduced to urobilinoids and/or urobilinogen by gut bacteria. Here, we found that the feces of macaques living in high-altitude regions look significantly browner (with a high concentration of stercobilin, a component from urobilinoids) than those living in low-altitude regions. We also found that gut microbes involved in urobilinogen reduction (e.g., beta-glucuronidase) were enriched in the high-altitude mammal population compared to the low-altitude population. Moreover, the spatial-temporal change in gut microbial function was more profound in the low-altitude macaques than in the high-altitude population, which might be attributed to profound changes in food resources in the low-altitude regions. Therefore, we conclude that a high-altitude environment's stress influences living animals and their symbiotic microbiota.

12.
IEEE Trans Vis Comput Graph ; 29(11): 4460-4471, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37782602

RESUMO

With the development of virtual reality, the practical requirements of the wearable haptic interface have been greatly emphasized. While passive haptic devices are commonly used in virtual reality, they lack generality and are difficult to precisely generate continuous force feedback to users. In this work, we present SmartSpring, a new solution for passive haptics, which is inexpensive, lightweight and capable of providing controllable force feedback in virtual reality. We propose a hybrid spring-linkage structure as the proxy and flexibly control the mechanism for adjustable system stiffness. By analyzing the structure and force model, we enable a smart transform of the structure for producing continuous force signals. We quantitatively examine the real-world performance of SmartSpring to verify our model. By asymmetrically moving or actively pressing the end-effector, we show that our design can further support rendering torque and stiffness. Finally, we demonstrate the SmartSpring in a series of scenarios with user studies and a just noticeable difference analysis. Experimental results show the potential of the developed haptic display in virtual reality.

13.
ACS Appl Mater Interfaces ; 15(38): 45128-45136, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37708382

RESUMO

The demand for miniaturization and integration in next-generation advanced high-/pulsed-power devices has resulted in a strong desire for dielectric capacitors with high energy storage capabilities. However, practical applications of dielectric capacitors have been hindered by the challenge of poor energy-storage density (Urec) and efficiency (η) caused by large remanent polarization (Pr) and low breakdown strength (BDS). Herein, we take a method of heterovalent ion substitution engineering in combination with the multilayer capacitor (MLCC) technology and thus achieve a large maximum polarization (Pmax), zero Pr, and high BDS in the AgNbO3 (AN) system simultaneously and obtain excellent Urec and η. The substitution of Sm3+ for Ag+ in SmxAN+Mn MLCCs at x ≥ 0.01 decreases the M1-M2 phase transition temperature, and the antiferroelectric (AFE) M2 phase appears at room temperature, which is beneficial to achieving a low Pr value. Due to the low Pr value and high BDS ∼ 1300 kV·cm-1, an excellent Urec ∼9.8 J·cm-3 and PD,max ∼ 34.8 MW·cm-3 were achieved in SmxAN+Mn MLCCs at x = 0.03. The work suggests a paradigm that can enhance the energy storage capabilities of AFE MLCCs to meet the demanding requirements of advanced energy storage applications.

14.
IEEE Trans Haptics ; PP2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676806

RESUMO

Skin-slip provides crucial cues about the interaction state and surface properties. Currently, most skin-slip devices focus on two-dimensional tactile slip display and have limitations when displaying surface properties like bumps and contours. In this paper, a wearable fingertip device with a simple, effective, and low-cost design for three-dimensional skin-slip display is proposed. Continuous multi-directional skin-slip and normal indentation are combined to convey the sensation of three-dimensional geometric properties in virtual reality during active finger exploration. The device has a tactile belt, a five-bar mechanism, and four motors. Cooperating with the angle-mapping strategy, two micro DC motors are used to transmit continuous multi-directional skin-slip. Two servo motors are used to drive the five-bar mechanism to provide normal indentation. The characteristics of the device were obtained through the bench tests. Three experiments were designed and sequentially conducted to evaluate the performance of the device in three-dimensional surface exploration. The experimental results suggested that this device could effectively transmit continuous multi-directional skin-slip sensations, convey different bumps, and display surface contours.

15.
Ecotoxicol Environ Saf ; 264: 115451, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703807

RESUMO

BACKGROUND: Studies suggested that greenness could reduce death risks related to ambient exposure to particulate matter (PM), while the available evidence was mixed across the globe and substantially exiguous in low- and middle-income countries. By conceiving an individual-level case-crossover study in central China, this analysis primarily aimed to quantify PM-mortality associations and examined the modification effect of greenness on the relationship. METHODS: We investigated a total of 177,058 nonaccidental death cases from 12 counties in central China, 2008-2012. Daily residential exposures to PM2.5 (aerodynamic diameter <2.5 µm), PMc (aerodynamic diameter between 2.5 and 10 µm), and PM10 (aerodynamic diameter <10 µm) were assessed at a 1 × 1-km resolution through satellite-derived machine-learning models. Residential surrounding greenness was assessed using satellite-derived enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) at multiple buffer sizes (250, 500, and 1000 m). To quantify the acute mortality risks associated with short-term exposure to PM2.5, PMc, and PM10, a time-stratified case-crossover design was utilized in conjunction with a conditional logistic regression model in our main analyses. To investigate the effect modification of greenness on PM-mortality associations, we grouped death cases into low, medium, and high greenness levels using cutoffs of 25th and 75th percentiles of NDVI or EVI exposure, and examined potential effect heterogeneity in PM-related mortality risks among these groups. RESULTS: Mean concentrations (standard deviation) on the day of death were 73.8 (33.4) µg/m3 for PM2.5, 43.9 (17.3) µg/m3 for PMc, and 117.5 (44.9) µg/m3 for PM10. Size-fractional PM exposures were consistently exhibited significant associations with elevated risks of nonaccidental and circulatory mortality. For every increase of 10-µg/m3 in PM exposure, percent excess risks of nonaccidental and circulatory mortality were 0.271 (95% confidence interval [CI]: 0.010, 0.533) and 0.487 (95% CI: 0.125, 0.851) for PM2.5 at lag-01 day, 0.731 (95% CI: 0.108, 1.359) and 1.140 (95% CI: 0.267, 2.019) for PMc at lag-02 day, and 0.271 (95% CI: 0.010, 0.533) and 0.386 (95% CI: 0.111, 0.662) for PM10 at lag-01 day, respectively. Compared to participants in the low-level greenness areas, those being exposed to higher greenness were found to be at lower PM-associated risks of nonaccidental and circulatory mortality. Consistent evidence for alleviated risks in medium or high greenness group was observed in subpopulations of female and younger groups (age <75). CONCLUSIONS: Short-term exposure to particulate air pollution was associated with elevated risks of nonaccidental and circulatory death, and individuals residing in higher neighborhood greenness possessed lower risk of PM-related mortality. These findings emphasized the potential public health advantages through incorporating green spaces into urban design and planning.


Assuntos
Poluição do Ar , Poeira , Feminino , Humanos , Estudos Cross-Over , Material Particulado/toxicidade , Poluição do Ar/efeitos adversos , China
16.
Front Microbiol ; 14: 1210717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614609
17.
Artigo em Inglês | MEDLINE | ID: mdl-37639418

RESUMO

For upper limb rehabilitation, the robot-assisted technique in combination with serious games requires well-specified training plans. For the best quality of the rehabilitation process, customized game levels for each user are desired, while it is labor-intensive to design and adjust game levels for different individuals. We work on generating training content for a desktop end-effector rehabilitation robot and propose a method to automatically generate individualized training plans. By modeling the search of the training motions as finding optimal hand paths and trajectories, we introduce solving the design problem with a multi-objective optimization (MO) solver. We further improve the MO solver to enhance the diversity of the solutions. With the proposed approach, our system is capable of automatically generating various training plans considering the training intensity and dexterity of each joint in the upper limb. In addition, the enhanced diversity avoids repeated training plans, which helps motivate the user in the rehabilitation. We test our method with different requirements on the training plans and validate the solutions.

18.
ACS Appl Mater Interfaces ; 15(27): 32885-32894, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37392172

RESUMO

As the rapid development of advanced foldable electronic devices, flexible and insulating composite films with ultra-high in-plane thermal conductivity have received increasing attention as thermal management materials. Silicon nitride nanowires (Si3N4NWs) have been considered as promising fillers for preparing anisotropic thermally conductive composite films due to their extremely high thermal conductivity, low dielectric properties, and excellent mechanical properties. However, an efficient approach to synthesize Si3N4NWs in a large scale still need to be explored. In this work, large quantities of Si3N4NWs were successfully prepared using a modified CRN method, presenting the advantages of high aspect ratio, high purity, and easy collection. On the basis, the super-flexible PVA/Si3N4NWs composite films were further prepared with the assistance of vacuum filtration method. Due to the highly oriented Si3N4NWs interconnected to form a complete phonon transport network in the horizontal direction, the composite films exhibited a high in-plane thermal conductivity of 15.4 W·m-1·K-1. The enhancement effect of Si3N4NWs on the composite thermal conductivity was further demonstrated by the actual heat transfer process and finite element simulations. More significantly, the Si3N4NWs enabled the composite film presenting good thermal stability, high electrical insulation, and excellent mechanical strength, which was beneficial for thermal management applications in modern electronic devices.

19.
Small ; 19(47): e2303768, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37485639

RESUMO

Lead-free dielectric ceramics with excellent energy-storage performance are crucial to the development of the next-generation advanced pulse power capacitors. However, low energy-storage density limits the evolution of capacitors toward lightweight, miniaturization, and integration. Here, an effective strategy of constructing highly dynamic polarization heterogeneous nanoregions is proposed in lead-free relaxors to realize an ultrahigh energy-storage density of ≈8.0 J cm-3 , making almost ten times the growth of energy-storage density compared with pure Bi0.5 Na0.5 TiO3 ceramic, accompanied by a higher energy efficiency of ≈80% as well as an ultrafast discharge rate of ≈20 ns. Ultrasmall polarization heterogeneous nanoregions with different orientations and ultrahigh flexibility, and significantly decreased grain size to submicron lead to reduced heat loss, improved breakdown electric field and polarization, enhanced relaxation, and delayed polarization saturation behaviors, contributing to the remarkable energy-storage performance. Moreover, the breakdown path distribution or electrical tree evolution behaviors are systematically studied to reveal the origin of ultrahigh breakdown electric field through phase field simulations. This work demonstrates that constructing highly dynamic polarization heterogeneous nanoregions is a powerful approach to develop new lead-free dielectric materials with high energy-storage performance.

20.
Comput Biol Med ; 163: 107217, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37450968

RESUMO

BACKGROUND AND OBJECTIVE: Medical image visualization is an essential tool for conveying anatomical information. Ray-casting-based volume rendering is commonly used for generating visualizations of raw medical images. However, exposing a target area inside the skin often requires manual tuning of transfer functions or segmentation of original images, as preset parameters in volume rendering may not work well for arbitrary scanned data. This process is tedious and unnatural. To address this issue, we propose a volume visualization system that enhances the view inside the skin, enabling flexible exploration of medical volumetric data using virtual reality. METHODS: In our proposed system, we design a virtual reality interface that allows users to walk inside the data. We introduce a view-dependent occlusion weakening method based on geodesic distance transform to support this interaction. By combining these methods, we develop a virtual reality system with intuitive interactions, facilitating online view enhancement for medical data exploration and annotation inside the volume. RESULTS: Our rendering results demonstrate that the proposed occlusion weakening method effectively weakens obstacles while preserving the target area. Furthermore, comparative analysis with other alternative solutions highlights the advantages of our method in virtual reality. We conducted user studies to evaluate our system, including area annotation and line drawing tasks. The results showed that our method with enhanced views achieved 47.73% and 35.29% higher accuracy compared to the group with traditional volume rendering. Additionally, subjective feedback from medical experts further supported the effectiveness of the designed interactions in virtual reality. CONCLUSIONS: We successfully address the occlusion problems in the exploration of medical volumetric data within a virtual reality environment. Our system allows for flexible integration of scanned medical volumes without requiring extensive manual preprocessing. The results of our user studies demonstrate the feasibility and effectiveness of walk-in interaction for medical data exploration.


Assuntos
Realidade Virtual , Interface Usuário-Computador , Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA